Decoupling Functionality To Facilitate Controlled
Growth

Roelof J. van den Berg and Arian J.R. Zwegers

Department of Technology Management
Eindhoven University of Technology
P.O. Box 513

5600 MB Eindhoven

THE NETHERLANDS

e-mail: rbe@tm.tue.nl

Abstract: This paper describes the results of the action
research project ' Gordian', which studied some measures to
be taken in order to facilitate controlled growth of a
software product. Technical decoupling prevents the
consequences of three identified types of integrations, and it
streamlines the integrations between packages. Conceptual
decoupling prevents violations of the integrity of the data.
Since the outcome of technical and conceptual decoupling
is a static picture of the system, the dynamic element of the
development process is addressed by means of
organisational measures.

Keywords: software development, decoupling, controlled
growth, Gordian project

Roelof J. van den Berg is a research co-ordinator with
BaaN Company. He holds a MSc. degree cum laudae from
Eindhoven University of Technology. This summer, he will
receive his Ph.D from the same institution. His research
interests include the design of information infrastructures
and modular software design.

Arian J. R. Zwegers received his MSc. degree cum
laudae from Eindhoven University of Technology in 1993.
Currently, he is preparing his Ph.D thesis at the same
university. In 1996 , he was involved in the Gordian project
at BaaN Company. His research interests include shop floor
control architectures and enterprise reference architectures.

1. Introduction

To speak of life cycles in relation to information
systems is far from being original these days. To
draw analogies between the existence of
information systems, and organic life has
become such a cliché that one almost stops
noticing how remarkably unjustified it still is.
The way the average information system
struggles on between its release and final shut-
down differs from real life in so many respects,
that one paper cannot cover even the most
noticeable ones. For this reason, we decided to
devote this contribution to only one of the
chasms between real life and its counterpart in
information systems: controlled growth,
including decay, along predictable lines. This
characteristic stands as a phenomenal challenge
to the manufacturing system discipline. In this
paper, we describe the results of an action
research project, the Gordian project,
concerning this facilitation of controlled growth
through modular design.

The project was carried out at the BaaN
Company, currently the largest software

manufacturer in the Netherlands. The BaaN
Company is a supplier of a standard software
package for enterprise resources planning.
Previously, the package was called 'Triton’ ;
currently, it is named after the company. The
current version, BaaN IV, consists of eight
packages (with e.g. Distribution, Manufacturing,
Service and Finance functionality) and
comprises more than 2.5 million lines of code.

During the fast growth of Triton, problems have
emerged concerning the integrations between its
various packages. Triton was introduced six
years ago. It has grown fast ever since, and will
continue to grow fast. Pieces were built on top
of each other, and sometimes relations were
created in a rather haphazard way. As a
consequence, customers coOme across more
problems, application developers solve more
bugs, at the same time introducing more and
more problems (bad fixes). Furthermore,
whenever a new piece of functionality is
introduced into Triton, congestions occur at
subsequent development, documentation, and
testing. Although exceptions have occurred, all
packages have to be ready and are released at
the same moment; spreading of workload is not
possible. In other words, there are no buffers in
between the various packages. The interfaces
between packages could have been defined
better. Although integrations are needed, it is
desirable to decouple the packages, thereby
decreasing the necessity to relezse packages at
the same moment. New functionality is hard to
add, and application development becomes a
process that is difficult to control. In the
remainder of this document, this entanglement
problem is called the Gordian problem.

This paper is organised as follows. In the next
section, the distinction in three aspects of
resolution, namely technical decoupling,
conceptual decoupling, and organisational
embedding is explained. After this, we present
the first aspect: technical decoupling. Then, the
conceptual decoupling theory is introduced.
Furthermore, we illustrate how organisational
measures are needed in order to facilitate a
controlled development process. We conclude
this paper with a discussion on our findings.

Studies in Informatics and Control, Vol .6, No.1, March 1997 S

2. Three Aspects of Resolution

In order to tackle the Gordian problem, we think
we need to address the problem at a number of
aspects. In order to put the packages on the
market independently of each other, they need to
be ‘technically’ (or physically) decoupled.
However, in an ideal situation. the technical
decoupling follows a pre-determined
architecture. This architecture is constituted of
conceptually decoupled modules, indicates
where the interfaces are between modules, and
what these interfaces consist of. Finally, in order
to prevent the architecture of being a one-time
snapshot, organisational measures have to be
taken which contribute to a controlled
development process and a lasting software
product.

