Digraph-Theoretic Approach for Deadlock

Detection and Recovery in Flexible Production Systems

Maria Pia Fanti, Guido Maione, Biagio Turchiano
Dipartimento di Elettrotecnica ed Elettronica
Politecnico di Bari

Via Re David, 200

70125 Bari

iTALY

Abstract: In flexible manufacturing systems a deadlock arises
when jobs in a set are indefinitely prevented from accessing
resources because these are taken by other jobs in the same set.
This condition is highly unfavourable because it stops the
normal flow of parts and can propagate to the entire system. To
face this problem, recent literature proposes prevention,
avoidance and detection/recovery techniques. This paper
introduces a detection/recovery approach based on a simple
digraph that characterizes deadlock by describing the current
interactions between pieces and resources. The method
requires a low computation burden in the detection phase and
makes use of a dedicated buffer to activate the recovery phase.
Finally, a case study shows the simplicity and effectiveness of
the proposed approach.

Keywords: Deadlock, Manufacturing Automation, Flexible
Manufacturing Systems

" .aria Pia Fanti was bormn at Siena, Italy, in 1957 She
received the degree in Electronic Engineering from the
University of Pisa, Italy in 1983. She is currently Assistant
Researcher at the Department of Electrical and Electronic
Engineering, the Polytechnic of Bari, Italy. Her research
focuses on structural properties of linear systems and on FMS
control and modeiling

Guido Maione was born in Naples, on August 10, 1967. He
received the degree in Electronic Engineering with honours
from the Polytechnic of Bari in 1992, He is currently a Ph.D
student at the Department of Electrical and Electronic
Engineering, the Polytechnic of Bari. His research interests are
in the areas of FMS control and modelling, object-oriented
control of FMS

Biagio Turchiano was born at Bitetto, Bani, Italy, on July 25,
1953. He received the degree in Electrical Engineering with
honours from the University of Bari in 1979. He joined the
Department of Electrical and Electronic Engineering,
Polytechnic of Bari in 1984 as Assistant Researcher. He is
currently Associate Professor of Automatic Control His
research and teaching interests are in the areas of production
automation, systems and control theory, modelling and control
of discrete event systems.

1. Introduction

Flexible Manufacturing Systems (FMSs) consist of
a set of resources (workcentres, measure and
inspection centres, buffers, transport devices, etc.)
which the pieces (jobs, items) request service
from. In these systems competition of jobs for a
limited number of rescurces can lead to deadlock
situations (circular waits). These occur when jobs
from a set that holds resources are blocked
indefinitely from access to the resources held by
other jobs within the same set. Deadlock is

dangerous because it stops production and can

propagate to the entire system.

The problem has been extensively studied in
compuier science for multitasking environments
[2]. Only recentiy have some authors focused on
the deadlock in FMSs. Namely there are many
peculiarities in deadlock analysis of manufacturing
systems, e.g. processing times of pieces are
considerably longer than computation times.
Moreover the sequence in which each job requests
the resources is exactly known in FMSs, so that
one can profitably use this information in
deadlock-solving algorithms. Hence, due to these
peculiarities, it is necessary to develop special
techniques for dealing with deadlocks in FMSs.

As in the computer science context, the
methodologies to face deadlock in FMSs can be
classified in three categories: prevention,
avoidance and detection/recovery. The first two
classes rule the flow of jobs so as to prevent the
system from reaching deadlock conditions [1, 4-7,
9, 13, 15]. In particular, the former utilizes static
policies, the latter uses information on the current
state of the FMS to limit the freedom in resource
allocation. The detection/recovery approaches do
not limit in any way the freedom in allocation of
resources to jobs [10, 14, 15]. Namely, they only
identify current deadlock situations (detection
phase) and, if any, start special policies of resource
management to break the condition of circular wait
and restore normal operating conditions (recovery
phase).

Existing techniques of prevention and avoidance
impose constraints on resource allocation that can
determine reduced utilization of the resources and
poor performance of the production system.
Generally speaking, even if they involve higher
on-line computational burden, the constraints for
deadlock avoidance techniques are less restrictive
than prevention methods. On the contrary
detection/recovery approaches do not constrain the
resources during the normal system operation.
However they involve additional costs due to both
the hardware necessary to activate the recovery
policy and the system performance reduction
throughout the recovery phase. Consequently the
choice of the more favourable method to face

Studies in Informatics and Control, Vol. 5, No. 4, December 1996 373

deadlock depends on the peculiarities and on the
lay-out of the production system under
consideration.

