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Abstract: In this paper, structured systems de-
scribed by state space models are considered. For
these systems, the entries of the state space model
matrices are supposed to be either fixed zeros or
free independent parameters. With such systems,
one can associate a directed graph which is a use-
ful tool to study some control properties of systems.
In this context, we present here an illustrative ap-
plication of disturbance rejection and input-output
decoupling problems on a distillation column model.

Keywords: Structured systems, graph theory,
input-output decoupling, disturbance rejection

Vincent Hovelaque graduated in Applied Math-
ematics and Informatics in 1992. He received the
DEA degree of Operations Research from the In-
stitut National Polytechnique de Grenoble, France,
in 1994. He is now a Ph.D student at the Insti-
tut National Polytechnique de Grenoble attached
to the Laboratoire d’Automatique de Grenoble
from 1'Ecole Nationale Superieure d’Agronomie de
Rennes. His research interests include the analy-
sis of structured systems via graph theoretical and
geometrical points of view.

Christian Commault received the Electrical En-
gineer degree, the Docteur-Ingenieur degree and the
Docteur d’Etat degree from the Institut National
Polytechnique de Grenoble in 1973, 1978 and 1983
respectively. From 1974 to 1976, he taught at the
Dakar Institute of Technology , Senegal. Since
1979, he has taught automatic control and manu-
facturing systems at the Ecole Nationale Superieure
d’Ingenieurs Electriciens de Grenoble. In 1978, he
spent one year as a visiting researcher at the Math-
ematics Institute of Groningen , The Netherlands.
From 1986 to 1988, he worked at the Renault Re-
search Center on design methods for manufacturing
systems. His research interests are in linear multi-
variable control and performance evaluation of pro-
duction systems.

Studies in Informatics and Control. Vol.6. No.1. March 1997

Jean-Michel Dion was born at La Tronche,
France, in 1950. He received the BSc. degree in
Mathematics in 1972. He received the These de
3eme cycle and These d’Etat degrees both from
the Institut National Polytechnique de Grenoble in
1977 and 1983 respectively. Since 1979, he has
been a researcher at the Centre National de la
Recherche Scientifique where currently he is Di-
recteur de Recherche and Head of the Labora-
tojre d’Automatique de Grenoble. He is also vice
president of the Institut National Polytechnique de
Grenoble. His current research interests include lin-
ear systems, robustness and time-delay systems.

Mehrdad Bahar was born in 1965. He received
the MSc. degree in Electrical Engineering from the
Technical University of Denmark (DTU) in 1993.
Afterwards, he worked on an European project on
structural analysis of industrial processes. Cur-
rently he is a Ph.D student at DTU. His research
interests are fuzzy control and alarm treatment in
power plants.

Jan Jantzen, born in 1953, is an Associate Profes-
sor at the Technical University of Denmark (DTU).
He received the MSc. degree in Electric Power En-
gineering from DTU (1979) and Ph.D in Systems
Science from DTU (1982). From 1979 to 1982 he
was systems designer at LI-NES, Inc. For two years
(1982-1983) he was Queen’s Quest Visiting Scholar
at Queen’s University, Kingston, Canada. As com-
puter consultant, he spent the next two years (1984-
1985) with SimCorp, Inc. In 1986 he was visiting
scientist at IBM T.J.Watson Research Center, and
Assistant Professor at DTU. Later (1990) he became
Associate Professor and (1993) part time consultant.

87



1 Introduction

In this paper’, we consider linear systems rep-
resented by a quadruplet (A4, B,C,E) where
the entries of (A, B,C, E) are either fixed ze-
ros or free parameters. With such systems,
called structured systems, one can associate a
directed graph in a natural way [11, 12, 13]. One
can study structural properties, i.e. properties
which are true for almost all values of the param-
eters. Most of these properties can be obtained
from properties of the associated graph. Struc-
tural properties have been extensively studied
during the last twenty years following [11].

