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1. Introduction

Planning for quality, one of the core management 
systems, can aid manufacturers to gain a 
competitive edge in the market (Kim et al., 2012). 
A computer-aided industrial setting contributes to a 
growing interest in simultaneous monitoring of the 
correlated process features. As a result, multivariate 
statistical process control (MSPC) methodologies 
have been broadly applied to secure safe plants and 
to improve product quality. The multivariate control 
chart is one of the most used MSPC techniques to 
assure the industrial process in a “state of statistical 
control” and to detect any change that may 
affect product quality. The quality characteristic 
measured on a numerical scale is referred to as 
a process variable. Generally, the goal of control 
chart analysis lies in detecting shifts in values 
of process variables and recognizing abnormal 
process patterns. For the purpose of fault detection, 
control limits are determined or estimated based 
on historical reference samples, and the observed 
values of process variables are then monitored 
against control limits (Adegoke et al., 2019). A 
number of studies also aim to recognize abnormal 
control chart patterns (CCPs) to match these 
patterns with their assignable causes (Addeh et al., 
2018) through feature extraction, feature selection 
and classification. As a consequence, practitioners 
are able to distinguish the unpredictable, randomly 
fluctuated patterns from the inherent, recognizable 
ones, and to trigger corresponding remedial actions. 

Based on solid statistical principles, traditional 
process control charts are classified into three 

broad categories, namely: 1) Shewhart chart, 
2) Cumulative Sum (CUSUM) chart, and 3) 
Exponentially Weighted Moving Average (EWMA) 
chart. The multivariate extension was pioneered by 
Hotelling (1947), namely 2T . A multivariate 2T  
control chart plots the process parameter along 
with the upper control limit (UCL) and the lower 
control limit (LCL). Therefore, exceeding any 
threshold will detect a fault. Consecutive abnormal 
events may be required to trigger the alarm to 
avoid the false interpretation. This Shewhart-like 
chart is memoryless and neglects previous process 
information, thus it is efficient for detecting 
large and general shifts in the process parameter 
of interest (Riaz et al., 2020). Inversely, the 
multivariate CUSUM (MCUSUM) (Crosier, 1988) 
and the multivariate EWMA (MEWMA) (Lowry 
et al., 1992) were developed using both past and 
current information. They are more sensitive for 
small-to-moderate process shifts and can function 
better for individual-observation monitoring 
(Adegoke et al., 2019). However, these conventional 
charting techniques do not have competence to 
identify the sources of out-of-control signals in 
the manufacturing process. To compensate for 
this limitation, a substantial body of researches 
has integrated data driven approaches into control 
charts to monitor variations. Neural networks 
(NNs) and support vector machines (SVMs) are 
the mainstream machine learning algorithms used 
to supplement an automatic detection for process 
abnormalities (Weese et al., 2016).
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NNs have great in-time noise tolerance and often 
generate promising results due to better estimation 
capacity and adaptive learning property. Some 
earlier studies (Chen & Wang, 2004; Niaki & 
Abbasi, 2005) developed artificial neural network 
(ANN)-based models for mean or variance shift 
detection. Ahmadzadeh (2018) used ANN to detect 
the change point in the process mean vector, and a 
simulation experiment showed a better performance 
of ANN over conventional MEWMA on average 
with a reduced size of searching window. To detect 
variance changes in the multivariate process, Shao 
& Lin (2019) proposed a time-delay neural network 
(TDNN)-based model that accurately classified 
the contributors of process fault. However, an 
abnormal variance shift may cause out-of-control 
signals in both mean and variance charts. Thus, it 
is reasonable to integrate these process variables 
into one schema and to simultaneously monitor 
the variations. Moreover, different NNs structures 
have broadly been used in recent studies for the 
diagnostic purpose, e.g. convolutional NN (CNN) 
(Zan et al., 2020) and evolutionary ANN (Yeganeh 
et al., 2021). But nevertheless, ANN-based models 
may suffer from a few drawbacks such as the 
overfitting problem, unstable results and difficulties 
in control parameters decisions (e.g., the number 
of hidden layers/nodes, the momentum term, the 
learning rate) (Lu et al., 2011). In addition, a classic 
ANN classifier is trained based on the empirical 
risk minimization (ERM) principle which may 
result in long training time, poor generalization 
capability and the tendency to fall into a local 
minimum. From these perspectives, ANNs may be 
less appropriate for quality diagnostics in dynamic 
industrial processes. 