This paper analyzes the deadlock in FMSs by
using a simple model of the interactions betwsen
jobs and non-unitary capacity resources, i.e.
resources with multiple items of the same type.
The underlying idea is the definition of a digraph
named Transition Digraph that describes the
process of resource acquiring and releasing,
modelled as a Discrete Event Dynamical System
(DEDS). In particular, the Transition Digraph
captures the main information of the DEDS state
and changes with time as state evolves. The paper
shows that there is an equivalence between
deadlock and a figure in the transition digraph,
named Maximal-weight Zero-outdegree Strong
Component (MZSC). This formal characterization
of the deadlock allows us to show the effectiveness
of a detection procedure idéntifying the MZSCs by
a depth-first search on the Transition Digraph. On
the basis of this method and of a recovery
mechanism using a reserved central buffer of unit-
capacity, we develop an effective detection
/recovery policy.

The paper is organized in six Sections. Section 2
describes the peculiarities of the DEDS modelling
the production system and defines the Transition
Digraph. Moreover it indicates the laws ruling the
Transition Digraph modifications according to the
state changes and triggered by events involving
acquisition or release of resources. Section 3
proves the equivalence between deadlock and
MZSC in the Transition Digraph, while Section 4
ilfustrates the detection/recovery policy. Finally,
Section 5 shows the application of such a policy to
a case study and Section 6 draws the conclusions.

2. The Model

This section describes the peculiarities of the
DEDS modelling the production system and
defines the Transition Digraph.

2.1 The Discrete Event Dynamical
System

Let us first look at some background notations that
characterize the model of a production system .
The symbol R={r;, i=1, 2,..., R} indicates the set
of resources, where the first R-1 elements
represent multiple slot buffers, machines with
identical servers, AGV systems provided with one
or several trucks, etc. while rg is an additional

fictitious resource the jobs acquire as they leave
the system. An integer C(r;) indicates the capacity

of the resource 1y, i.e. the maximum number of
jobs that can contemporaneously hold ;. Thus
C(r;) 1s finite for each resource, but for iy that can

reccive jobs without limits. Now if J is the set of
jobs to produce, each element from J requires a
sequence of resources, named Working Procedure.
Thus the set W={w} coliects the Working
Procedures necessary for processing all the jobs
from ... Obviously the terminal resource of each
we b is a fictitious one. With these preliminary
notions as background, we refer to a DEDS model
to describe the process thereby jobs acquire or
release resources [3]. The state of the DEDS
model g contains information on the operating
conditions of S, such as the set Jq of jobs in

process, the resources currently held by each job
from Jq, the Working Procedures associated with
such jobs, and, finally, the Residual Working
Procedures, i.e. the resources necessary for each
jeJq to complete its processing. The set of all the

DEDS states is denoted by Q.

Now, with reference to the current state q, we
introduce some additional notations. In particular
HR(j) denotes the resource currently held by jeJ,,
SR(j) identifies the second resource of the
Residual Working Procedure of such a job and
WP(j) indicates its complete Working Procedure.
Note that SR(j) is defined in all the cases. Namely,
any Residual Working Procedure contains rp and,
by assumption, a job leaving the system accedes to
rp. but, at the same time, it is removed from the set

Jq. Finally we say that a resource r; is empty (idle
or busy) in the state q, if n;=0 (0<n;<C(r;) or
n;=C(r;) respectively) where n; denotes the number
of jobs holding such a resource.

Obviously, the DEDS must encompass events
involving resource acquiring or releasing. We
consider two event types:

a) a new job enters the system (I-type event).
This event is identified by a pair (j,w), where
jed is the job entering S and wel is the
Working Procedure the job has to follow;

b) a job progresses from a resource to another
one, or it leaves the system (2-type event).
This event is specified by a job jeJq
progressing from HR(j) to SR(j), where q is
the current state of S.