3. Technical Decoupling

3.1 Types of Integrations

At a technical level, the Gordian problem occurs
in a number of ways. In this paper, we focus on
three types of integrations: table-table
integrations, software-table integrations, and
software-software integrations. These types of
integrations are illustrated in Figure 2. Note that
we focus on entwining of Triton packages,
rather than Triton modules or even business
objects. Packages contain modules, which in
their turn consist of business objects. Packages
are easier to decouple than modules, since they
have their own type declarations and help texts.

The first type of integration is the table-table

scripts A~
A
A~ | s | tunction
PV v P = calls
PV A T
database iy
actions A~

Current situation ‘Technical’ decoupling

‘Conceptual’ decoupling

Figure 1. Decoupling

Therefore, we distinguish three aspects of
resolution:

e Technical decoupling;
e Conceptual decoupling;

o Organisational embedding.

Figure 1 illustrates the difference between
'technical' and 'conceptual' decoupling. For an
elaboration of technical and conceptual
decoupling, we refer to the next Sections.

integration. References are made from a table in
a certain package to a table in another package.
Normally, a user does not notice these
references, but he might run into them when he
tries to delete a record of e.g. the main item
table. Although sometimes items are not used
anymore, they cannot be deleted, since
references are made to these items. Figure 2
illustrates an example of a reference to an item
record (table B) from a History by Item table in
the Triton Process package. This table contains
an item field, 'mitm’ that refers to the item table.
Deletion of the parent is restricted if any child
refers to the parent. Although the item might not
be produced anymore, and history data are
obsolete, references still exist, and the item has
to be present.

58 Studies in Informatics and Control, Vol.6, No.1, March 1997

package A

table-table integration

]
1
A 1]

]
A script ' |BDLL
N/W'E, _____ J’W
A~~~ | ungion

function

software-table integration

Figure 2. References Between Packages

References between packages imply that a
customer needs to purchase the package whose
tables are referred to. Consider the previous
example in relation to a customer whose line of
business is the process industry. If this customer
has bought the Triton Process package, he needs
to purchase the ITM module of the discrete
manufacturing oriented Triton Manufacturing
package as well, in order to have item control
functionality. Clearly, decoupling the reference
in question would be a contribution to avoiding
this undesirable situation.

The second type of integration is the software-
table integration. Scripts in a certain package
write (and read) in tables of another package.
Figure 2 gives an example, in which records of a
package B table are deleted, inserted, or updated
by scripts and Dynamic Link Libraries (DLLs)
from other packages. Obviously, this kind of
structure increases the entanglement betwegn
packages.

The third type of integration is the software-
software integration. Scripts in a certain package
call functions of a DLL in another package. An
example is depicted by Figure 2, where a
package A script calls a function of a DLL
belonging to package B. Note that the particular
script needs to 'know' the DLL mentioned. The
script needs information about the package the
DLL belongs to, the version of the package, etc.
In addition, the script must check whether the
DLL is present at all; it is possible that the user
has not bought the specific module. In this kind
of structure, all information for a proper
invocation of other functions needs to be present
in the script.

Besides the three types of integrations described
above, we can distinguish some other types,
which we do not discuss in this paper.
Integrations occur at the domain level. A

domain of an attribute is a type declaration.
Integrations occur by referring to domains that
are declared in other packages. Another type of
integration is the integration at form level.
Within a certain session, the user can zoom to
other sessions. These other sessions do not
necessarily belong to the same package as the
session from which they are invoked.

3.2 Decoupling Integrations

In order to illustrate how integrations could be
decoupled, we take a table-table integration as
an example. Table B contains two fields: a key
field called 'code'’ and an accompanying
description 'desc’. A package A table refers to
the 'code' field of the package B table. This
reference could be resolved in two ways that are
indicated in Figure 3. In the first solution
(Figure 3, bottom left), the reference is deleted,
and a field that gives the actual description is
inserted instead of a field 'code' that indicates
the code for the description. However, this
option is not preferred, since consistency
between records with the same description is
not assured. Records that need the same
description, might have differences in the
description field.

The other option (Figure 3, bottom right), is to
decouple the two tables - and thus the two
packages - by using DLLs. In the current
situation, deletion of the parent (a table B
record) is prohibited if any child (any table A
record) refers to the parent; when the parent is
deleted, all references must be checked. A
software solution that takes this into account
would use two DLLs: one related to patkage A
and serving as the interface for package B, and
another one that is related to package B and
serves as the interface for package A.