Compared to NNs, SVM achieves greater 
generalization capability (Cuentas et al., 
2017; Yu et al., 2020). Introduced by Cortes & 
Vapnik (1995), SVM is a versatile classification 
technique especially when it is used for small 
sized, nonlinear and high-dimensional data. 
Various application scenarios have verified its 
effectiveness for classification and recognition 
tasks such as industrial fault diagnosis (Gani 
et al., 2011), system risk identification (Huang 
et al., 2021), ecological monitoring (Huang et 
al., 2020) and disease detection (Tuba & Tuba, 
2019; Yang & Xu, 2019). Basically, SVM 
constructs a hyperplane in a high-dimensional 
space based on the structural risk minimization 
(SRM) principle. Such construction procures a 

well trade-off between quality and complexity 
of the approximation (Zhang, 2005). As a result, 
SVM can avoid the overfitting problem and 
reduce the difficulty in model design. Unlike the 
conventional classification problem, one class 
SVM (OC-SVM), also referred to as support 
vector data description (SVDD), specifies only 
one class of the training data to reduce biases. It 
was initially applied in the kernel distance-based 
control chart (k-chart) proposed by Sun & Tsung 
(2003) requiring only in-control preliminary 
samples. Then, Camci et al. (2008) developed a 
robust k-chart considering limited out-of-control 
data and the approach obtained very reasonable 
results for all types of abnormal process states. 
However, a failure to manage the false alarm rate 
(i.e., Type I error rate) when deriving the control 
limit restricts the use of control chart in process 
monitoring. Fortunately, by changing the width 
of control limits can effectively deal with this 
problem. Kim & Kim (2018) proposed a novel 
chart based on optimal false alarm controlled 
SVDD. One can precisely control the proportion 
of out-of-control observations, thus Type I error 
rate, by adjusting an assigned constant value. 

When employing SVM for classification, decisions 
of both the kernel function type (or the kernel 
parameter) and the penalty parameter of SVM 
have significant influences on the generalization 
ability. These parameters directly affect correct 
classification rate for the labelled output, thus 
SVM-based applications always require a search 
for optimal settings. Table 1 lists some recent 
research that adopted different optimization 
algorithms for SVM parameter selection in 
the field of industrial fault diagnosis. Studies 
have indicated that genetic algorithm (GA) and 
particle swarm optimization (PSO) are the most 
extensively used algorithms for SVM parameter 
tuning. Moreover, a range of variants based on 
GA and PSO have been developed attempting to 
overcome common limitations of the standard 
version. In terms of kernel function type, radial 
basis function (RBF) is the most popular SVM 
kernel in academic research. 

In this paper, a framework of mean shift detection 
is proposed for identifying the source(s) of out-
of-control signals in multivariate manufacturing 
processes. Due to the robust classification power 
of SVM and the global search capability of PSO, 
an optimized SVM-based approach is proposed. 
A multivariate Hotelling’s 2T  control chart is 
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utilized to detect any abnormal process variable, 
and SVM principles are then adopted to recognize 
the subclasses of abnormal CCPs and to identify 
the contributor(s) for the occurrence of the process 
fault. More importantly, an advanced version of 
PSO, namely variable-length PSO (VLPSO) 
proposed by Tran et al. (2018), is employed for 
parameter selection. There are several reasons for 
basing the proposed model on VLPSOSVM: 

1.	 To overcome the limitation of conventional 
control charts for MSPC, the SVM principle 
with parameter optimization has been broadly 
integrated due to its great generalization 
capability and recognition performance;

2.	 Various optimization algorithms are 
available and comparison analyses have been 
conducted in a large number of research;

3.	 Most current PSO-based approaches adopt an 
inflexible fix-length representation, limiting 
the performance of PSO for SVM parameter 
selection. To deal with high-dimensional data 
in manufacturing systems, a variable-length 
representation is employed. It narrows the 
search space and is able to locate the optimal 
output more efficiently;

4.	 By applying a length changing mechanism, 
the PSO searching procedure can avoid being 
trapped at the local optima.

The remainder of this paper is organized as 
follows: Section 2 provides the methodologies for 
the control chart, SVM and VLPSO algorithms 
used in this paper. Section 3 introduces the 
proposed VLPSOSVM model. A simulation 
experiment is described and a comparison analysis 
is implemented in Section 4, and Section 5  
concludes the paper and presents some ideas on 
future opportunities.

2. Methodology

This section provides a brief review on the 
conventional Hotelling’s 2T  control chart, SVM 
learning algorithm used for abnormal detection 
in the multivariate industrial process and 
VLPSO optimization algorithm used for SVM  
parameter selection.

