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1. Introduction

Computer-aided design of control systems is
usually based on linear time-invariant (LTI)
state space models. Surprisingly enough, mul-
tivariable state space system identification has
only recently become a topic of intense research.
In contrast with classical input-output (I/0)
identification approaches, the newly proposed
Subspace Model Identification (SMI) techniques
essentially find a state sequence, or a column
space approximation, and then determine the
system matrices by solving some least-squares
problems. These techniques have promising ad-
vantages over the classical ones. One advan-
tage 1s that there is no need for parameteriza-
tions, which are notoriously difficult to choose
or analyze, or could lead to ill-conditioned prob-
lems. Some other advantage will be that re-
bust numerical linear algebra techniques, like
QR factorization and singular value decompo-
sition (SVD). can largely be applied; this is in
contrast with the iterative optimization schemes
required in the parametric model identification
approach, documented e.g. in [1]. The attract-
iveness of SMI techniques is even more exer-
cised by the small number of parameters (essen-
tially only one) to be selected for determining
the model structure, without any restriction on
model generality. See, for instance, [2]-[7] for a
further discussion of the SMI features.

MATLAB codes based on SMI algorithms have
lately been developed, e.g. in [8]. For efficiency
and accuracy reasons, it is no doubt useful to
implement some algorithms in Fortran, using
the state-of-the-art, public-domain linear alge-
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bra package LAPACK [9]. This allows to ex-
ploit the potential parallelism of many modern
computer architectures.

This paper briefly describes some basic algo
rithms, implemented in Fortran, for discrete-
time multivariable system identification by sub-
space techniques. Two classes of SMI tech-
niques to identify an LTI system are considered.
The first one is referred to as the State Inter-
section (SI) class of SMI techniques. The im-
plemented method, described in [2], is known as
the N4SID (Numerical algorithm for Subspace
State Space System IDentification) approach.
The second one is referred to as the Multivari-
able OQutput Error state SPace (MOESP) class
of techniques. The implemented MOESP meth-
ods are described in [3}, [5], and [6]. Determinis-
tic and combined deterministic-stochastic iden-
tification problems are dealt with. A state space
model is computed from I/O data sequences.
It is possible to handle multiple I/O sequences,
each one being collected during a possibly inde-
pendent identification experiment. Sequential
processing of large data sets is optional. In ad-
dition to the main identification facilities, sev-
eral auxiliary routines are available to perform
kernel linear algebra computations, or solve re-
lated identification problems: identification of
a limited set of Markov parameters, shifting
the 1/0O data sequences to reduce the state di-
mension when there are dead-times in different
input channels, estimation of the initial con-
ditions, identification of systems operating in
closed loop, or simulation of discrete-time LTI
systems.

A theoretical statement of an algorithm and its
efficient and reliable implementation are guite
apart. In implementing algorithms, great at-
tention was paid to developing new LAPACK-
style codes for special QR or singular value de-
compositions, to exploit the particular struc-
ture of the problem, to increase efficiency, and
reduce the memory requirements. Theoreti-
cal algorithms and their MATLAB realizations
have been largely reorganized. For instance, the
N4SID algorithm makes use of the inverse of ‘&
part of the triangular factor, L, of an LQ factor-
ization of a Hankel-like matrix constructed from
I/0 sequences. (It should precede the comput-
ing of the SVD that gives the system order and

then the gquadruple of system matrices.) The
MATLAB implementations solve several stan-
dard least-squares problems to obtaln the so-
ralled associated “oblique projection”. The new
LAPACK-based implementation only involves
soime orthogonal transformations for obtalning
various projections and residuals. It is worth-
mentioning that the MOESP approach is appar-
cntly more attractive from a numerical point
of view than the N4SID approach is, because
of its performing the singular value decomposi-
tion just on a submatrix of the above-mentioned
triangular factor L. As previously specified,
the literature makes use of an LQ factorization
of the Hankel-like matrix. While convenient
from a theoretical point of view, in practice the
QR factorization is to be preferred in computa-
tions. For instance, there is no code available for
performing the LQ factorization with piveoting,
and pivoting 1s needed for certain calculations
where a rank decision should be made. {For ex-
ample, the covariance calculations in the N4SID
approach require such a decision.) The current
MATLAB codes compute the lower triangular
factor L = RT, then determine the singular
value decomposition of RT, RT = ULVT, and
use the singular values in T for finding the sys-
tem order, n (by visually detecting the widest
“gap” between two consecutive singular values),

-and the left singular vectors in U for determin-

ing system matrices. Our approach consists in
computing R = UZV7, and using the right sin-
gular vectors (columns in V7).