For such systems, the generic infinite struc-
ture can be deduced from the associated graph
[5, 13, 21] and corresponds to sets of vertex dis-
joint input-output paths. As an application,
the structural solvability conditions of classi-
cal control problems can easily be checked on
the associated graph. For instance, the dis-
turbance rejection problem has been considered
in [4, 5, 9, 21, 22]. The decoupling problem
has been studied in [6, 12]. Efficient algo-
rithms to determine this infinite structure and
to solve control problems have been proposed in
[1, 8, 17).

Differently, [13, 16] proposed some graphical
structural studies for finding the feedback con-
figuration of control problems like input-output
decoupling and disturbance rejection. Struc-
tural numerical techniques have been developed
for finding such feedbacks as those which have
led to a MATLAB toolbox [1, 14].

The purpose of this paper is to combine the
above two structural techniques in order to im-
prove the existing procedures for input-output
decoupling and disturbance rejection. The goal
1s to combine generic infinite structure condi-
tions for such control problems, with graphical
techniques for finding the feedback configura-
tion.

These approaches are illustrated on a 13 tray
binary distillation column model represented by
classical state space equations.

The outline of this paper is as folldws. We re-
call first some basic properties of applied graph
theory and some results in structured system
analysis. In Section 3, the distillation column
model is presented and its associated graph is
depicted. In Section 4, we discuss the input-
output decoupling problem, show the existence
of a feedback control law and compute it. Sec-
tion 5 deals with the state feedback disturbance
rejection problem. We show that this problem

funded by the ESPRIT project no. 8924, Structural
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is generically solvable only if one of the distur-
bances is available for measurement, and calcu-
late the feedback control law by both graphical
and geometrical approaches. We end this paper
with some concluding remarks in Section 6.

2 Structured Systems and Di-
graphs

In this Section, we recall the definition of lin-
ear structured systems, we introduce the associ-
ated graph of a structured system and give the
graphical characterization of the generic infinite
structure.

Consider the linear disturbed system L9 :

{ &(t) Ax(t) + Bu(t) + Ed(t) (1)
y(t) = Ca(t)

where z(t) € R", u(t) € R™, d(t) € R? and
y(t) € NP are respectively state, input, distur-
bance and output. A, B,C, E are real matrices
of appropriate dimensions.

The system is said to be a structured system
if the entries of (A, B,C, E) (resp. (A, B,C))
are either fixed zeros or free parameters. De-
note A’ (resp. A) the vector composed of the p/
(resp. p) nonnull parameters \; (i = 1,...,p')
of the structured matrices (A, B,C, E) (resp.
(A, B,C)). A structured system with a param-
eter set A’ (resp. A) will be denoted £4, (resp.
Za).

With a structured system E_‘,f‘,, one can asso-
ciate a directed graph G(X%,) = (Z, W) where
the vertex set is Z = U U DU X UY where
Dl = el X = A8l wtn) D=
{815 v dg}, ¥'= {vi, .- up}

and the arc set is W = {(u;,2;),b;;y #
U} U {(dz‘,ifj),e}‘i # U} U {(ri,;cj),aj.; # 0} u
{(;r:l-,yj),cji -‘,é 0} where bj;’ (resp. ajz-,Eji,cji)
denotes the element (j,¢) of the matrix B (resp.
of A, E,C).

The associated graph of the structured system
(A, B,C) is built the same way without consid-
ering neither the disturbance vertex set nor the
arc set linked to the matrix E.

A directed path in the graph G(Z4,) = (Z, W)
from a vertex iy, to a vertex i, is a sequence
of arcs :

(.i.uu! i#l )’ (1.}11 ) 1"1-1-2)’ t sy (i#q—z ! ipuy—l)" (iﬂq—l ! iilq)
such that i, € Z for t = 0,...,¢ and
(Tuioys i) € Wfor (¢ =1,...,¢). The length
of a path is the number of its arcs, each arc be-
ing counted for as many times as it appears in
the sequence. For the last sequence, the path
has length ¢. Occasionally, we denote the path
by the sequence of vertices it consists of, i.e. by
(Zu0sBugs- - > 0ug_y14p,). Moreover, if i, € U
and i, € Y, this path is called an input-output
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path. A set of k input-output paths with no
common vertices 1s called a k vertex disjoint
input-output paths set.