2.1 Hotelling’s T2 Control Chart

The control chart plots process means or variance 
over time and prompts an out-of-control signal 
if they fall outside the control limits. The most 
frequently used multivariate control chart for 
monitoring process mean is the multivariate 
Hotelling’s 2T  chart, which measures the 
Mahalanobis distance between the center of 
reference and the moving window dataset. Suppose 
that p related quality characteristics are observed 
in the process, denoted by a random vector 

1 2, , ,
T

pX X X X = …  . It is assumed that X follows a 
joint distribution ( )~ ,pX N µ Σ , and there are m 
independent subgroups each with a sample size of 
n (Nidsunkid et al., 2016). When in-control mean 
vector µ  and covariance matrix Σ  are specified to 
be known, the test statistic using first m preliminary 
samples can be computed by equation (1)

( ) ( )2 1T

i i in X Xχ µ µ−= − Σ −                                 (1)

for 1,  2,  ,  i m= … , where iX  denotes sample 
mean vector for ith rational subgroup. The 

2
iχ  

statistic follows a chi-squared distribution with p 
degrees of freedom when the process is in control. 
Therefore, the process mean has a UCL given 
by 2

, pαχ , representing the upper α  percentile 
of the chi-squared distribution with p degrees 
of freedom. Generally, the chi-square limit is 
employed as an approximation, especially for  
m > 100 (Montgomery, 2020).

Table 1. Several researches for industrial fault diagnosis based on optimized SVMs

Literature Proposed model Optimization algorithm Kernel function

Chou et al. (2014) SVM fast messy genetic algorithm (fmGA) RBF
Yang et al. (2015) SVM artificial colony bee algorithm (BA) RBF
Zhang et al. (2015) SVM barebones particle swarm optimization & 

differential evolution (BBDE)
RBF

Zhou et al. (2018) Fuzzy SVM genetic algorithm (GA) RBF & Polynomial

Wang et al. (2019) SVM saturated and mix-delayed particle swarm 
optimization (SMDPSO)

RBF & Polynomial

Zeng et al. (2019) least square SVM grey wolf optimizer (GWO) RBF
Zhang et al. (2020) SVM fireworks algorithm (FWA) RBF
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Conversely, in the case of unknown µ  and Σ , m 
preliminary samples are used to estimate the pooled 
vector of sample means lX  and the pooled sample 
covariance matrix S. The 2T  statistic plotted on 
the control chart can be computed by equation (2):

( ) ( )2 1
T

i i l i lT n X X S X X−= − −
                              

(2)

for 1,  2,  ,  i m= … . To detect any mean shift 
associated with future observations with unknown 
µ  and Σ , UCL is established by equation (3):

( )( ) ( ) , , 11 1 1 * u p mn m pL p m n mn m p Fα − − += + − − − +   (3)

for m subgroups each with a sample size of n. 
, , 1p mn m pFα − − +  represents the upper α  percentile 

of an F-distribution with p and (mn – m – p + 1) 
degrees of freedom. The LCL is generally set to 0.  
Since 2 0iχ ≥  and 2 0iT ≥ , only UCL is used 
to test whether the process remains in a state of 
statistical control in both two cases, i.e., the process 
is detected out-of-control if 2 2

,i pαχ χ≥  or 2
i uT L≥ .

2.2 Support Vector Machines

SVM is a powerful classification technique 
particularly for small- and medium-sized 
datasets. The basic principle of SVM is to 
transform the input data into a high-dimensional 
feature space using a mapping function ϕ  and 
to find the optimal hyperplane that separates the 
labelled data. In a p-dimensional input space, a 
hyperplane is a flat (p – 1) dimensional subspace 
that separates different classes of the observations. 
When the distance between the hyperplane and the 
nearest data points (referred to as support vectors) 
of different classes is maximized, SVM achieves 
higher classification accuracy. To clarify the 
problem, let { } 1, n

i i i
x y

= , { }, 1,1p
i ix y∈ ∈ −  be the 

sample training set D with n sample observations. 
The quadratic optimization problem can then be 
formulated as in equation (4):

, , 1
1 2

n
T

iw b i
min w w C

ξ
ξ

=

+ ∑
                                   

(4)

( )( ). . 1T
i i is t y w x bϕ ξ+ ≥ −

where iξ  is non-negative for 1,  2,  ,  i n= … . In 
(4), w is the hyperplane coefficient vector, C 
is the penalty parameter and b is the bias term.  
C controls the trade-off between the confidence 
interval and classification errors. Therefore, it 
is used to reduce the misclassification error and 
to avoid the occurrence of over-fitting. A non-
negative slack variable iξ  is introduced in the 

soft margin objective to obtain a more flexible 
buffer of boundary. 