One objective of the Fortran implementation
lias been to call the LAPACK routines as much
as possible. Preference has generally been for
the block variants and the Level III BLAS
codes, which are responsible for efficient use
of parallelism. In order to reduce the object
code volume, we have not called some very large
LAPACK routines, hke DGESVD. Whenever
possible, the problem structure has been ex-
ploited. Forinstance, the calculations have been
organized such that singular value decomposi-
tions are required for triangular matrices only.
A dedicated, very compatt and efficient routine
has been purposely written. Moreover, in both
theory and the MATLAB implementations, the
computation of the system matrices involves a
very large matrix. Fortunately, this matrix can
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be brought to a special block-triangular struc-
ture. A structure-exploiting QR row compres-
sion scheme has been devised, reducing the stor-
age requirements and the computational effort.

Some other related objective has been that of
enabling the performance of computations with
as reduced memory requirements as possible,
but without sacrificing the speed, when enough
memory is available. For instance, there is an
option for sequential calculation of the triangu-
lar factor in the QR factorization of the Hankel-
like matrix. The user can specify that I/O data
are accessed in (independent or not) batches.
Moreover, when there is not enough working
memory for processing a given data batch, the
codes automatically operate an inner sequen-
tial processing of that batch, to accommodate
with the available memory space. (A well-
motivated lower limit of the memory space is
however required.) By minimizing the memory
access, processing of large 1/0O sequences and
identification of systems of large order become
possible, even on computers with reduced mem-
ory resources. No provisions are made for using
the displacement rank techniques (based on the
block-Hankel structure) [10] in current imple-
mentations. Whereas such techniques could im-
prove efficiency, they are less stable numerically.

Stochastic part identification is utterly more
difficult than the deterministic part identifica-
tion. The determination of the system order n
1s even much subtler, because there is no clear
“gap” in the singular values. For the time be-
ing, no “best” solution of stochastic identifica-
tion problem does exist and many details of the
algorithms proposed in the literature are based
on heuristic results. Some algorithms are lab-
elled as “robust™ [7], in the sense that they have
demonstrated a good behaviour on many sets of
industrial data.

Another important research topic is related
with preserving the positivity of the full covari-
ance matrix; this is not guaranteed by the usual
algorithms. The positivity is equivalent to the
real positivity of a certain covariance sequence,
or to the strict positivity of the solutions to asso-
ciated Riccati equations. The positivity condi-
tion for such covariance sequence is rarely (and
hardly) satisfied, even for data generated by

sirnulation of a linear stochastic system. This is
due to either a finite number of available data
samples, or the fact that the real data are not
truly generated by an LTI stochastic system.

The idegtification algorithms can be modified
to preserve positivity. Specifically, after having
determined matrices A, and C' (and, eventually,
B and D), a global covariance matrix is com-
puted from residuals, a Lyapunov equation is
solved, and its solution is used to define a Ric-
catl equation, and finally an innovation model
is obtained. If the state matrix A is stable, then
the Lyapunov equation solution is positive def-
inite. The only unpleasant aspect in preserving
positivity is that only biased, not consistent, es-
timates are obtained.

The performances of the investigated algo-
rithms in solving some simulated or real-world
problems are under evaluation. The results
obtained by using various algorithms (includ-
ing their MATLAB versions) have been sharply
compared. This has determined better confi-
dence in the implemented algorithms; moreover,
the analysis of the casually observed differences
between the results yielded by different algo-
rithms revealed several bugs in some MATLAB
codes and in the corresponding initially written
Fortran codes. The comparisons supposed some
modifications in the original MATLAB codes,
as to use the same basis for the state space re-
presentation (for instance, suppressing the scal-
ing of the first n singular vectors—producing A
and C' matrices—by the reciprocals of the cor-
responding singular values). The analysis also
revealed an interesting fact: the matrices com-
puted using the minimum memory option could
have had elements with the same absolute val-
ues, but with opposite signs, compared to the
large memory case. Two such representations
are related by a similarity transformation.

