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Abstract: The paper deals with performance eval-
uation of some methods for sequential detection of
changes in non-stationary digital signals. Meth-
ods are "exactly” valid under the assumption that
the signal under study is an autoregressive process.
However, they appear to be robust to this assump-
tion and can, therefore, be applied to other signals
as well. The detection algorithms herein consid-
ered are based on the quadratic forms of Gaussian
random variable, which are x? distributed under
the null hypothesis (no change); random variables
used to construct the quadratic forms include AR
parameters, estimated residual variance and sam-
ple and partial residual correlations. The presented
methods combine sequential and sliding block anal-
yses.The considered methods performances are eval-
uated by simulation. Also, the methods’ robustness
as to the assumption of autoregressive data and to
the model structure, is investigated.
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1 Introduction

Modelling and processing of non-stationary digi-
tal signals stands for the core issue of various ap-
plication areas such as speech processing, image
processing, automatic analysis of biomedical sig-
nals, geophysics, fault detection and isolation in
automated processes. Such problems have been
given considerable attention during the last two
decades, in both research works and the area of
application analyses on real processes. Surveys
of and contributions to this subject, revealing
its importance and describing different applica-
tions can be found in Bodenstein and Praetorius
(1977), Ishii, Iwata and Suzumura (1979), Appel
and Brandt (1983), Gersh and Kitagawa (1983),
(1985), Basseville and Benveniste (1986), Stoica
(1990), Popescu and Demetriu (1990), Popescu
(1993), Isermann (1991), Basseville and Niki-
forov (1993), Ruckonen (1994), etc.

The paper makes a presentation and evalua-
tion by simulation of some techniques for change
detection in non- stationary scalar signals. Some
extensions to vectorial case are direct. The fol-
lowing problem is addressed: Let {¥;} and {Y¥>}
be two sets of stationary data. Testing the null
hypothesis is aimed at.

Ho: {Y1} and {Y¥»} are from
the same generating mechanism

Hy: {Y1} and {Y:} arefrom
different data generating mechanisms

A solution to the above stated problem asks
for an assumption on the data generating mech-
anism: 1t 1s assumed that under Hy, data sets
{Y1} and {Y2} are generated by ah autoregres-
sive AR(p) process, whose parameters may jump
at some unknown time, i.e.

P
Yn + Zain)ynfk =€n, var(en)= ‘73 (1)
k=1

where
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asc"):ail) 1<k<p, for n<r

o= Gi; for n<r
al™ = ascg), 1<k<p, for n>71
a: =0, for n>r

and €, is a white noise sequence.

This is not a too restrictive assumption if
agreeing that practically many stationary pro-
cesses can be closely approximated by AR mod-
els. Such an assumption is worth- making
thanks to the computation easiness of the re-
sulted test procedures. More general models
could be handled by methods similar to those
presented, but the corresponding test proce-
dures would then be more computationally en-
gaged.

Quite often, in practice, the true parameter
values of the AR models before and after the
change are still unknown. Moreover, the struc-
ture of the true underlying models may keep un-
known, and then the AR models are only used
as a tool for change detection in the process.

The change detection problem consists in the
sequential detection of the change, and the es-
timation of the change time, 7, with few false
alarms, short delay for detection and symmet-
rical detection (comparable performances when
detecting a change from model (1) to model (2),
or vice versa).

There are various algorithms for change de-
tection in AR or ARM A models, which operate
in a sequential or nonsequential way or involve
a sliding-block analysis.

In this paper performance evaluation of some
methods for sequential detection of changes
in non-stationary digital signals, based on
quadratic forms of Gaussian random variables,
which are x? distributed under the null hypoth-
esis (no change) 1s discussed; two models and
different statistics for comparing them, are be-
ing used. The paper is organized as follows. In
Section 2 the methods concerned and their prop-
erties in ideal situation are presented. The prob-
lem of practical implementation of these statis-
tics in rteal conditions is dealt with in Section
3. In Section 4 a numerical evaluation of the
methods performance is reported, including a
comparison of the test statistics under normal
conditions, and provided the hypothesis of the
assumptions on autoregressive data and model
structure, is violated.