Such convex quadratic optimization with linear 
constraints is known as a quadratic programming 
(QP) problem. However, it can be confusing when 
there are more features than the training instances. 
In this case, fortunately, the QP problem can be 
transformed into an unconstrained dual problem 
using the Lagrange multiplier given by equation (5):

( )

( )( )
1

1

, , 1 2  

 

n
T

i
i

n
T

i i i
i

L w b w w

y w x b

α α

α ϕ

=

=

= +

− +

∑

∑
                        

(5)

where 0iα ≥  for 1,  2,  ,  i n= … . An optimal 
solution can be guaranteed at the stationary point 

( )ˆ ˆˆ , ,w b α  when ( ), ,L w b
b

α∂
∂

 equals 0. Therefore, 

the dual form of the SVM problem can be obtained 
using equation (6):

( ) ( )
11 1

1 2
n n

T
i j i j i

n

i i
j i

j
min y y x x
α

α α ϕ ϕ α
= ==

−∑∑∑
   

(6)

where 0iα ≥  for 1,  2,  ,  i n= … . The dual 
problem requires the transformation ϕ  applied 
to all the training instances. Introducing a kernel 
function into the transformation process can be 
more computationally efficient, by computing 
( ) ( )j

T
ix xϕ ϕ  based only on the original vectors 

xi and xj. Additionally, for non-linearly separable 
problem, the kernel function is applied to map the 
training instance to a high-dimensional feature 
space, where a linear separating hyperplane 
can then be obtained with maximal margin. 
The most commonly used kernel functions are 
linear, polynomial, RBF and sigmoid, and they 
are comparable under low dimension. In this 
paper, the Gaussian RBF kernel is used, given by 
equation (7):

( ) 2{ },i j i jK x x exp x xγ= − − 

                     
(7)

where γ  is the kernel parameter. RBF is appropriate 
and sufficient in many complex cases, and it has 
fewer parameters that need to be determined.

2.3 Variable-length Particle  
Swarm Optimization

PSO is a population-based evolutionary 
optimization algorithm developed by Kennedy 
& Eberhart (1995), well-known for its global 
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search ability. Each particle in the swarm 
represents a candidate solution with two attribute 
vectors, position and velocity, and it is randomly 
distributed in the solution search space. However, 
the standard PSO representations are of a fixed 
length, i.e. the length of each particle in the 
swarm equals the initial number of features 
(dimensionality). As a result, the fix-length 
representation requires much computer memory 
and long computing time when applied on high-
dimensional data. To overcome this limitation, 
Tran et al. (2018) developed a more effective and 
flexible PSO-based algorithm with a variable-
length representation that reduces the search 
space. By allowing particles with different lengths 
to learn from each other, the swarm can maintain 
an appropriate level of diversity, thus alleviating 
the premature convergence issue. The following 
content introduces the representation of VLPSO 
and the length changing procedure adopted to 
obtain the optimal output more efficiently.

2.3.1 Variable-length Representation

A VLPSO representation is still vector-based as 
standard PSO and each particle with a different 
length L has three attributes including position, 
velocity and exemplar. An exemplar of the particle 
for a dimension d is assigned by VLPSO, and 
particles in each dimension then move towards 
the best position that the exemplar has explored 
so far (pbest). The position and velocity of the ith 

particle are updated through iteration steps using 
equations (8) and (9), respectively,

1 1t t t
id id idx x v+ += +                                               (8)

( )( )1 * * * _t t t t
id id id idexmplr id dv v c r p xω+ = +

           
(9)

where t
idx  and t

idv  denote the position and the 
moving speed of the ith particle in dimension d at 
time t. In (9), ( )exmplr id  returns the exemplar 
of the ith particle in dimension d, and ( )

t
exmplr id dp  

represents its best position in the swarm at time t.  
ω is the inertia weight and a reduced ω will 
result in stronger convergence and greater ability 
to locate the global optima. c is an acceleration 
constant and [ ]0 1idr ∈ ，  is a random value assigned 
with a uniform distribution.

In addition, the learning probability Pc and the 
renew exemplar count are recorded in the variable-
length representation. VLPSO enables particles 
with different L to communicate with each other 

by allowing each particle to learn either from 
pbest of its own or from pbest of the assigned 
exemplar. This decision is based on an adaptive 
Pc given by equation (10):

( )( )10 1
1

100.05 0.45
1

r

c

ank i
Sexp

p
P

ex

−

−

= +
−                           

(10)

where S denotes the population size and rank(i) 
denotes the fitness rank of ith particle. Tran et al. 
(2018) suggested that the particles learn from the 
one with better fitness, i.e., smaller Pc. Therefore, 
if a random number drawn from a uniform 
distribution is greater than Pc of the ith particle, the 
ith particle will be assigned as an exemplar for d. 
Otherwise, two different particles both with L d>  
randomly picked and the one scoring better fitness 
is assigned as the exemplar for d. If none of the 
particles in d fails to meet the condition L d> , d 
learns from its own pbest instead. Moreover, when 
pbest stops improving for α  iterations, exemplars 
are renewed and the number of iterations pbest 
remains unchanged is recorded as the renew 
exemplar count.