One difficulty encountered in identifying some
system models {even with simulated data) is
described below. Consider a deterministic sys-
tem with poles on the unit circle. (Clearly, un-
stable, but controllable systems can be identi-
fied.) In this case, the computation of the co-
variance matrices is not necessary. However, if
the matrices are computed, and if the positivity-
preserving device described above is used, the
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corresponding discrete-time Lyapunov equation
has no solution, because its A matrix has eigen-
values of unit modulus. Ill-conditioned calcn-
lations do appear in such situations. This sug-
gests that such devices should only be included
as options. Alternately, there should be spe-
cial code portions which should automatically
select the appropriate computation, based on
the given problem characteristics, and notify the
user on whether his options are adequate or not
for the problem concerned.

2. Basic Approaches

The basic LTI state space models considered are
described by

tpy1 = Axp + Bup 4+ wy,
yi = Cxp+ Dug + v, (1)

where z; is the n-dimensional state vector at
time k, uy is the m-dimensional input (control)
vector, yi is the f-dimensional output vector,
{we} and {vi} are state and output disturbance
or noise sequences, and A, B, C, and I are real
matrices of appropriate dimensions. The system
order, n, and the quadruple of system matrices
(A, B,C, D) are not known; the only available
information is given by an upper bound, s, on
n, and by the input and outpul data sequences,
{ur} and {y}, k = 1:¢ {i.e., for k taking values
from 1 to a given t).

2.1. The SI Approach

The main feature of the SI class of SMI tech-
niques is the determination of either the state
sequence of the LTI system to be identified, or of
an observer to reconstruct its state sequence, via
the intersection of the row spaces of the Hankel-
like matrices constructed from “past” and “fu-
ture” T/O data. The basic idea was introduced
in {4]. An extension of this idea led to the
N4SID aigorithm developed in [2]. This algo:
rithm identifies LTI state space models in the
so-called innovation form, described by

rryr =  Axp + Bug + Ko,
ye = Cxp+ Dup 4 vy, (2)

where {vr} is a zero-mean white noise sequence
and {u} is a deterministic input sequence (per-
fectly known to the user). Both the basic and
extended variants of this class produce statis-
tical'y consistent and efficient estimates when
certain assumptions hold.

2.2 The MOESP Approach

The main feature of this class of SMI techniques
is to determine an extended observability ma-
trix of the deterministic part of the model (1).
The extended observability matrix I', 1s given
by

C

CA
E,=

CA.s—l

The basic idea was introduced in [5] and [6].
The simplest algorithm derived from this idea,
called the ordinary MOESP scheme, allows to
identify, in a statistically consistent and efficient
way, LTI systems that can be described by (1),
with wy = 0 and {v;} a zero-mean white noise
sequence, independent of the input.

Extensions based on using past input quanti-
ties and/or on reconstructed state variables as
instrumental variables have been proposed, al-
lowing to consistently identify a model in (1),
for w, = 0, and {vx} a zero-mean arbitrary
stochastic disturbance, independent of the in-
put. This increased applicability is made at
the risk of not having efficient estimates. These
variants are referred to as the PI or RS schemes,
when past inputs or reconstructed state vari-
ables are used as instrumental variables, respec-
tively.

When the additive disturbance wy in (1) is
generated by an innovation model of the form
wip = Hug, and v 1s a zero-mean white noise
independent of the input, it is possible again
to obtain both consistent and efficient estimates
when, beside the past input, past output quanti-
ties are also used as instrumental variables. The
scheme derived from this extension of ordinary
MOESP scheme is known as the PO scheme [3].

For the deterministic-stochastic identification
problem, it is possible to estimate by means of
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the PO scheme the deterministic part, and by
means of the SI approach [2] the stochastic part,
that is the nolse covariance matrices. Further,
the corresponding Kalman gain K can be com-
puted to allow the design of state observers [3].