Let us recall the classical definition of the infi-
nite zero structure :

Definition 1 Let (A, B, C) be a linear system
without disturbance (E = 0). Let T(s) be the
transfer matriz of & which is a (p x m) proper
rational matriz. T(s) = C(sI — A)™'B can be
factorized as follows :

where :

Ns)= diag6™ ™ s ™ )

n; integers withny < nz < ... < n,

r = rank(T(s))

Bi(s), Ba2(s) are bicausal matrices.
The list {ny,...,n.} is uniquely defined and
constitutes the infinite structure of T(s). The
n;’s are called the infinite zero orders of the sys-
tem.

For a single input/ single output system, the in-
finite zero order of the system is simply the dif-
ference of degrees between denominator and nu-
merator of the system transfer function. The in-
finite structure can be computed by calculation
of minor degrees of the transfer matrix [5, 15].
The structure at infinity can be characterized
for a structured system LA(A, B, C) on the as-
sociated graph G(Z4) [5, 21] :

Theorem 1 Let ©p be a linear structured sys-
tem and G(XA) be its associated graph. One has
the following :

i) The structural rank of £5 which is the num-
ber of structural infinite zeros of Lp, 18
equal to the mazimum number of wnput-
output vertez disjeint paths in G(X4).

it) The structural infinite zero orders of Lx are
characterized on G(X4) as follows :

ny = Ll—l

k-1
ng = L;C—an—k
i=1
= Ly—Li_1—1 k=2 ...,r

where Ly is the minimal sum of k verlex
disjoint input-output path lengths in G(Z4).

This computation method will be useful to check
the generic solvability of input-output decou-
pling and disturbance rejection on the distilla-
tion column model. Let us introduce the plant
in the next Section.

Studies in Informatics and Control. Vol.6. No.1. March 1997

3 Distillation Column Model

T'he test example is a 13 tray binary distillation
column model [2, 10]. A diagram of the column
with the model relevant variables is shown in
Figure 1.

The objectives are to control the top compo-
sition Xp and the bottom composition Xpg by
means of the reflux flow rate L and steam flow
V rtespectively and to prevent influence of the
disturbances in feed flow Lp and feed compo-
sition X on the outputs. A non-linear pro-
cess model has been linearized around a desired
operating-point. The model has [L, V] as the
input vector, [Lp, Xp]" as the disturbance vec-
tor, and [Xp, Xp]' as the output vector. The
state vector of the model, including the com-
position in the reboiler, each tray and the con-
denser, is [Xg, X1, ..., X13, Xc]".

( ; QCONDENSER

l ACCUMULATOR 1

A L D.Xn
1.r.Xr
i v {, ) REBOILER
Lottam nrnduct >
B.Xn

Figure 1: Distillation Column Plant

As described above, the linear model has 15
states, 2 inputs, 2 outputs and 2 disturbances.
The different parameter values will be given in

Appendix. In the following matrices, a ”+” cor-
responds to a free parameter.

f% x 0 OW

* e
A=19 0
*
| 0 0 * x|
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I
* O
o
o
o *

[ % % ] * 0]
* % * 0
*  * * 0
*  * * 0
* * * 0
Tk ok * 0
* * -+ 0
B=1| x = , E=1]x %
* * 0 0
* * 00
* K 0 0
* % 00
* % 0 0
* ok 0 0

| 0 0 | | 0 0 ]

Using this state space structure one gets the di-
graph presented in Figure 2.

Figure 2: Associated Graph

4 Generic Input-Output Decou-
pling Problem

The decoupling problem has been studied us-
ing a transfer function approach, a state space
approach, and a graph-theoretic approach (see
references in [13], p 102). The basic idea in
the approach proposed by Reinschke is to create
new signal paths by means of state feedback in
order to compensate unwanted coupling paths.
The graph-theoretic approach demonstrates the
principles in a particularly transparent manner.
The generic infinite structure condition for de-
couplability [6] is general in the sense that it
can be applied to all structured systems, but it
gives no information about how to find the feed-
back configuration. Reinschke’s method finds
the feedback configuration, but it is not general
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in the sense that it only applies to compensation
of one arc at a time (compensation of the first
kind). Therefore a combination would improve
the situation. We first explain the infinite struc-
ture condition, then give the Reinschke’s com-
putation. A more general computation method
for finding the feedback based on the results in
(7, 19] is then given.