2.3.2 Length Changing Procedure

In addition, a length changing mechanism is 
employed to help PSO jump out of the local optima 
when the best position of the population (gbest) 
does not change for β  iterations. To reduce the 
search space, the entire swarm is divided into a 
predefined number of divisions. Particles of the 
same length are in the same division and they can 
still represent different feature sets. The length of 
particle can be obtained by equation (11):

( )*   VParLen MaxLen V number of divisions=   (11)

where MaxLen represents the dimensionality of 
the current swarm. V refers to the division where 
the particle is in, i.e. V = 3 when the particle is 
contained in division 3. The mechanism aims to 
scale the search process into the best division with 
the highest average fitness by resizing particles in 
other divisions. The particle length of best division 
(BestLen) is kept unchanged. If the ParLenV 
> BestLen, the ParLenV will be automatically 
shortened using BestLen as the new MaxLen of 
the swarm. Otherwise, more dimensions will be 
appended at the end of the representation and then 
randomly initialized.
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3. Proposed Model

In this paper, it is assumed that the mean vector 
and covariance matrix of the process data can be 
accurately estimated given enough data. Since 
the proposed model only serves for mean shift 
detection and shifted variable identification, it is 
also assumed that abnormal process variables lead 
to changes only in the mean vector. In addition, 
only abrupt conditions are considered here, 
indicating that a process remains in-control until 
a mean shift occurs and the process data before 
and after the change point are all independently 
and identically distributed. An out-of-control 
variable will not become in-control even if faults 
are detected and removed. 

In terms of the model design, the schema is divided 
into two parts. The first comprises a multivariate 

2T  control chart to detect an abnormal situation. 
When the process observation continuously falls 
outside the control limit, i.e., 2 2

,i pαχ χ>  or 2
i uT L> ,  

the control chart generates an out-of-control 

alarm. The group of observations that triggers 
the alarm is represented with a binary code and 
then collected to be diagnosed. In a p-dimensional 
manufacturing process, the process mean vector 
has 2 p  states, either in-control or out-of-control. 
In other words, once the test statistic exceeds the 
UCL, there exist 2 1p −  abnormal states that need 
to be distinguished from the total possible states. 

Subsequently, a pattern recognition problem is 
constructed based on the VLPSOSVM classifier 
for the identification of shifted variables. The 
SVM algorithm adopts Gaussian RBF kernel to 
distinguish types of abnormal process patterns. 
The parameters that need to be selected with 
caution are the penalty parameter C of SVM and 
the kernel parameter γ . An inappropriate C may 
lead to the overfitting problem and γ  determines 
the structure of the high-dimensional feature 
space. In this study, VLPSO is employed to tune 
these parameters of SVM following the process 
shown in Figure 1, in order to achieve a better 
recognition performance.

Figure 1. The architecture of SVM parameter optimization using VLPSO
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A particle in the swarm consists of C and γ .  
Initially, velocity and position of a group of 
particles are given randomly. The ranking of the ith 
particle can be quantified by feeding its position to 
the fitness function. The best searching position for 
the ith particle is denoted as ( ),i iC iP p p γ=  (pbest), 
and that for the entire swarm as ( ),g gC gP p p γ=  
(gbest). The main steps of VLPSOSVM are given 
as follows:

Step 1. Generate the training and the testing data 
sets to prepare for SVM modeling;

Step 2. Generate initial particles ( ),  C γ  and 
initial VLPSO parameters including population 
size, number of divisions, constant c, maximum 
iteration, threshold for selected feature, maximum 
iteration for renew exemplars (α ) and for length 
changing ( β );

Step 3. Train the SVM model with 500 training data 
sets generated. The parameter pairs ( ),  C γ  change 
along with the flying of variable-length particles;

Step 4. Calculate the learning probability Pc using 
equation (10) for all the particles;

Step 5. Check against stopping criterion. Repeat 
Steps 6 to 9 until the maximum iteration is satisfied;

Step 6. Each particle p in the population, if p has 
a lower Pc than a random value drawn from a 
uniform distribution, is assigned as the exemplar 
for d. Otherwise, the one scoring better fitness value 
of two random particles is selected as the exemplar. 
Once the exemplar for d is determined, update the 
velocity and position for p using equations (9) and 
(8). Update fitness value and pbest;

Step 7. If pbest has not been improved for α  
iterations, the exemplar for the particle p is 
renewed and the renew exemplar count (the 
number of iterations until renewed) is recorded. 
Update gbest for the population;

Step 8. If gbest has not been improved for β  
iterations, the length of particles is changed using 
equation (11) with new MaxLen of the swarm. 
Otherwise, the stopping criterion is checked 
against. Generally, β  needs to be large enough 
for VLPSO to converge;

Step 9. If the exemplar is renewed for any 
particle in the swarm, then Pc is assessed for all 
the particles using equation (10). Otherwise, the 
stopping criterion is checked against;

Step 10. Once maximum iteration is satisfied,  the 
procedure is finished and gbest is returned;

Step 11. Obtain the optimal parameter setting 
( ),  C γ  and finalize the VLPSOSVM classifier 
for diagnosing abnormal patterns. 