2 Change Detection Algorithms

The basic idea of these algorithms is to com-
pare two AR models determined for different
data sets of non-stationary time series, to see
whether they differ significantly or not.

These algorithms are based on quadratic
forms of Gaussian random variables, which are
y? distributed, under Ho, and which are ex-
pectad to get larger values under H;. Let z
denote such a quadratic form and assume that,
under Hg, z.~ x2(m) (i.e. z has a x? distribu-
tion with m degrees of freedom). The current
method used to test Hp against Hp is to let a
be a probability value close to zero and to define
the threshold x2(m) by

Prob(z > x%(m)) = a (2)
Then

Accept Hy if
Reject Hy if

z < x%(m) ,unknown risk (3)
z > x%(m) ,risk equal to «

This section conceptually describes three of the
methods which will be investigated by simula-
tion.

The first method has been proposed in sev-
eral alternative forms by Séderstrom and Ku-
mamaru (1985) and the AR models estimated
from two data sets {Y;} and {Y>} are compared
to see whether they differ significantly or not. In
summary, this method consists of the following
steps:

1. Fit an AR model to {¥}} with a given order
.

2. Determine the parameters of the AR mcdel
of the same order, which fits {¥2}.

3. Compute the quadratic form (Stoica, 1990):

NN ~ : - 2
e = —"2__[(9, — 6,)T Ry(6, — 02)+

and perform the test (3) with m =p+ 1.

In (4),6; = [a}.... a}] and o7 are the estimates
of the model parameters and residual variance
obtained for data set ; V; denotes the number
of available data points in data set 7, and

o ! s Tpml
T ?:‘0 s ’f‘p_g

R = (5)
Tped Tpep »o ¥
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In (5), fr is a consistent estimate of the co-
variance 7, = E[y(t)y(t + k)], for the first data
set {Yl}

The second method, originally proposed by
Quenouille (1958), entails fitting an AR model
to the data sets {Y;} and {¥2} put together,
and comparing the partial residual correlations
obtained from the fitted AR scheme in each sep-
arate series {Y;} and {Y2}. The method is ex-
tended by comparing the residual serial correla-
tion made by Stoica (1990). In summary, the
method consists of the following steps:

1. Fit an AR model to the concatenated data
sets {Y1,Y>} with a given order p.

2. Determine the residuals of the AR scheme
provided by 1 in each separate series {Y7}
and {Y;}. Compute the sample serial and
partial correlation vectors {6(*),6(2)} and

{ﬂ(l)jﬁ{ﬁ)};

i

5(i):[51i’6-2i1"'!53 ]l 1:1’2 (6)

ﬁ(i)z[ﬂli)fj;a--':ljsi]a 1=1,2 (7)
where s is some positive integer.

3. Compute z5 and z, :

25 = N2 50y g (s

Ni+ N
_ NN o (g
= N I AT (O)
where || - || denotes the vector Euclidean

norm. Accept Hyp if z5 < x2%(s) and z, <
x2(s); otherwise accept H;. Concerning
the choice of s, we simply set s = 2p (Sto-
ica, 1990).

This method based on a model determined by
the whole data set {¥7,Y>} is equally advanta-
geous and disadvantageous. With a larger num-
ber of data points being used in the estimation
stage, one can better approximate the asymp-
totic theoretical results which the testing proce-
dure is based on. On the other hand, if the data
sets {Y1} and {Ya} correspond to different AR
processes, the estimation procedure executed on
the concatenated set results in an "average AR
model”. The sample correlations of the residuals
obtained from the application of that model on
each data set might differ less than if the model
had been determined from one data set only. To
fight this drawback a new method was proposed
(Stoica, 1990). It consists of the following steps:

1. Fit an AR model of order p to the data set
{r}

2. Identical to step 2 of the previous method.

3. Identical to step 3 of the previous method.

A similar but not identical approach has been
made by Bodenstein and Praetorius (1977).