4.1 Generic Condition

This condition is based on the infinite structure
characterization. Tke following theorem is di-
rectly given for a structured system since the
result is true in the general case.

Theorem 2 Let ©p be a linear structured sys-
tem defined by the triplet (A, B, C') whose trans-
fer matriz T(s) = C(sI — A)™!B is a (p x m)
full row rank proper rational matriz.

Denote :

ni, i =1,...,p the generic infinite zero
orders of ¥a = (A4, B,C)
n}, i=1,...,p the generic infinite zero

order of ©p = (A, B,Ci), where Ci is the
it* row of C.

This system is generically decouplable by a feed-
back control law u(t) = Fiz(t) + G1v(t), Gy reg-
ular, if and only if

P P
Zﬂi = Zn: (2)

i=1

So, by the computation of the intinite struc-
ture of the system, it will be easy to check the
solvability of generic decoupling directly on the
graph. Following [21], a computation method
based on linear programming techniques is pro-
posed in [8].

Consider now the distillation column model.
Firstly, we will find the generic infinite structure
of the model directly on the graph (Theorem 1):

1. a shortest input-output path is {u;, z1, y2}.
This path is of length L; = 2.

2. ashortest pair of vertex disjoint input/ out-

put paths is {u1, 21,92}, {uz2, €14, 215, 91}
This pair of paths is of length Ly = 5.

So, the generic infinite zero orders of the struc-
tured system are according to Theorem 1 :

ny = 1 s Ng = 2
The generic row-by-row infinite zero orders are

calculated by computing the shortest length
from the input set to each output :
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1. the shortest path from the input set to ¥
is {us, 14,215, y1}. This path is of length

[
1 =

2. the shortest path from the input set to ys is
{us, 1, y2}. This path is of length L = 2.

So, the generic row-by-row infinite zero orders
of the structured system are :

! i/
ﬂ1:2 ) n2:1

Then according to Theorem 2, the decoupling
problem for the distillation plant is generically
solvable for almost all values of the parameters.

4.2 Feedback Computation
We will apply a control law of the form :
u(t) = Gav(t) v(t) = Faz(t) + w(t)

This control law can be shown to be equivalent
to the previous law given in Theorem 2 when G
is regular. The resulting closed loop system is

{ z(t) = (A+ BG2F2)z(t)+ BGaw(t)
y(t) Ce(t)

If successful the method results in a matrix pair
(G2, F2) and information about additional feed-
backs free for other purposes. The objective
of decoupling by static state feedback is then
to determine a matrix pair (Gq, F2) such that,
for each i = 1,...,r, there is a reference input
which can control the considered output with-
out influencing the remaining outputs.

Let us now come back to the distillation col-
umn example, and in particular to the cor-
responding distillation column digraph (Figure
2). By adding a set of new inputs v; and vy
and arcs from V to U, weighted with Gy, the
paths {v;,u), 1} and {vs, us, 14} can be com-
pensated by paths {v;, us, 21} and {vs, u, 214}
respectively. But there are still two paths,
{z2,21}, and {z13, 714}, which have to be com-
pensated in order to eliminate the influence of
vy on yo and of vs on 3. Thus two feedback arcs
are needed from x5 to the new input vy, f3 3 and
from z13 to vy, fis,1. A toolbox for structural
analysis of control systems based on digraphs is
applied for the numerical calculations of the sys-
tem decoupling [1]. The structural form of the
state feedback matrix is as follows :

Bp=|® * e X X ]
X e ...
where a "¢’ means an element fixed by equations

(perhaps even at 0), a 'x’ means that the ele-
ment is free to be used for other purposes.
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The numerical state feedback matrix and the
compensating network are computed to :

Bo|0 0 0 .. 0 -1544 0 0
2510 3459 0 ... O 0 0 0

_ [ 550 495 ]
G = [ 5.00 550 |

After the input-output decoupling, the system
can be decomposed into three sub-systems {2},
{zs,...,z13} and {z14, 215} (see Figure 3).