Once it is finalized, the VLPSOSVM model is 
then used to recognize the shifted variable(s) . 
Take a bivariate process (p = 2) for illustration 
with mean vector 0µ  and covariance matrix Σ .  
By representing a process variable that is out-
of-control as 1 and that is in-control as 0, an in-
control normal process state with two variables 
as (0 0) can be identified. When p = 2, there exist 
3 out-of-control states, (1 0), (0 1) and (1 1), 
representing fault process patterns recognized in 

1µ , 2µ  or in both, respectively. In other words, 
the process mean vectors shift following three 
patterns: (1) only the first of two variables shifts 
λ  units of standard deviation 11σ , ( )1 11 2,µ λσ µ+ ; 
(2) only the second of two variables shifts λ  units 
of 22σ  and ( )1 2 22,µ µ λσ+ ; (3) both two variables 
shift λ  units of 11σ  and 22σ , respectively, 
( )1 11 2 22,µ λσ µ λσ+ + . When an overall out-of-
control signal is prompted by the Hotelling’s 

2T  control chart in the detection process, the 
VLPSOSVM is then implemented to identify and 
locate the sources of mean shifts, i.e., 1µ , 2µ  
or both. When designing the process, sufficient 
datasets are required to train SVM adequately and 
different shift magnitude λ  in the process mean 
vector are considered. When the output value of 
the trained SVM is close to either zero or one, they 
are rounded down or up, respectively.

4. Simulation Experiment

The function of the proposed model lies 
in identifying the abnormal variable(s) in 
the multivariate manufacturing process by 
formulating a pattern recognition problem. 
The representation of the training sets has a 
strong influence on the performance of the 
VLPSOSVM recognizer. However, real-world 
manufacturing systems usually rely on well-
equipped facilities to collect various data from 
sensors, thus data acquisition costs much if such 
equipment is absent. In this regard, simulation is 
a simplified but useful alternative for abnormal 
CCP investigation in the multivariate industrial 
process (Zorriassatine et al., 2003). 
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To illustrate how the proposed VLPSOSVM 
works for the pattern classification in the 
diagnostic process, a bivariate industrial case 
derived from a chemistry process (Montgomery, 
2020) is provided. The case was also studied by 
Cheng et al. (2011) and Li et al. (2013). The only 
two input variables (X1 and X2) are target mean 
values of the process from a chemistry plant. 
Based on the first fifteenth process observation 
data, the reference mean vector and the reference 
covariance matrix were given as:

10
10lX  

=  
   

and
 

0.7986
0.6

   0.6973
   0.7343973

S  
=  
 

.

When training data, Monte Carlo simulation 
is used to generate sufficient data sets. In this 
bivariate example, 22 process patterns can 
be discovered with mean 1 2 10µ µ= =  and 
standard deviation 

11 0.798 0.6 8936σ = =  
and 22 0.734 0.3 8569σ = = . The four process 
patterns can be presented as (0 0) (both 1µ  and 2µ  
are in-control), (0 1) ( 1µ  is in-control while 2µ  is 
out-of-control), (1 0) ( 1µ  is out-of-control while 

2µ  is in-control), and (1 1) (both 1µ  and 2µ  are 
out-of-control). Therefore, a VLPSOSVM that has 
two variables (X1, X2) in input terminal and four 
nodes (0 0), (0 1), (1 0) and (1 1) in output terminal 
is designed. The relevant parameters selected 
following a VLPSO experiment are illustrated in 
Table 2. As a result, the optimal combinations of 
the penalty parameter and the kernel parameter 
( ),  C γ  of SVM classifier obtained are C = 1.46 
and γ  = 6.86. The whole process was realized by 
Python 3.7. 

Table 2. VLPSO parameter setting

Parameters Value

population size 300
maximum iteration 100
acceleration constant 1.5

inertia weight 0.9-0.5
 * 

threshold for selected 
feature 0.6

max iteration for 
renew exemplars 7

number of divisions 8
max iteration for 
length changing 6

Using the generation function for multivariate 
normal random data sets in MATLAB, the training 

sets are firstly generated by shifting 1µ  and 2µ  
1.0 standard deviation, i.e. λ  = 1.0, following 
three abnormal patterns as ( )1 2 22, 1.0µ µ σ+ , 
( )1 11 21.0 ,µ σ µ+  and ( )1 11 2 221.0 , 1.0µ σ µ σ+ +  
to verify the classification capability of SVM for 
an individual observation, i.e., n = 1. In addition, 
to evaluate the model efficiency for various 
shift magnitudes, λ   = 1.5, 2.0, 2.5, 3.0 is also 
considered for each fault mode. The 2T  statistic 
is also applied to detect the overall out-of-control 
signal for each sample vector with type I error α  
= 0.05. At the end, 500 examples are obtained for 
each shift size in each out-of-control state and are 
then used as the testing set for VLPSOSVM.