3 Implementation Aspects

In practice, the AR models of the signal before
and after changes have to be identified. When
using two AR models, identifiable at different
places in the signal, the problem of where to lo-
cate them comes up. Three possible approaches
can be distinguished, concerning the positions
of data blocks to be used for change detection
purposes.

A first approach, A1, is due to Bodenstein and
Praetorius (1977), and was used for EEG signal
segmentation. The scheme is presented in Fig-
ure 1: A first model AR, M, is identified in
a fixed data window and is used as a reference
model, and the second model AR, M,, is iden-
tified in a sliding data window having the same
dimension with the fixed data window. When
the models sufficiently differ, the signal is seg-
mented, the second model becomes the reference
model and the procedure goes on. A disadvan-
tage of this approach is the risk of accepting H,
under Hg, which is called "false alarm”, because
some of the information concerning the data pre-
vious to the change instant is lost, the M; model
being identified in a limited data window.

Such a situation can be resolved using M; as a
reference model, a global one {long-term model)
instead of a local one (short-term model), see
Figure 2. If the model M, is estimated with a fil-
ter having a reduced forgetting capability, it will
not be affected by change and will be more pre-
cisely identified than in the former case. Con-
cerning the position of the data windows for the
long- and short-term model there can be distin-
guished 2 situations, corresponding to the sec-
ond and the third approaches, respectively (see
Figure 1 and Figure 2).

The latter approaches have been concurrently
used by Appel and Brandt (1983) and by Bas-
seville and Benveniste (1982), (1983). They also
used different test statistics in change detection
problem: Chernoff distance and Kullback’s di-
vergence.

The filters used for identifying M; and M,
models in the investigated change detection
methods resort to lattice implementation of
the approximate least square method (Makhoul,
1977) for the long-term filter (M, in A2, A3) and
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M, Mo

Figure 1. First Approach - Al

M Mo

Figure 2. Second Approach - A2

M, Mo

Figure 3. Third Approach - A3

to the co-variance method ( Markel and Gray,
1976) for the local filter (M; in Al and M3 in
Al, A2, A3).

4 Performance Evaluation

This section is devoted to some experimental re-
sults, obtained via simulation, for the test statis-
tics described in Section 2. Also, the robustness
of the methods, as to the assumption of autore-
gressive data and to the model structure, is dis-
cussed.

Table 1. The Cases Considered in Simulation

[ Case || Generation of {1} and {Y3} i

Cl |[yn =06yn_y1+¢n;0°=1
Yp = 0.1yn_1 + €q;02 = 1.

C2 Yn = 0.3yn—1 +0-5yn—2+5n§0'2 =4 %
Yn = 0.3yn_1 4+ 0.5yn_2 + €n; 02 = 0.25

C3 | ¥n =0.3yn_1 +0.5yp—2 + €n; 02 = 0.05
Un = 0.5yn-1 = 0.3yn—2 + 0-6yn—3_
—0.5yn—4+ €n;02 =0.16

C4 || yn = V25sin (0.27t) + €n;02 = 0.64
tn = 0.7yn—1 + U.5yn_2 — 0.56yn -3+
+ep ol =1,

Ch Yn = V25in (0.27t) + €,; 0% = 0.64
Yn = V2sin (0.237t) + €,; 0% = (.64

C6 || yn = V25in (0.27t) + €n; 02 = 0.64
Yn = V2sin (0.237t) + €4;0% = 1.

The methods described in Section 2 have been
applied to the cases shown in Table 1. In each
case were generated one realization of {Y)} and
100 independent realizations of {Y2}, of 500
sample points each. Using multiple simulation
runs, we can evaluate the probability of accept-
ing [, under Hy (first type of risk), which is
also called "false alarm”, and the probability of
accepting Ho under H, (second type of risk) for
the testing methods under consideration. Note
that these cases are grouped into two classes:
for the first 3 cases in Table 1, the assumption
on the autoregressive data is satisfied, while for
the latter 3 cases it is not.