1 2413 1415

Figure 3: Digraph of The Condensed
Closed Loop System

4.3 General Feedback Calculation

In this part, we use the well-known feedback cal-
culation explained in [7, 19]. The simplest state
feedback which solves the decoupling problem is
given by u(t) = Fyz(t) + Gyo(t) with :

F, = -D'H*
{ Gy = D (3)
where
CLA™ 1B | C1A™
D" = and A" = :
CnA"n~1B Cm A™m

This solutitn leads to a decoupled integrator
form where all the poles are located in 0.

For the distillation column model, the computa-
tion of the generic row-by-row infinite zero or-
ders gives n} = 2 and nf, = 1. Then

e ‘514,1015,1461,15 514,2615‘1401,15
by 1e2,1 by 2c2,1

and F* has the following structure :

[ 0 0 0 . 0 h'f,ls I,H h?,ua]
Key Byq O .o O O 0 0
with :

hf,w = @14,13015,14C1,15

hiis = @14,1401514C1,15 + 15,1401515C1,15
hI,15 = @14,15015,14C1,15 + @15,15¢15,15C1 15
hiy = aiicz;

52 = @1,2C21
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By using (3), the feedback gain Fy, has the fol-
lowing structure :

fir fiz O 0 fiiz fiie fiis
fax fao O 0 fais feisa fous
with
f B ay 1bi42
e bia,1b12 — b1 1014
f _ ay,2b142
e bia 1b1 2 — b1 1bia
f _ —ai4,13b1 2
o = bra1bi2 — bi1bigo
f _ —aig14b1 2 —a1515b1 2
b bia1b1 2 — b1 10142
f _ —a14,1551,2
£ bia1bia — b11bian
. 015,15015,1551,2
@y5,14(b14,161 2 — by 1614.2)
oy i ay1b14)
braibio — bibiap
f2 5 = 401,2514,1
’ big1bya — by 1bia2
f _ a14,1301 1
R Y Yy b1,1b142
I _ —a1414b11 — a1515b1 1
S byaabyz — by 16142
o —ay4,15011
faus =

bia1byo — b1 10142
a1515a15,15b11

" a1s14(b1a,161,2 — b1,1b1a2)

With the parameter values, one gets the state
feedback matrices F, and Gy, :

po_ [ -389.70 17122 0
w=1-377.44 190.24 0

0 -84.92 41166 —515.81
.. 0 —77.20 37424 —468.91
o _ [ 6615 —66.71
v= 16013 —74.12

The two ways of feedback calculations do not
necessarily give the same decoupling feedback
matrices. In fact, the pairs of decoupling state
feedback matrices belong to the family of de-
coupling state feedbacks which make the closed-
loop system maximally unobservable. They can
be parameterized as follows :

(4)

F = =D '(H*+H™)
G = DK™

where K** is an (m x m) diagonal real matrix
and H** represents an (m x n) real matrix al-
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lowing some pole placements while preserving
decoupling. The i*® row of H** is such that :

1
n;—1

H:* — Z e{jC,'Aj

j=0

(i=1,...,m)

with e;; a free real parameter.

For the distillation column model, the computa-
tion of the generic row-by-row infinite zero or-
ders gives n{ = 2 and ny, = 1. Then, H™ is as
follows :

H* = e1,0C1 + €1,1C1 4
e300
that 1s :
H* = 0 0 ... 0 h{:‘m h’{"‘m
h’;‘,kl 0 = 40 0 0
with
hIqu =  €1,1815,14C1 15
hits = e10c1,15 + €1,1215,15¢1,15
h3 = e20c2)

Then , one gets the sum (H* + H*) :

0 0 0 . O hl'ls h1‘14 hl,ls
ha1 haz O ... 0 0 0 0

Given that ey o, 1,1 and ez are free real pa-
rameters, the sum (H* + H**) has the general
following structure :

0 0 0 0 h1’13 X X
X haz O ... 0 0 0 0

where 'x’ denotes a free element.
Then by (4), the feedback matrix F has the form

{01 fiz O 0 fiiz A ’71]
as faz 0 0 fois B2 72

where o, #; and 7; are free elements and as

(resp. f2, y2) is dependent on oy (resp. S1, 71).
It is worth noticing that this structure is simi-
lar to the structure of matrix F» in Sectlion 4.2.
Here, we precise the location of identical zero
entries.