The following content compares the classification 
efficiency of the conventional SVM using gradient 
descent search, an optimized SVM (OSVM) (Li et 
al., 2013) using GA and the proposed VLPSOSVM 
using VLPSO for parameter optimization. The 
optimal parameter settings for OSVM obtained 
using GA are C = 1.51 and γ  = 1.08. 

Based on the same simulation experiment,  
Table 3 compares the correct classification count 
for four possible process states, (0 0), (0 1), 
(1 0) and (1 1), in the bivariate example using 
OSVM and the proposed VLPSOSVM. The shift 
magnitude represents the case when process mean 
vector shifts 1.0, 1.5, 2.0, 2.5 and 3.0 standard 
deviation(s) from the average under different 
states. The classification results of VLPSOSVM 
(the first row) and OSVM (the second row) are 
contrasted for each shift magnitude. In most cases, 
especially for large mean shifts, VLPSOSVM 
realizes a better recognition performance (shown 
as bold italics). 

Table 3. The results of classification for the bivariate 
process states using OSVM and VLPSOSVM

Shift magnitude
Correct classification count

(0 0) (0 1) (1 0) (1 1)

(0, 0) 500* 0 0 0
500 0 0 0

(1, 0) 0 478 0 32
0 480 1 19

(0, 1) 0 0 473 27
0 3 484 13

(1, 1) 0 17 18 465

0 8 10 482
(1.5, 0) 0 492 0 8

0 491 0 9
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(0, 1.5) 0 0 493 7
0 0 488 12

(1.5, 1.5) 0 16 14 470
0 5 5 490

(2, 0) 0 497 0 3
0 490 1 9

(0, 2) 0 0 491 9
0 1 488 11

(2, 2) 0 8 8 484
0 7 8 485

(2.5, 0) 0 497 0 3
0 490 0 10

(0, 2.5) 0 0 499 1
0 0 492 8

(2.5, 2.5) 0 1 1 498
0 5 4 491

(3, 0) 0 500 0 0
0 494 0 6

(0, 3) 0 0 500 0
0 0 495 5

(3, 3) 0 0 1 499
0 7 6 487

*Bold numbers denote the number of times (out of 500) the 
correct diagnosis has been observed

To better illustrate the efficiency of the proposed 
VLPSOSVM schema in recognizing the 
abnormal variable(s) from all possible process 
states, the classification accuracy rates of the 
conventional SVM, OSVM, and VLPSOSVM 
approaches trained and tested using the same 
simulation datasets are compared. The results 
are shown in Table 4. More straightforward, the 
average classification accuracy rates (correct 
classification counts out of 500) of SVM, OSVM 
and VLPSOSVM for total 16 shift patterns are 
94.23, 97.96 and 98.10, respectively. 

VLPSOSVM outperforms standard SVM 
in diagnosing variations for nearly all shift 
magnitudes (shown as bolds) except when both 
two process mean vectors shift 1.5 standard 
deviations. Compared to OSVM, VLPSOSVM 
achieves better average recognition accuracy 
in most cases (10 in 15, shown as bold italics) 
especially for moderate to large mean shifts, 
indicating the importance of appropriate 
choices of the penalty parameter C and the 
kernel parameter γ . Concretely, VLPSO can 
strengthen the pattern feature selection and 
assist the SVM based approach to diagnose 
more efficiently the out-of-control signals in 
manufacturing processes.

Table 4. Correct classification rates of SVM, OSVM and VLPSOSVM

Shift magnitude
Correct classification percentage (%)

SVM OSVM VLPSOSVM

(0, 0) 96.0 100 100
(1, 0) 93.6 96.6 95.6
(0, 1) 93.6 96.8 97.0
(1, 1) 92.4 96.4 93.0

(1.5, 0) 92.2 98.2 98.4
(0, 1.5) 94.2 97.6 98.6

(1.5, 1.5) 95.0 98.0 94.0
(2, 0) 94.8 98.0 99.4
(0, 2) 94.0 97.6 98.2
(2, 2) 93.6 97.0 96.8

(2.5, 0) 96.0 98.0 99.4
(0, 2.5) 94.4 99.4 99.8

(2.5, 2.5) 92.0 99.2 99.6
(3, 0) 96.0 98.8 100
(0, 3) 95.6 99.0 100
(3, 3) 94.4 97.4 99.8

Averaged 94.23 97.96 98.10
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In addition to individual observation monitoring 
(n = 1), the diagnostic accuracy of VLPSOSVM 
is investigated for sub-grouped sample data with 
a sample size n = 2, 3, 4, 5, assuming that all the 
relevant parameters remain the same as in the 
bivariate case mentioned above. Based on the 
results in Table 5, VLPSOSVM shows a stronger 
capability in detecting out-of-control variable(s) 
for larger sample sizes.