In all cases, at the beginning, only the filter
which identifies the model M; is activated. Af-
ter 200 sample points the second filter (sliding
block) and the test will get activated. If the size
of the window used for identifying model M 1s
too small, false alarms may occur due to poor
estimation of AR coefficients. For this reason
the window size has been chosen as of 200 sam-
ples. As the number of sample points used for
the second filter is 200, it results that two suc-
cessive changes occurring within less than 200
sample points could not be detected by the in-
vestigated methods. For all the methods, the
critical probability value @ was set to o = 0.05.

4.1 Test Statistics Comparison

The results obtained for C1,C2 and C3 are given
in Table 2. As one can see the combination
MIII-A3 has no sense. The model order used
was: p=1forCl, p= 2 for C2 and p = 4 for
C3.

Remark 1.1t can be noted that the first type of
risk for M1 is greater (for A1 and A2 approaches)
than that of MII and MIIL. At the same time,
MI implies the smallest risk of second type in all
cases considered.

Remark 2. Initially, the data window for
the reference model will contain only data from
{Y1}. When the data window used for the cur-
rent model includes enough data from {Y3}, a
change is detected. Afterwards, the data win-
dow for the reference model will contain data
from {Y1} and {Y2} and the data window for
the current model will include only data from
{Y2}. Sometimes, in this case a second change is
detectable. This depends on the number of data
samples from {Y7} for which the reference model
is computed. Thus, the real change instant will
appear between two successive change detection
instants. Table 3 presents for C1, the number of
cases with a single and double change, in the
analysed realizations. Obviously, the number
of double change detections reduces for A3 ap-
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proach, in comparison with the Al and A2 ap-
proaches, as well as for MI and MIL. It results
that for MI-A3 and MII-A3 the change detec-
tion instant will be very close to the real change
instant.

Table 2. Results for C1,C2,C3 Cases

Remark 4. MI is very sensitive to scaling (it
has been designed to detect this type of change,
due to the second term in (4)).

Rematk 5. Concerning the computational
burden involved, MI is comparable to MIII.

4.2 Assumption of Autoregressive Data

Case || Testing | Estim. first | Estim. second ; . .
Z : The assumption on autoregressive data is not
method | type of risk fype Bl sl satisfied for C4, C5 and C6. The results ob-
Cl1 MI-Al 0.10 0.00 tained in these cases are given in Table 4, the
MI-A2 0.08 0.00 same as for the cases C1,C2 and C3. The model
MI-A3 0.00 0.00 order chosen in all cases, was p = 3.
MII-AlL 0.03 0.00 Remark 6. The results obtained for C4, where
MII-A2 0.04 0.00 {Y2} data are generated by an AR process, are
MII-A3 0.00 0.00 similar to the previous results. For C5, where
MIII-A1 0.02 0.00 only a small change occurs (the angular fre-
MIII-A2 0.05 0.00 quency jumps from 0.27 to 0.237) all the meth-
C2 MI-Al 0.06 0.00 ods and approaches point to a high second type
MI-A2 0.00 0.00 of risk. The insignificant change in C5 shows
MI-A3 0.01 0.00 an increase of variance, while the second type of
MII-Al 0.00 0.18 risk decreases, especially for MI.
MII-A2 0.01 0.04
MII-A3 0.00 0.00 Table 4. Results for C4,C5,C6 Cases
MITI-A1 0.02 0.24 Case || Testing | Estim. first | Estim. second
MIII-A2 0.02 0.00 method | type of risk type of risk
C3 || MI-Al 0.22 0.00 C4 || MI-A1 0.07 0.00
MI-A2 0.23 0.00 MI-A2 0.13 0.00
MI-A3 0.01 0.00 MI-A3 0.00 0.00
MIL-Al 0.10 0.00 MIT-Al 0.11 0.00
MII-A2 0.15 0.00 MIL-A2 0.12 0.00
MII-A3 0.00 0.00 MII-A3 0.00 0.00
MIII-Al 0.10 0.00 MIT-A1 0.14 0.00
MIII-A2 0.14 0.00 MII-A2 0.18 0.00
C5 || MI-Al 0.00 0.87
Table 3. No. of Cases with Single and MI-A2 0.00 0.40
Double Change for C1 MI-A3 0.00 0.67
= = _ MII-A1 0.00 0.53
Testing | No. cases with | No. of cases with MILAD 0.00 0.49
method single change double change MIL-AS 0.00 097
MI-Al 0 100 MIII-A1 0.00 0.54
MI-A2 3 97 MIII-A2 0.00 0.45
it s H C6 [ MI-Al 0.00 0.10
MII-Al 3 97 MI-A2 0.00 0.08
MII-A2 7 93 MI-A3 0.00 0.68
MII-A3 88 12 MII-AT 0.00 0.14
MIII-A 1 15 85 MIT-A2 0.00 0.22
MITI-A2 10 90 MII-A3 0.00 0.92
MII-A1 0.00 “0.29
MIII-A2 0.00 0.33