The algorithmns entering the MOESP class have
that striking feature of being highly stream-
lined, in the sense that the sequence of computa-
tions performed by these schemes is almost inde-
pendent of the type of problems to be analyzed.
This has permitted highly modular implemen-
tations of the algorithms under this class.

3. Basic Algorithms

The main algorithms are:

e The ordinary MOESP scheme, producing
consistent and statistically efficient esti-
mates of the state space quadruple (A4, B,
C, and D), of the deterministic part, for v
zero-mean white noise, independent of the
input.

e The ordinary MOESP scheme extended
with instrumental variables based on re-
constructed state and/or past input quan-
tities, producing consistent estimates when
v is zero-mean, but of arbitrary statistical
color.

¢ The ordinary MOESP scheme extended
with instrumental variables based on past
input and output quantities, producing
consistent and statistically efficient esti-
mates when v is generated by an innovation
model. Optionally, a Kalman predictor is
also computed.

e The N4SID scheme, producing consistent
and statistically efficient estimates when v
1s generated by an innovation model. Op-
tionally, a Kalman predictor is also com-
puted.

The MOESP scheme with past input and out-
put quantities uses the N4SID approach for co-
variance calculations; this seems to be a very
promising alternative to the pure N4SID ap-
proach. Full algorithmic details cannot be given

here, due to space limitation. Only some key
points will be illustrated.

3.1. Algorithmic Outline

The simplest algorithm corresponds to the
ordinary MOESP scheme. For non-sequential
data processing, the N x (m + {)s matrix H =
[ UIT,',,N YES.N ] is constructed, where N de-
notes the total number of samples that can be
used (here, N =t—-s+1), Uy, v and Y7 , v are
block-Hankel matrices defined in terms of the
mmput and output data, respectively, i.e.,

/5] Uug usz : B UuN
uz  ug Ug o UN4L
us Ug Us * UN+2

Urp,nv =

Up Upt1 Upt2 UN+4p-1

and similarly for ¥. A QR factorization H =
@R, is used for data compression; then, a SVD
of the submatrix Rys := R(ms+1: (m+£)s, ms+
1:(m + £)s) reveals the order n of the sys-
tem as the number of “non-zero” singular val-
ues. System matrices are finally computed from
the right singular vectors of Rgs, using the
ms x (m + £)s upper trapezoidal submatrix of
R, and solving a linear algebraic system in a
total least-squares sense [11] (see the next sub-
section).

For sequential data processing, the QR factor-
ization is done sequentially, by updating the
upper triangular factor £. Once all data com-
pressed, the system order and system matrices
are computed as in the previous case.

For other schemes, the things are similar, but
more involved. For the PO scheme, Ros is given

by
Roy i= R(ms+1:(2m+£)s,ms + 1: (2m + £)s).

For the N4SID scheme, the triangular fac-
tor R of the N x 2(m + {)s matrix H =
[ UTyen Y, n ]isfound (N =t —2s+1),
an oblique projection O is computed in terms of
some submatrices of the upper triangular factor
R [2], and then a SVD of O gives the order n.
System matrices are finally computed using the
first n right singular vectors of OT and other
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submatrices of R, solving a linear algebraic sys-
tem in a total least-squares sense. The covari-
ance matrices are computed using the residuals
of a least-squares problem. The Kalman gain
is obtained by solving a discrete-time algehraic
matrix Riccati equation based on the Schur vec-
tors approach for the dual of an optimal control
problem (see, for example, [12]).

To give further details, let us partition the tri-
angular factor of H as R = [Up, U; Y, Yj],
where the subscripts p and f stand for “past”
and “future” data, respectively, and the four
blocks have ms, ms, £s, and £s columns, re-
spectively. Define W, = (U, Y;], and consider
the residuals of the two least-squares problems
giving the oblique projection,

r1:Wp—UfX1, Tg—_‘YfﬂUf)fg,
where X; and X, are the minimum norm least-
squares solutions of the following problems

min||U; X = Wyllzy  minllU; X = ¥yla,

respectively. Then, the oblique projection can
be computed as O = r3 @;Q7, where @ con-
sists of the first k¥ = rank(r;) columns of the
orthogonal matrix in the QR factorization of
r1. No least-squares problems should be actu-
ally solved.