2.2 The Transition Digraph

Deadleck detection requires the description of the
current interactions between jobs and resources, in
each state q of the DEDS. To this aim, we
introduce a digraph, named Transition Digraph

374 Studies in Informatics and Control, Vol. 5, No. 4, December 1996

and denoted by D1(q)=[N, E7(q)]. The vertex set
represents the system resource set. So, for the sake
of simplicity, the same symbol indicates the
elements of the node set N and the system
resources, i.e. N=R. Moreover, the edge set
changes as q is updated: an edge e;, is in Ep{(q) if
and only if (iff for brevity) a job jeJq holds r; in
the state q and requires r, as next resource.
Therefore the Transition Digraph indicates both
the resources currently held by jobs from Jq and

the resources required by the same jobs in the next
step of their Working Procedures.

We note that a single edge ejmeETH{q) may
represent more jobs detaining rj and requesting ry.
To take into account this situation, we associate
the following weight with each edge e ET((q):

ag(eim) = Card{jeJq: HR(j)=r; and SR(j)=rmp}

(O
where Card(.) stands for "cardinality of ...". In this
way, aq(ejm) yields the number of jobs which hold
rj and request ry, as next resource.

Now, according to Harary er al [8], we define
Outdegree Value of a node r; as the sum of weights

of edges outgoing from r; in D(q), i.e.

R
OVa(r) = D ag(e,) @
m=l

where we consider ag(ejm)=0 if ejmeETq).
Hence, the Outdegree Value of a vertex indicates
the number of jobs currently using the
corresponding resource in the state q. In particular,
if OVq(rj)=0 then r; is empty; if 0<OVq(r;)<C(rj)
then 1j is idle; finally, if OVqg(rj)=C(rj) then rj is
busy. Obviously, a job jeJg requiring rp as next
resource, is blocked iff OVq(rm)=C(rpy). On the
contrary, if OVgq(rm)<C(ry) then job j is
unblocked. We indicate by Jq /g the set of jobs
unblocked in the state q.

Before continuing, let us show how to update the
Transition Digraph at each event occurrence.
Suppose S be in the state q and consider a
Working Procedure we I. In such a condition for
a job jeJ to enter S and to receive service
according to w, the first resource in w must
necessarily be idle or empty. On the occurrence of
this 1-type event, S makes transition from q to a
new state q'. The new Transition Digraph D.(q")

is obtained as follows: if ry, and rj, are respectively
the first and the second resource in w, then

ETr(q)u{emp} yields the edge set E1(q"). Clearly
it holds: OVq,(rm)=OVq(rm)+ 1

Analogously, let jeJq’u, r;=HR(j) and r,=SR(j).
By definition of the set Jq’u, I'yy, is idle or empty in
the state q, so that the transition leading j from t;
to ry, can occur. This 2-type event updates the

state from g to q'. In particular, the edge set
Er{q) of Dp(q') and the corresponding edge

weights result from the following operations on
ETr(q):

i) put aq.(eim)=aq(eim)—1 and, if aq(eim)=1,
remove €;,, from E1.(q);

i) provided that SR(j)#rg, put
aqv(emp)=aq(emp)+1, where p is the third
resource in the Residual Working Procedure
of job j, and, if aq(emp)=0, put ET(q") =
Er@)Hemp}-

In this way, r; becomes empty if OVq(ri)=1 or idle
if OVq(ri)>l, while r,, becomes busy if
OVq(rm) = C(rpy)-1 or idle if OV g(rpy) < Clrpy)-1.

Of course all the remaining nodes keep unchanged
their Outdegree value and the busy/idle/empty
condition they had in D1{(q).

3. Detecting Deadlock By the
Transition Digraph

This Section proves a result that allows deadlock
detection on the basis of some particilar strong
components of the Transition Digraph. For the
definition of strong component, walk and other
standard figures of digraphs, we refer to [8].

Now, let us begin with some preliminary ideas. As
mentioned before, q is a deadlock state if each
member of a job set waits indefinitely for other
jobs in the same set to release resources. The
following definition expresses this condition more
formally.

Definition 1: qe(Q is a deadlock state for S if there
exist a non-empty job subset JpSy and a
non-empty resource subset RpcCR, satisfying the
following properties:

Dla) Jp is the maximal subset of Jq such that
HR(JD)ﬁRD;

D1b) SR(Jp)=Rp;

Dlc) any resource in SR(Jp) is busy.