Studies in Informatics and Control, Vol.6, No.1, March 1997 59

software-software integration

package B

refarance

package A

A B
A script ADLL BDLL B script
NSNS Pa Ve Ve NN Ve Ve VW
Y a vy PV a Ve NSNS Pa Y a vy
NN NN NN Pa v a Ve

-—-F - 4—r—iw'-.- - - --4---
information fur:;u'cn
flow

Figure 3. Two Possible Decoupling Options

package A
A script ADLL
NN NN
NN VeV Vg
NN NN
_________b. <=

on case A_script.abed
... BaanIVa: B1_DLL
... Baan IVb: B2_DLL

package B
Baan 1Va Baan IVa
B1DLL B table
NN —
NN
e IR
Saan Vb oei——-
B2 DLL Baan IVb
NN g B table
NN
LN S

~—

Figure 4. Parameter Dependent Invocation of Versions

The latter DLL should provide functions that
return the description for a specific code. The
first DLL should provide functions that check
whether records are present with a specific code.
These functions should be invoked when the

user deletes a code.

In addition, there should be a provision (a
parameter) that allows a user to invoke sessions
such as those in a package A script depending
on the implemented package B. In addition, a
special solution is introduced for the situation
that no package B is available. This so-called

“minimal environment” could for

instance

consist of some primary tables. Figure 4 shows
that a parameter determines the functions to be

invoked in which DLL, depending
implemented Triton and BaaN versions.

on the

A double DLL has certain advantages over a
single DLL. Note that a double DLL is used,
where a single call from the A script to the Bl

60

Studies in In

DLL would suffice. However, using a double
DLL gives the advantage that the A script does
not need to know all DLLs in other packages; it
only has information about its 'accompanying'
DLL. That DLL takes care of the proper
invocation of other functions, whether they
belong to package A, another BaaN Package,
another BaaN version or even another vendor's
software.

In conclusion, this Section illustrates the
technical decoupling of a table-table integration
where the referential integrity checking
functionality of a DBMS is replaced by DLL
functions. The former table-table integrations,
i.e. the references between tables of different
packages, are deleted. References between
tables of the same package or references to
common tables are still allowed.

formatics and Control, Vol .6, No.1, March 1997

interface

Package B

Figure 5. Current Situation

By introducing a special solution for the
situation that no package B is available, two
packages can be fully decoupled concerning the
table-table integrations.

The approach applied in this Section may be
carried out for all three types of integrations.
Therefore, the other types of integrations are not
described in detail in this paper.Consider the
current integrations between two packages as
illustrated in Figure 5. At the moment, there are
five kinds of integrations, among which a few
subtypes of the previously identified three main
types (from top to bottom):

interface

applications

tables

scripts

Package A

e areference is made from a package A table
to a field of a package B table. We call this
integration the table-table integration.

e an A script calls a DLL function of package
B. This is another type of software-software
integration.

e a DLL of package A writes (and reads)
directly into a table of package B. This is
another form of the software-table
integration.

After removing the five harmful types of
integrations as depicted in Figure 5, a new,

Package B

Figure 6. Ideal Technical Situation

e an include of package B is included in a
script of package A. This is one type of
software- software integration.

e ascript or include of package A writes (and
reads) directly into a table of package B.
This is a form of the software-table
integration.

improved situation occurs. Figure 6 shows two
packages where all table-table, software-table,
and software-software integrations have been
replaced by double DLL constructions. Note
that a double DLL creation is also a kind of
software-software integration, but it is
'technically’ much more flexible than the two
versions depicted in Figure 5 . For instance,
compared to the mentioned integration types, a

Studies in Informatics and Control, Vol.6, No.I, March 1997 61

double DLL construction is easy to adapt or
extend.

4. Conceptual Decoupling

Conceptual decoupling of packages is needed in
addition to technical decoupling. Adequate
technical decoupling can significantly improve
system maintenance, because it streamlines the
integrations between the packages. However, it
cannot prevent that one table is updated from
various packages, which threatens the integrity
of the data. Conceptual decoupling, through
modular design, can solve this problem.
Modular system design consists of the following
steps:

e define the functions of the system,
assign each function to a module,
e specify in detail the interfaces between the
modules,
e design the non-interface part for each
module separately.
oan domain foreign damain
\

\

Modue B

AN

AN
onn domain

Modue A

fareign darain
Figure 7. Modules and Their Domains

The principles of modular design have been
formalised with respect to data structures in
information systems in (Pels, 1988; Pels and
Wortmann, 1990).These studies show the
essential property of a module being that its
interfaces are precisely defined and that a clear
distinction is made between the input interface
and the output interface.