Remark 3. MII and MIII are not sensitive
to a scaling of data. More exactly, MIII is all
through insensitive to scaling (it is based on cor-
relations that are not affected by scaling) and
MII is hardly sensitive (due to a slight modifica-
tion of the AR model fitted to the concatenated
set {¥}, Y3}, produced by a "reasonable” scaling

of {Y2}).

4.3 The Importance of Model Order

In the cases where the AR model order is not
known, for the investigated methods, the un-
derestimation of this order can cause poor de-
tection. The results obtained for C3 case with
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a filter of order 3 and respectively 2, instead of
real order 4, are given in Table 5.

Table 5. Results for C3 Case, p=3, p=2

p || Testing | Estim. first | Estim. second
method | type of risk type of risk

3 MI-Al 0.25 0.00
MI-A2 0.37 0.00
MI-A3 0.03 0.00
MII-A1 0.34 0.00
MII-A2 0.39 0.00
MII-A3 0.05 0.00
MITI-A1 0.32 0.00
MIII-A2 0.35 0.00

2 MI-Al 0.37 0.00
MI-A2 0.50 0.00
MI-A3 0.07 0.00
MII-A1 0.25 0.18
MII-A2 0.37 0.04
MII-A3 0.02 0.00
MIII-A1 0.26 0.24
MITI-A2 0.34 0.00

Table 6. Results for C5 Case, p=5, p=10

p || Testing | Estim. first | Estim. second
method | type of risk type of risk

5 || MI-Al 0.00 0.02
MI-A2 0.01 0.00
MI-A3 0.00 0.06
MII-AL 0.03 0.62
MII-A2 0.07 0.12
MII-A3 0.01 0.76 ,
MITI-Ad 0.06 0.09
MITI-A2 0.21 0.00

10 || MI-Al 0.01 0.00
MI-A2 0.02 0.00
MI-A3 0.00 0.00
MII-A1 0.02 0.25
MIT-A2 0.01 0.01
MII-A3 0.00 0.79
MIII-A1 0.02 0.00
MITI-A2 0.02 0.00

Remark 7.0ne can notice that the behaviour
of the detector, especially for the second type
of risk. is not affected by an underestimation of
the model order. It seems that the practice of
identifying AR filters in lattice form may pre-
vent this fact (see A2, A3 for all methods). The
first type of risk will however be affected by an
underestimation of the order.

Remark 8. A considerable improvement in
change detection of the second type risk can be
noted for C5 (non autoregressive data), when
the model order increases from p =3 top =5

and respectiveiy p = 10. The results are given
m Tuble 6. This improvement brings about a
slight increase of the first type of risk.

5 ©Conclusions

The performance evaluation problem of some
methods for sequential detection of changes in
non-stationary signals has been addressed. The
detection algorithms, considered in the paper,
are tased on quadratic forms of a Gaussian ran-
dom variable (estimated AR parameters, esti-
mated residual variance and sample serial and
partial residual correlations). The robustness
of these algorithms is also investigated. A fi-
nal conclusion is that if any of the methods is
to be preferred in most practical cases, it is MI,
A2 and A3.
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