3.2. Computation of System Ma-
trices

The description below shows how the MOESP
approach can estimate the gquadruple of sys-
tem matrices (A, B, C, D) of the LTI state space
model using the information from previous com-
putations.

Let R be a matrix whose leading ms x {(m +
¢)s submatrix contains some relevant data for
MOESP algorithm, namely the upper triangu-
lar matrix Ri1, and the matrix Ris. (For the
ordinary MOESP scheme, it is just the leading
submatrix of the triangular factor of the QR fac-
torization of H.) Let U/ be the s x £s matrix of
right sinigular vectors. (Here, U has been rede-
fined as V7T in the corresponding singular value
decomposition.)

The matrix C is readily obtained as the lead-
ing ¢ x n submatrix of U. Denoting U, =
U(l:(s—1)4,1:n), and Uy = U(£ + 1:£5,1:n),
the QR decomposition of U} is computed, and
{75 is updated accordingly,

Ule[ﬂ, U@,

‘Then, matrix A is obtained by solving RA =
Us(lim,:) for A

Finding the B and D matrices is more involved.
First, the matrix equation KR]; = Uf RY, is
solved for K, where U = U(:,n+ 1:€s), and
K is an (s — n) x ms matrix. The matrix K is
stored in the workspace, K. Then, compute the
triangular factor of the QR factorization of the
s(fs —n) x (fs + m) structured matrix [Q K.],
implicitly defined by

Qs Qie-r - Q12 Qu Ki

0 Qs - Quz Q12 K>
0 0 - Qe Qs Ks ||
O 0 0 le -K.s

where Q; = Us(£(i—1)+1:4i,:)T is (€s—n) x £,
fori =15,

K.=[kT KT ... KT|",

and K; = K(:,(i—1)m+1:9m) is (fs—n) x m,
i = 1:s. The matrix [Q K.] is triangularized in
an array R, exploiting its structure (for efficient
use of the memory space), so that on output,
the upper triangle of R contains, in its leading
(£s4+m)x (£s+m) submatrix, the required trian-
gular factor. The calculations need 0((£s+m)?)
floating point operations. They are briefly de-
scribed below. The first block-row of @, 1.e. the
(£s — n) x s matrix [le Q12 Q“], is
constructed in R. The submatrix @, is triangu-
larized using an orthogonal matrix S, and the
transformation ST is then applied to the matrix

[Ql,sﬂ Qu]. Hence,
T - _ R P,_,_]_ P2 Pl
S [Q15~..Q11] =lo F, ... B, P |

The transformation ST is also applied to each
of the submatrices K; of K¢, i = 1:s. Denote
(T 6T =5TK; (i=1l:s),
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where C; has £ rows. (Finally, Cj is saved in
R(£(i — 1) + 1:4i,€s + 1:€s + m), and G, is in
K(f+1:8s—n,m(i—1)+1:mi), i = 1:5.) Then,
the rows to be annihilated are put in F(1:£€s —
n £ 1:4s — £). (On implementation, F could
overwrite (72.)

Now, the structure of the transformed matrix

[R P,ey Py - Ps P G ]
0 R Py - P3 P Cs

0 0 R e Py Ps Cs

0 0 0 oo ROPy_y Csn

0 0 0 e 0 R ¢, ;
0 Fs—l FJ—E F2 Fl Gl

0 0 F‘,f] F3 Fg GQ

0 0 0 e 00 Fyop Gin

| 0 0 0 --- 0 0 G,

where the block-rows have been permuted, to
better exploit the structure. The block-rows
having R on the diagonal are dealt with suc-
cessively in the array R. The F’ submatrices are
stored in an auxiliary ({s—n—¥¢, s —¥¢) array F,
as a block-row. The large matrix above is never
explicitly constructed. Only its first s block-
rows are constructed, one by one. In order to
triangularize the transformed matrix, exploiting
its structure, part of the preceding block-row is
first copied in the subsequent block-row, and
then the current submatrix F,_; is annihilated
using an orthogonal matrix that modifies the
corresponding submatrix R (in the same block-
column). The transformation applies to the cor-
responding block-rows of the arrays R, F and K
(for 7).