Studies in Informatics and Control, Vol. 5, No. 4, December 1996 375

Previous definition has a quite transparent
meaning. Namely, by Dlc) each job from the set
Jp is blocked and, by Dla) and D1b), it requires a
resource held by other jobs in Jp. Deadlock
conditions are related to some particular strong
components of the digraph Dy(q) characterized
by the following definition.

Definition 2: Let o=(Ng, Eg) be a strong
component of D1H{q). We call o a "Maximai-

weight Zero-outdegree Strong Component” of
Dr{q) (MZSC for brevity) if it enjoys the

following properties:

D2a) Maximal-weight: all the resources from
Ng are busy, i.e. OV q(Ng)=C(Ng);

D2b) Zero-outdegree. all the edges of Dri(q)
outgoing from vertices of Ng belong to Eg, i.e. the
elements from Ng are the only vertices of D1(q)
reachable from vertices in Ng.

In the above statement, symbols OVg(Ng) and
C(Ng) indicate the sum of OVq(rj) and C(rj) over
all the vertices from the set Ng, and constitute the

Overlap Degree and the Capacity of o,
respectively. The following result gives a
necessary and sufficient condition for the
occurrence of a deadlock state in a system with
multiple capacity resources.

Proposition 1 q is a deadlock state for § iff there
exists at least one MZSC in Dp(q).

Proof

Comparing conditions Dla), D1b) and Dic) for
the deadlock occurrence (sec Section 2) with the
properties of an MZSC gives the key to prove this
proposition.

If part

Let o=(Ng, Eg) be an MZSC of D1{(q) and let Jp
indicate the maximal subset of Jq such that
HR(Jp)=Ng. The set Jp certainly exists since, by
D2a), all the resources from Ng are busy. On the
other hand, by D2b) all the edges outgoing from
vertices of Vg terminate in nodes still belonging to
Ng. This implies: SR{Jp)cNg. Hence putting
Rp=Ng verifies conditions Dla), D1b) and Dlc).

Only if part
The proof is in three steps.

Step 1 By condition Dla) at least one edge of
Dt,(q) starts from each node of Rp. Moreover, by

D1b) all the edges originating from vertices of Rp
still terminate in Rp. Consequently there exists a
walk [8] of infinite length starting from each

vertex in Rp and touching nodes from Rp only.
Since the cardinality of Rp is finite, D1{q) must

contain ai least one non-trivial strong component
with all its vertices in Rp. Moreover each node

from Ry is the starting point of a walk reaching
one of these strong components. Obviously such
components are disjoint and two vertices from two
different components can never be mutually
reachable. Hence, at least one of them, say o=(Ng,
E). cennot reach any one of the remaining strong
components having vertices in Rp.

Step 2 We now prove that all the edges of Dr(q)
outgoing from Ng belong to Es. The proof is by
contradiction. Suppose there exists a vertex
rm&Ng, reachable from some node in Ng. By step
1, rmeRp and there exists a strong component of
Dr1d{q) having vertices in Rp and which is
reachable from rpy,. Let o* be such a component. If
o*=c then ry, and vertices from Ny are mutually
reachable. But this conclusion leads to the
contradiction: ry, € Ng. On the other hand, if o*#c,

the fact that vertices from o* are reachable from
nodes of o contradicts the definition of ¢ given at
Step 1. To sum up, this step proves D2b) for .

Step 3 By condition Dla), if for any job jeJq it
holds HR(j)eNg, then jeJp. Moreover, since each
vertex from Ng is adjacent from another vertex of
Ng, we get: NgcSR(Jp). Hence condition Dlc)
implies that each vertex from Ng is busy . This
proves D2a).

Example 1

To illustrate Proposition 1 and clarify the
notations, we consider a system with R=4,
producing a job mix J according to the following
Working Procedures:

wy =(r3, 1],13,12,7T4)

wy = (13, 12,13, 14)

Let the capacities of the resources, but the
fictitious one, be C(r;)=2 for i=1,....3. Moreover
let the system be in a state g, with: Jq={ji: i=1;
2,..., 6}; HR(jj) = HR(j2) = r3, SR(j;) = r7 and
SR(j2) = ri; HR(G3) = HR(j4) = r1 and SR(j3) =
SR(jg) = r3; HR(j5) = HR(j¢) = r2 and SR(js5) =
SR(je) = r3.