Pels distinguishes a number of domains, which
are illustrated in Figure 7. The own domain of a
module contains the objects for which the
module has retrieval and update authorisation
(delete, insert, update). A further refinement can
be made by distinguishing a private domain and
a public domain. The private domain contains
the objects of the own domain that are not
visible to other modules, and the public domain
comprises the objects of the own domain that
are visible to one or more other modules. In
Figure 7, the public domain of module A that is
visible for module B and v.v. is in grey. Note
that the public domain is the output interface,

since it contains non-hidden information of the
module itself.

The foreign domain of a module contains the
objects for which the module has retrieval
authorisation but no update authorisation. The
foreign domain refers to the objects a module
retrieves from other modules, and forms the
input interface. It contains all specifications of
other modules that must be known to design,
validate and operate the module.

The union of the own and foreign domain is
called the view domam. The view domain of a
module contains the objects that are visible for
the module. Being visible means that the objects
are included in the information base of the
module, and that these objects can be retrieved
from this information base by the ‘read'
operation.

As made clear in the previous Section, an
important part of the Gordian problem lies in the
fact that tables in BaaN IV can be updated from
various places in the system. Pels' theory
indicates how this can be improved. Each table
should be linked to one own domain only;
update authority for a table should be located at
only one place in the system. This last
conclusion may not sound very original, but Pels
provides a sophisticated approach to assigning
update authority. He relies heavily on evaluating
the constraints which each module assumes
about a specific table. Communication clashes
result if a module initiates an update that is in
conflict with the actual value of the own data of
another module. What combinations of values
are meaningful and therefore allowed in the
information base, is specified by means of
constraints. Therefore, constraints play an
important role in the cause and prevention of
communication clashes.

However, problems in finding the constraints
complicate application of Pels' ideas. According
to Pels, modular decomposition makes it
possible to develop and maintain an integrated
information system for arbitrary large
organisations. This is probably true, as long as
their information systems are small because in
practice the requirement to gather the
constraints that are applicable to the identified
modules hinders the suitability of his theory.

A crucial assumption is that all constraints are
available in documentation (e.g. functional
design). In practice, this assumption does not
hold and most constraints can only be traced in
the code. This limitation is of more importance
to the applicability of Pels' framework than the
number of constraints in a large system such as
BaaN IV. The latter will only make the

62 Studies in Informatics and Control, Vol.6, No.1, March 1997

application of Pels' approach more time
consuming. However, as long as constraints are
hidden, application is impossible. Until
documentation of constraints is significantly
more developed, conceptual decoupling will be
very fastidious.

5. Organisational Embedding

5.1 Introduction

In the previous Sections, we have discussed
technical and conceptual decoupling. These two
exercises are important, but not sufficient to
sustain controlled growth of an information
system. After all, the outcome of both technical
and conceptual decoupling is only a snapshot of
the system. They both emphasise the static
element in system development. If done well, it
certainly will make structured development of
the system in the future more likely, but it
provides far from a guarantee that this will
indeed happen. For this purpose, the dynamic
element of development should be addressed as
well. This implies initiatives to increase the
maturity of the development organisation.

Initiatives within the Capability Maturity Model
framework (Humphrey, 1990) have already been
taken within BaaN Development. Indeed many
problems related to lack of controlled system
growth can be solved through advancement in
CMM. Along the same lines, a more individual
approach can be brought about by Personal
Software Process initiatives (Humphrey, 1996).
Though CMM pays attention to the role of
"baselines”, it remains a general framework.
Here, we want to draw attention to specific
issues which pertain to the use of architectures.
Subsequently, the following measures are
discussed:

e establish a mature planning
s standardise the development process

e create a design orientation

5.2 Mature Planning

Controlled system growth requires reliable
planning of changes (Genuchten, 1991).
Demarcation of responsibilities plays a crucial
role here. Often it is only keyword-oriented, and
not enough measures are taken to prevent
duplications or omissions in the system.
Interfaces are not worked out until a late stage.
To prevent duplication during development, the
functionality of packages and modules should be

less broadly defined before the responsibility for
their development is delegated to a particular
group of developers. Functionality should be
worked out with sufficient detail at a central
level, through meetings of key developers and
consultants.

The specification of the required functionality
can result in a business driven architecture. The
most important characteristic of this architecture
should be that it sums up the "functionality
units" of the completg system. A modular design
approach could be followed to create this
architecture. The architecture should be split up
into pieces which can be assigned as objectives
for a group of developers. What is going to be
developed by whom and when can be
established centrally this way. Obscurities about
mutual prerogatives can only partly be solved
through informal communication. A
specification has to be available to formally
outline the duties of each teamn of developers
and describe the interfaces of their work (Berg
and Wortmann, 1995; Pels et al, 1995).