Finally, after having copied Cj, i = 1:s, in the
last block-column of the QR factor, R(1: £s, £s+
1:¥s+m), i = l:s, the remaining rows of the
transformed G are then compressed in the trail-
ing part of R,

R(fs+ 1:€s+ m, €s+ 1:£s + m).

Now, compute the right singular vectors matrix,
V', of the triangular factor R, of order fs + m.
(VT is stored in R.) Solve for Y (the total least-

squares solution) the matrix equation

V(€s+ Lils+m,€s+ 1: s+ m)TYT =
» — V(s 4 1:4s +m,1:45)T,

where Y is £s x m. Then, matrix D is readily
obtained, if needed, as the trailing £ x m sub-
matrix of ¥.

After re-arranging the block-rows of U, as fol-
lows

Up(€(s = 2) + 1: 4(s = 1),:)

Ui(£+1:2¢,:)
Ur(1:€,:)

the modified {/; matrix, extended by the first
¢s — £ rows of Y on the right, is triangularized.
Finally, the right singular vectors matrix, V', of
the triangular factor is computed, and the ma-
trix equation

V(n+1:n+m,n+1:n+m)TBTz
—V(n+1:n+m,1:n)T,

is solved for B (in a total least-squares accept-
ance).

For the N4SID algorithm, a similar computa-
tional scheme is used. In this case, the subma-
trices @y; are (n + £) x £, for © = 1:5, defined
by

_ —L1 _
Qll . [ IC*L:?I ]: 1'_11
Qi = [ Mtlﬁ_ L ] ; i=92: s,

where L1;, Lo, and M; are n x £, £ x £, and
n x £, submatrices of £, and M, namely

e L£41 Lya - Ly,
Lor Loz -+ Lo ]’
M: [ M_] M2 MJ—I ] [

and

A
L::[C]FI, M::FI_I,

the superscript { denoting the pseudoinverse.
Note that here 'y := U(:,1l:n), and T, =
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U;. In this case, the submatrix K. of the
s(n + £) x (£s + m) structured matrix [Q K.],
whose QR factorization should be computed, is
defined by
K. =[ KT, K%, kT, KL |,

and matrix K is an (n + £) x ms matrix, given
by

Ky Ko -0 Ky,

Bed v Hoy von o

Ky = K(1:n, (i — 1)m + 1:im) is n x m, and
Ky =K(n+1ln+£ (i—1)m+1:dm)is £ x m,
i = 1:s. It is assumed that matrices 4, C, and
K have already been computed, by solving a
certain least-squares problem. The residuals of
this problem are used to estimate the covariance
matrix of the noise process [wT vT]T, which
helps in obtaining the Kalman predictor gain
matrix. The calculations are then performed as
in the MOESP case. Note that the row dimen-
sion of the structured matrix [@ K. could be
significantly less than with the MOESP case, so
sequential processing little benefits at this stage.
For small-scale systems, it would be more effi-
cient to directly compute the QR factor of the
matrix [Q K.].

4. Examples

First, consider the discrete-time system
(4,B,C,D), due to M. Verhaegen, with the
following matrices:

715 —07 1
A_[I.O 0.0]’ B‘[o]’
C = [1 0.5],

and D = 0, whose output response {yi} is com-
puted using a random (0,1) uniform distribution
input trajectory {ur}, ¥ = 1:120 (f = 120), and
zero initial state. The value of parameter s is
taken as 10. i

All the calculations have been performed in dou-
ble precision on an IBM PC 486 (with ma-
chine precision about 2.22 x 1071¢). The com-
puted singular values used to estimate the sys-
tem order, rounded to five significant digits, are:

32.203, 14.612, 0,0, 0, 0, 0, 0, 0, 0. The esti-
mated system matrices (rounded to four digits
after the decimal point) are:

7. [ 7831 .5606 5= ~3.5468 |
T | 2472 7169 |° T T | —2.3707 |°

¢ =[- 5749 4382, D=0.