Moreover, the results for n = 1, 3, 5 are graphically 
illustrated in Figure 2. This figure plots the 
relationship between two target variables X1 and 
X2 in the bivariate process. Subplots (a) to (e) 
represent the mean vectors shifted λσ , where 
λ  = 1.0, 1.5, 2.0, 2.5, 3.0, with a sample size of 
1, 3 or 5, respectively. On the diagonal line of 
each subplot is the distribution map of these two 
attributes and on the non-diagonal is the correlation 
map between them, for three different abnormal 
patterns (0 1), (1 0) and (1 1). The graphical results 
show that with an increased λ  under the constant 
n, the classification boundary of three different 
out-of-control process patterns in the scatter plot 
will be clearer, the distribution clusters will be 
more obvious, and the classification accuracy rate 
will increase. In the case of the constant λ  with 
an increased n, the classification of three different 
groups can also be discovered and the accuracy 
increases sharply. When n and λ  increase to a 
certain number at the same time, process patterns 

of interest are in a completely separated state and 
the classification accuracy rate is expected to 
reach 100% in this bivariate case.

5. Conclusion and  
Future Opportunities

Multivariate control charts are one of the most 
frequently used MSPC tools for manufacturing 
process monitoring. They generate an alarm 
once the process monitored goes out-of-control 
due to abnormal shifts observed in the process 
variable (i.e. process mean or variance). Under 
this circumstance, identifying the contributor(s) 
of abnormal patterns is an important task with 
practical significance. In this paper, a novel 
VLPSOSVM based model has been proposed 
which comprises two modules. In the detection 
module, the Hotelling’s 2T  statistic is applied to 
detect an abnormality in the process mean vector. 
The group of observed process variables that 
triggers an out-of-control signal is then used as the 
input of VLPSOSVM model. The recognized shift 
patterns and the corresponding shift magnitudes 
are output in the diagnostic module. To obtain 
an optimal SVM setting based on Gaussian RBF 
kernel, VLPSO has been adopted to optimize the 
penalty parameter C and the kernel parameter γ .  
Based on a simulation experiment from a 
bivariate industrial example, it can be concluded 

Table 5. Correct classification rates of VLPSOSVM for different sample sizes

Shift magnitude n = 1 n = 2 n = 3 n = 4 n = 5

(0, 0) 100 100 100 100 100
(1, 0) 95.6 98.6 99.4 99.2 99.6
(0, 1) 97.0 94.2 97.2 97.6 100
(1, 1) 93.0 88.5 96.4 98.0 99.2

(1.5, 0) 98.4 99.0 100 100 100
(0, 1.5) 98.6 99.2 100 100 100

(1.5, 1.5) 94.0 97 99.4 100 100
(2, 0) 99.4 100 100 100 100
(0, 2) 98.2 99.8 100 100 100
(2, 2) 96.8 99.6 100 100 100

(2.5, 0) 99.4 99.4 100 100 100
(0, 2.5) 99.8 99.8 100 100 100

(2.5, 2.5) 99.6 99.6 100 100 100
(3, 0) 100 100 100 100 100
(0, 3) 100 100 100 100 100
(3, 3) 99.8 99.8 100 100 100

Averaged 98.10 98.40 99.49 99.67 99.92
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that VLPSOSVM achieves better average 
classification accuracy with great generalization 
ability compared to other SVM models using 
gradient descent search and GA for parameter 
optimization. The comparison indicates that 
VLPSOSVM provides a competitive alternative 
to the existing MSPC approach. 

Some contributions are made in this paper, 
however, there still exist several limitations. 
In the proposed VLPSOSVM approach, the 
focus is on the VLPSO representation and the 
length changing mechanism. An attempt can be 
made by combining local search with VLPSO 

pbest to further enhance VLPSO performance. 
In terms of the simulation experiment, only 
a bivariate industrial example was used to 
evaluate the effectiveness of VLPSOSVM. 
Therefore, a multivariate case can be considered 
in the future to improve its robustness for high-
dimensional classification tasks. In addition to 
grid search and GA for parameter optimization, a 
comparison analysis can be implemented between 
VLPSOSVM and SVM based on other variants 
of PSO algorithm (e.g., SMDPSO (Wang et al., 
2019)), regarding both classification accuracy and 
computation time. 

 
Figure 2. The relationship plots between two target variables in the bivariate process
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