3.3 Standardisation of the
Development Process

Partly due to insufficient overall planning, the
development process is currently too much
feature-oriented (as opposed to design-oriented)
and too unco-ordinated. Since delegation of
development activities is driven by keywords
and the functionality units are far from self-
explanatory, developers occasionally receive
guidance from consultants who tell them which
features should be offered by that particular
functionality unit. Beside its ad-hoc nature, this
support is not problematic in itself, but without
an overall design the development of the system
as a whole is based on very local clues. Through
the dialogﬁe with (or under the pressure of) the
consultant, the developer tends to include more
and more features in his functionality unit, often
regarding the official deadlines as unrealistic.

With this approach to development, it is very
difficult to prevent that certain functionality is
not covered at all or covered more than once, or
that harmful links are made among tables and/or
software. Even when it is known that a certain
function is covered by a particular team, it is
very tempting for other teams to still develop
something similar when they need it for their
own functions.

Matters would improve when teams of
developers can be assigned to functionality
units, based on the overall design and
corresponding high-level specifications of the
functionality ~ (i.e. the business driven

Studies in Informatics and Control, Vol.6, No.1, March 1997 63

architecture). These teams should be supported
by consultants, who provide the link with the
market at a more detailed level. This procedure
should be the same for each team of developers.
Support from outside (customers, consultants)
should be more uniform per development team.
To improve the latter, the BaaN Company
recently introduced their Customer Interaction
Program.

5.4 Creation of A Design Orientation

To support many of the technical changes but
certainly to sustain the validity of an
architecture, management should establish a
mind set among the developers, which is design-
oriented. At the moment, this orientation has not
pervaded most organisations sufficiently. One
reason why many developers still think very
much in "screens" may be that most customers
and consultants look at the software this way.
Not seldom, customers land a 700 page
document on a desk, saying: "This is the output
of our current system. Can your system give us
the same output?"

To reduce the number of ad-hoc fixes, it should

become a developer's second nature to reflect on
a planned code change in terms of the
architecture and its consequences for the system
as a whole. In terms of the previous section, the
developer should be made aware of his own
domain. Likewise, he should be trained to
contribute to the maintenance of the
architecture. When significant code changes are
not recorded as possible corresponding
modifications of the architecture, the latter will
be outdated and useless in no time.

6. Conclusion

On the basis of an action research project within
the BaaN Company, we have discussed three
aspects of enhancing controlied growth of
information systems. Adequate technical
decoupling streamlines the integration between
system components, whereas conceptual
decoupling can be used to secure integrity of the

system. Over time, such exercises are only
worthwhile when they are accompanied by
initiatives to increase organisational maturity.

Acknowledgments

We are greatly indebted to Rob Nouwt (BaaN
Development), and Martin Taal (BaaN
Research) for their support in the Gordian
project. In addition, our gratitude goes to Hans
Wortmann for the initiation of the project, and
Henk-Jan Pels for introducing us to the theory
of modular decomposition. Finally, we would
like to thank the staff at the BaaN Business IT
School.

REFERENCES

VAN DEN BERG, RJ. and WORTMANN,
J.C., CIM Requires A New Manufacturing
Engineering, in P.P. Groumpos (Ed.)
Proceedings of ASI'95, 1995.

VAN GENUCHTEN, M., Towards A
Software Factory, Ph. D Thesis, Eindhoven
University of Technology, 1991.

HUMPHREY, W.S. , Managing the Software
Process, SEI Series in Software Engineering,
ADDISON -WESLEY, 1990.

HUMPHREY, W.S., Using A Defined and
Measured Personal Software Process, IEEE
SOFTWARE, May 1996, pp. 77-88.

PELS, H.J.,, Integrated Information Bases,
Ph.D Thesis Eindhoven University of
Technology, 1988, (in Dutch).

PELS, H.J. and WORTMANN, J.C., Modular
Design of Integrated Databases in Production
Management Systems, JOURNAL OF
PRODUCTION PLANNING AND CONTROL,
Vol. 1, No. 3, 1990.

PELS, H.J, WORTMANN, J.C. and
ZWEGERS, A. J. R., Flexibility in Manufac-
turing: An Architectural Point of View, in
J.C. Wortmann (Ed.) Proceedings of the CIM at
Work Conference , 1995.

64 Studies in Informatics and Control, Vol.6, No.1, March 1997