376 Studies in Informatics and Control, Vol. 5. No. 4, December 1996

(a) (b)
Figure 1. (a): D(q) exhibits a deadlock condition; (b): Dr(q') contains no MZSC

DETECTION STARTS

Is the list
L empty?

DETECTION/RECOVERY ENDS

« Pick up the first entry, job j, from list L
* Drop this jobj from L

No

- Is j blocked?

Perform a DFS for a MZSC on the transition digraph:
the initial vertex for the search is HR(j)

Does a MZSC
containing
HR(j) exist?

No

There is a MZSC with HR(j) in the transition digraph:
END GF DETECTION PROCEDURE

Figure 2. Detection Procedure Flow-chart

Studies in Informatics and Control. Vol. 5. No 4. December 1996

Figure la shows the Transition Digraph Dtr{(q)
where edges are labelled by the corresponding
weights and dark nodes indicate busy resources.
The strong component c=({r3, ry, ra}, {e3p, €13,
€39, €23}) is @ MZSC in the deadlock state q. It is
easy to verify that all the jobs in Jg are
permanently blocked, i.e. q is a deadlock state. On
the contrary, for the state q' equal to g but for
SR(j{)=r4, no MZSC exists in D1((q") (see Figure
1b). State q', indeed, is not a deadlock state
because no job from Jq is indefinitely blocked on

the resource it currently holds.

Proposition 1 suggests an easy, real-time deadlock
detection procedure. To apply it, the controller has
to keep memory of the Transition Digraph and to
update it according to the rules described at the
end of the previous Section. In particular, after
each '1-type or 2-type event occurrence, the
controller must check 'if the Transition Digraph
contains any MZSC. If this is the case, the
controller determines the sets of parts and of
resources involved in the deadlock. Then it
triggers the recovery procedure that moves a
deadlocked job into a special storage buffer B of
unit-capacity. This action breaks the circular wait
condition and, if combined with a proper policy
for resource allocation, resolves the deadlock. The
following Section describes these concepts in
detail.

4. Detection/Recovery Algorithm

As mentioned in the previous section, the
algorithm is in two phases called Detection
Procedure and Recovery Procedure, respectively.

4.1 Detection Procedure

When a job requires a busy resource, its identifier
is added to a list (L) containing all the blocked
jobs. Then, if the Detection/Recovery algorithm is
still in execution no more actions are required at
the moment. On the other hand, if the algorithm is
not in execution, the Detection Procedure gets
started following the steps below (see Figure 2).

1) If L is empty, the Detection/Recovery
algorithm comes to an end. On the contrary, if
L is not empty, then its first entry (say j) is
considered and dropped from the list.

2) If j is no longer a blocked job, step 1) is
executed again. On the other hand, if j is still
blocked, a Depth-First Search (DFS for
brevity) on D,(q) begins to check if a MZSC

containing the vertex HR(j) exists.

3) If no MZSC containing HR(j) exists, the
procedure executes step 1) again. On the
contrary, if the DFS finds such a component
o, detection ends while the Recovery
Procedure starts.

Obviously, the DFS is the core of the detection
procedure. In particular, to determine the MZSC
we use the algorithm proposed in [12] that finds
strongly connected components. Such an algorithm
is suitably adapted to our specific problem as
described in the schema of Figure 3. Indeed it
searches for a strong component of D (q) that

must: (a) have zero outdegree, (b) contain vertex
HR(j), (c) contain only busy vertices.

It is well- known that in each digraph there is
always a strong component (eventually trivial)
with zero outdegree. Moreover it can be easily
verified that the first strong component determined
by the algorithm proposed in [12] has zero
outdegree. So, choosing HR(j) as starting vertex
for the DFS, the first strong component the
algorithm finds (say o) is just the zero-outdegree
strong component containing HR(j), if it exists. In
this case, HR(j) coincides with the root of ¢ [12].
So, when the DFS determines the first strong
component, the algorithm checks if HR(j) is its
root: if this is the case, conditions (a) and (b) are
enjoyed. Moreover, condition (c) is checked for
each new vertex considered by the DFS.