4.4 Remarks

Recall that Reinschke’s method is applied with
a control law of the form :

u(t) = va(t) ‘U(t) = Fg;'}(t) -+ w(t)
with G regular, which gives :

u(t) = GoFox(t) + Gow(t) = Fra(t) + Gruw(t)
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By using the results of Subsection 4.2, the two
matrices of the feedback control law are given
by :

Fo_ |0 17122 0 .. 0 —8492 0 0
"= |0 19024 0 ... 0 -77.20 0 0

550 4.95
Gr= [ 5.00  5.50 ]

By manipulating Equations (4), it is easy to find
the relations between the feedback pairs :

K** = Gt_UlGr

H*™ = D*(Fy-F)

For the proposed feedback matrix pairs (F, Gy)
and (Fy,, Gy ), we obtain :

e _ [ 00831 0
=1 o -—oo742
w [ 0 00
" ‘[5.0922 00
0 62232 —-7.7975
0 0 0

Figure 4: DRP When Disturbances Are
Available for Measurement

5 Generic Disturbance Rejection
Problem

In this part, we discuss the disturbance rejection
problem (DRP) by a state feedback control law.
In a first part, we present the generic infinite
structure condition which has a nice graphical
interpretation on the associated graph. A sec-
ond part gives feedback computation. In the last
part, we present the calculation of the feedback
within a geometric framework.

In this Section, we consider the linear structured
system with disturbances ¥4,(A, B,C,E) pre-
sented at Section 2.
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5.1 Generic Condition

We will directly present here the generic infinite
structure characterisation for the solvability of
DRP. The conditions for DRP [5, 21] are sum-
marised in the next proposition [9] :

Proposition 1 The DRP for a structured sys-
tem is generically solvable by a feedback conirol
law u(t) = Faz(t) + Hq(t) if and only if there
erisis a set of mazimal number of verter dis-
joint mput-output paths of minimal total length
n G(Eﬁ,) which dees not include vertices of
D= {dy, coeutp b

When the disturbance d(t) is not available for
measurement (H = (), we split each control in-
put vertex u; into two vertices u; and uj’ con-
nected by an arc (the state vertices come from
u}) and then we apply Proposition 1.

Consider the distillation column example when
the disturbances are available for measurement.
In that case, the maximal number of vertex dis-
joint input-output paths equals 2, and a pair
of vertex disjoint input-output paths of minimal
total length is (Figure 4) :

{U1,$14,$15, yl} and {'“-2: Iy, yz}

Then, the condition of Proposition 1 is satisfied.
So the DRP with disturbance measurement 1s
generically solvable,

Figure 5: DRP When Disturbances Are
Not Awvailable for Measurement

When the disturbances are not available for
measurement, i.e. H = 0, the maximal num-
ber of vertex disjoint input-output paths equals
2 but a pair of vertex disjoint input-output paths
of minimal total length must include at least one
vertex of D = {d,,d;}. For example (Figure 5):

{ul ,uf, 214,215, 11} and {d1,z1, 32}

Then, DRP is generically non-solvable if the dis-
turbances are not available for measurement.
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5.2 Graphical Feedback Calculation

The DRP amounts to finding a set of state
feedbacks, u(t) = Fz(t), to prevent an influ-
ence of the disturbances on the outputs. The
paths from he disturbances to the output in
the distillation column model pass through z3,
and through z13. A complete disturbance re-
jection without the measurement of the distur-
bance feed flow is nut possible because of di-
rect influence of the disturbance on the output
through w14 BY compensation of arc {z3,z,},
and {z13, 214} the influence of the disturbances
on the outputs can be eliminated by means of
four state feedback gains from states z5 and 13
to both inputs. The structural form of the state
feedbacks is the following :

x o 0 ... 0 o x x

0 ... 0 ¢ x x ]
where a e’ means an element fixed by equations
(perhaps even at 0), an 'x’ means that the ele-
ment is free to be used for other purposes, and
a ’0" means that the element is fixed to zero.