The full precision computed matrices coincide
with those obtained by applying an appropri-
ate similarity transformation to the original sys-
tem. (For such a simple example, this sim-
ilarity transformation can easily be obtained.
For more complex systems, a simple check en
similarity is to compare the first two Markov
parameters for the computed and the original
system, namely to evaluate the a,bsolute €rrors
[|CB — CB||, and ||CAB — CABH or the cor-
responding relative errors.) The relative output
root-mean-square error is:

: 1/2 1/2
(Z(yk — ) ) /(Z yk) =1.13x 10713,

where 3, is computed using the estimated
quadruple (4, B, C, D), and the same input
sequence and 1n1t1a.1 state as above.

As a second example, consider the following sys-
tem

41 = Azp + Bup + Ewy,
v = Czp+ Dup+ Fug,
where [13]:
. 9856 .1628
A = block-d.rag([ _ 1628 .0856 ]
8976  .4305 8127 .5690
—.4305 .8976 —.5690 .8127 t

T
B= [.0011 .0134 - .0016 - .0072 .0011 .0034] .

o, 15119 0 2 O 1.5119 0
~ 113093 0 0 0O -13093 O

E = diag(.00049,.00599,.00073,.00322, .00048, .00151 )

}, D=0,

and F = diag(.05277,.05277), whose output re-
sponse {yx} is computed using random (0,1)
normal distribution of input, process noise and
output noise trajectories {ug}, {we}, and {vi},
k = 1:120 (¢ = 120), and zero initial state. The
parameter s is taken as 8.

The computed singular values, rounded to five
significant digits, are: 3.6458, 1.7754, . 75446,
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.68453, 44332, .34115, 32113, .28318, .25693,
.24346, .19697, .17021, .12216, .094313, .091442,
.076357. These values indicate that the sys-
tem order can be assumed as two. However,
we forced the value n =6, as for the given sys-
tem. The estimated system matrices (rounded
to two digits after the decimal point) are:

.96 .38 .08 A7 —.20 .07
-.10 .96 .62 -—.04 -.10 .05
02 —-11 91 43 —.22 25

s 01 06 -.29 8 .16 .17 |
01 .00 —06 —.05 —.83 .52
—01 —.01 .02 .10 —.43 .64
- T
B=[.08 .05 .02 .02 .00 .00},
a_] 2 -4 32 —03 06 -.12
=1 20 -15 .04 -—49 41 .06 |’

and D = 0. The estimated Kalman gain matrix
K is

9152 1.7073

—.3287 .5212

B= .0628 —.1079
.0727 —.0860

—.0040 -.2926

—.0197 1059

The relative output root-mean-square error is
about 1.9, for each column of y. The same
statistics for the filtered output error, for each
column of y, is 0.46, and 0.58, respectively.
These values are not surprising, taking into ac-
count the process and output noise considered
in the system. If the noise is suppressed, that
is wr = 0, and vy = 0, then the relative out-
put root-mean-square error for the two outputs
has values about 2.5 x 107!%, and 1.8 x 10~
respectively, and the identified model is:

9% —.32 .11 —25 —07, .33

15 .91 -.57 .09 .03 —.03

i_| 00 21 89 -37 -15 .30
={ w02 -00 a4 92 71 -51
~00 —.00 .00 —08 .82 —143

-00 —00 .00 -01 .17 .87

B=[-.02 .01 —.02.02 .01 .00,

[ ~15 —48 —28 —04 -13 -.08
| =17 -.06 -.17 -51 .56 .47 |

(o)

and D = 0. The full precision computed model
is close (within a small multiple of the machine
precision) to a model derived from the original
system by an exact similarity transformation.

5. Conclusions

Basic algorithms and LAPACK-based Fortran
software for multivariable discrete-time system
identification by subspace techniques, have been
briefly described. The approaches seem very
promising, and the software components proved
robust, flexible, and easy to use, even when the
available memory is quite limited. The software
has been extensively tested; the results of using
various algorithms (including their MATLAB
versions) have been compared. New versions of
the codes, with improved modularity and effi-
ciency, are under development. Implementation
of the new algorithms is also considered.
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