We remark that the proposed depth-first search
algorithm is performed in O(e) time, where e is the
number of edges in the Transition Digraph.

Figure 4 depicts a DFS example: a job holding 2
requests the busy resource r3, so that rp is the
initial vertex for the DFS (see Figure 4(a)). The
steps of the procedure are indicated by the vertices
and the edges examined in the search, up to the
MZSC identification (see Figure 4(i)). We suppose
that all the five resources are busy. All rree edges
{(continuous lines), back edges (dashed lines) and
Jorward edges (short dashed lines) [12] are
labelied by their weights. Figure 4 also shows the
DFS numbers (bold numbers) and the lowlink
numbers (bold numbers in parentheses) [12]. In
the final step the MZSC itself is indicated.

4.2 Recovery Procedure

Once the detection finds an MZSC, the Recovery
Procedure starts according to the following steps
(see Figure 5).

378 Studies in Informatics and Control, Vol. 5, No. 4, December 1996

§ & empty stack

i &« 0
for x € Vdonum(x) < 0
r & HR()

[r is the initial vertex for the Depth-First Search]
STRONG(r)

procedure STRONG(v)
s — [There is no MZSC]
nEempy o " | Stop the algorithm
else
P e—i+1

num(v) « i
lowlink (v) « i
S&v
forw € Adj(v) do
[(v,w) is a tree edge]
if num(v) = 0 then < STRONG (W)

else if num(w) < num(v) then <

N

its root is v]

if v = rthen
if lowlink (v) = num (v) then <

L

else

Stop the

return

lowlink (v) « min{lowlink (v),lowlink (w)}

([(v,w) is a back edge or a cross edge]

[w is in the same strong component as v,

since w € Adj (v) and since w on § implies

if w ison S then

that there is a path from wto v]

lowlink (v) « min{lowlink (v),num(w)}

[There is a strong component:

[~ is the root of the strong component

and this component is a MZSC]

while x, the top vertex on §, satisfies:

Add x to the MZSC

num{(x) 2 num(v) do
Delete x from §

[#is not the root of the strong component,

so there is no MZSC containing r]

algorithm

Figure 3. DFS Algorithm

Studies in Informatics and Control, Vol. 5, No. 4, December 1996

2)

380

M

44

Figure 4. A DFS Example

Identify a cycle yn=(Np, Eqn) in the MZSC o,
containing edge ej,, where r;=HR(j) and
'm=SR(). A DFS inside the MZSC performs
this identification, by choosing e;y, as first
edge. A DFS algorithm generating all the
cycles of a digraph, performs this operation in
time O[(e+v)(c+1)], where v is the number of
nodes in the digraph and ¢ is the number of
generated cycles [12]. However, the algorithm
has to determine one cycle only, by using r; as
first vertex and e;,, as first edge in the search.
So, it is executed in time O(e+v).

Move job j to the buffer B. In this way the
system state becomes q', with: OVg'(rj) =

3)

C(rj) - 1 and aq'(eim)

= aq(ejm) - 1.
Obviously DT,(q") does not contain o as an

MZSC so that a transition of any job to rj

becomes feasible.

Impose a restriction on resource allocation
preventing any arrival of additional jobs to
resources in Np. This policy must inhibit both

new jobs from entering the system to reach
resources in Np and all job transitions

corresponding to edges ekp: with r €Ny and
rpE€Nn. Obviously, in this way jobs holding
resources from Ny and requiring resources in

the same set can go one step ahead in their
Residual Working Procedures.

Studies in Informatics and Control. Vol. 5. No. 4, December 1996

Identify a cycle v, inside the MZSC by a DFS
beginning with edge from HR(j) to SR(j)

[Move job) to the central buffer 3 |

While jobs in the cycle advance one step and until SR(j) is busy:
prevent jobs from entering in the cycle v,

Move job j from the central buffer B to SR(j) |

DETECTION PROCEDURE

Figure 5. The Deadlock Recovery Procedure Flow-chart

4) When the system reaches a state q* such that
OVq*(ry) = Clry) - 1, job j is transferred

from B to ry, and the restriction policy is

removed. So, the Recovery ends and the
Detection Procedure re-starts.

WS1

WS2

5. A Case-Study

This section applies the deadlock
detection/recovery technique described above to
the flexible manufacturing cell shown in Figure 6.