The numerical value of the state feedback is
computed to

F =

F

[0 17122 0 ... 0 -8493 0 O
10 192 0 ... 0 =7721 0 O

Figure 6 shows the corresponding digraph after
the disturbance rejection. By inspection, it is
evident that the disturbances that enter the
components ry, ri3 cannot continue to the out-
puts. The only problem is the d; entering z;.

Y2

1 213 1415

Figure 6: Digraph of The Closed Loop
Distillation Column After Partial Distur-
bance Rejection

5.3 Geometrical Approach

Introducing the geometrical approach, we are
able to parameterize the feedback control law
for disturbance rejection in terms of the entries
of the original system. Just recall the character-
ization of an (A, B)-invariant subspace :
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Definition 2 Consider the linear system E9
described in Equations (1) and denote by ImB
the image of B. A subspace V C & 15 said o
be (A, B)-invariant if, whenever the initial state
telongs to V, the whole state trajectory can be
held in it using appropriate inputs. This is geo-
metrically equivalent to

AVCV+B (5)

Let V* be the largest (A, B)-invariant subspace
contained in Ker(C, we obtain the well-known
geometric condition of solvability of DRP (see
(3, 20]).

Theorem 3 DRP is solvable if and only if
Ecyr

To illustrate this theorem, consider the distilla-
tion column model. A similar model was previ-
ously analysed by [18]. As shown in this paper,
the largest (A, B)-invariant subspace contained
in Ker(C' is equal to :

V={eeR® | zy=zu=215=0} (6)

Notice that V* is independent of the precise val-
ues of the system parameters.

The condition of the above theorem is verified.
The feedback gain has the following structure :

[X fiz O
X f2.2 0

where the 7 x” are free parameters chosen to be
zero in the following. In this particular case, the
four nonnull feedback gains can be computed as
follows. Since V* is (A,B)-invariant, one has (see

[20)) :

0 fiiz x x
: T
0 faiz x x (7)

(A+ BF)V" C V" (8)

Using (6), (7) and (8), one gets :
(b1,1f1,13+ b1,2f2,13)713

+(ay,2+ b1 f21 +b12f22)22 =0
(a14,13+ b1a,1f1,13 + bra2f213)213

+(biaf1,2 + brazfa2)z2 =0
Then, as these equations are true for all values
of the vector z, one obtains :

. 611,2(714‘2
fie =
big by o — by 16142
_ —ay 2b14,1
faz = ;
bia1bi o — by 1b1an
f _ —ay4,13b1 2
1,13 =
bia,1b1,2 — b11b142
_ ayq,13b11
fa13 =

big b2 — b1,1b14,2

On replacing the system’s parameters by their
value, one gets the above result calculated by
Reinschke’s method.
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6 Concluding Remarks

The above results present a graphical approach
to the generic input-output decoupling problem
and the generic disturbance rejection problem
for a distillation column plant.

Even if the parameters of a state space model
were undecided, such that numerical computer
routines cannot be applied, the structure of the
model would still provide valuable information.
The "digraph approach” focuses on the pattern
of non-zero entries in the model, and it provides
sufficient structural conditions for decouplabil-
ity and disturbance rejection.

For the considered distillation column, the anal-
ysis shows that after input-output decoupling,
the system can be decomposed into a num-
ber of sub-systems, making it easier to study
such problems as disturbance rejection and pole
placement. The structural form of the feedbacks
for input-output decoupling or disturbance re-
jection is given. A parameterization of such
feedbacks in terms of the entries of the origi-
nal system 1s also provided.

The graph approach may also provide a way
to cope with uncertainty and varying parame-
ters. In practice the structure of a model may be
known from professional insight into the physics
of the system, but the parameters may vary
according to the operating point or tempera-
ture variation. The digraph approach can never-
theless test necessary conditions for decoupling
purely on structural grounds. The approach is
typically applied in the following situations: the
parameters of a model are undecided or vary;
there is large sensitivity towards small varia-
tions; the parameters have been decided, but,
the necessary matrix operations are numerically
intensive.
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