WS3

OJOMOIOMOIO,

Figure 6. System in the Case-Study

Note that at the end of the recovery there may still
be a MZSC in the resulting Transition Digraph. In
this case a new execution of the
Detection/Recovery algorithm is necessary. This
allows some jobs involved in the deadlock to
proceed one step more ahead in their Residual
Working Procedure, so that no piece can remain
indefinitely blocked.

The system consists of a load/unload station (L/U
for brevity), three workstations (WSs) and an
AGV system with two trucks. Each WS is
composed of two identical machines (M) and has
an input buffer (IB) and an output buffer (OB),
both of unit-capacity. The load/unload station can
take no more than five pieces. Thus Table I lists
R=12 distinct resources, including the fictitious
one.

Studies in Informatics and Control, Vol. 5, No. 4, December 1996 381

Table I. Resources and Their Capacities

resources capacities

I load/unload station C(r))=5
I input buffer of WS1 C(ry)=1
r; input buffer of WS2 C(r3)=1
Is input buffer of WS3 C(ry)=1
Is machines of WSI1 C(rs)=2
Is machines of WS2 C(re)=2
T machines of WS3 C(ry)=2
Is output buffer of WS1 C(rg)=1
I'y output buffer of WS2 C(rg)=1
Tio output buffer of WS3 C(r)=1
I AGYV system C(ry)=2
2 fictitious resource 0

There are two job types to produce: the former
requires a machine of WS1 and, successively, a
machine of WS2; the latter receives service from a
machine of WS1 and then from a machine of WS3.
The AGV units transfer pieces from the L/U to the
[Bs and from the OBs to either the IBs or the L/U.
Moreover a third AGV truck, denoted by B-AGV,
plays the role of the reserved buffer B necessary to
carry out the recovery procedure. Going into detail
we get:

Wy = (1, 1, IS, 8, g, 13, g, T, Ty g, T 1) 2)

Wy = (I, 11, 12, T5, T8, Ty 15 T4, T2, T10, T T T12)

We implement the described detection/recovery
procedure by a SIMAN discrete-event simulation
model [11] assuming the system throughput as
performance index. The following conditions rule
the simulation. Job types enter the system
according to a randomly generated sequence, with
equal probability for each type. Since each
simulation is performed with a constant number N
of jobs in process, a new piece is loaded as soon as
a completed job leaves the system. Service times
for machines and AGV are generated by a gamma
distribution with mean m (reported in Table II) and
standard deviation s=40% of m (case A) or s=80%
of m (case B). Finally, the law "First In First Out"
rules the priority setting.

Table II. Mean of Service Times

resources means
I 10
I's 40
Ts 30
Iy 30
i 10

Table IlI shows the throughputs (jobs per time
unit) resulting from each simulation of 1000
completed parts, for different values of number N.
The second column of Table II reports the number
of times (R) the recovery procedure is triggered in
each simulation.

Table III. Simulation Results

Case A Case B
N R Throughput R Throughput
3 0 .0245 0 .0244
4 0 0319 0 .0308
5 0 .0383 0 .0368
6 q .0434 24 0404
7 36 .0459 63 0436
8 86 .0470 149 0433
9 213 0462 195 .0440
10 | 317 0455 290 .0416
11 439 .0448 400 .0412
12 | 551 .0443 570 .0403
13 749 .0430 770 .0400
14 1017 0447 1037 .0386
15 | 1389 0440 1371 .0397
16 § 1729 .0446 1678 .0398

The results show that for N=3, 4, 5 the recovery
policy is not invoked because no deadlock occurs
(R=0). The throughput reaches the highest values
in Case A for N=8 and in Case B for N=9 (shown
in bold by Table III). For N>8 in Case A and N>9
in Case B, throughput decreases because of
congestion conditions due to the high work in
process. The results of Table III confirm that the
deadlock/recovery technique allows us to increase
the number of pieces in the system and to obtain
better performance indices.

382 Studies in informatics and Control, Vol. 5, No. 4, December 1996

6. Concluding Remarks

The detection/recovery method proposed in
Section 4 appears to be simple and effective. In
particular, the detection phase requires low
computational burden because the method
developing the idea of MZSC and using an DFS-
like algorithm involves linear complexity.

The recovery phase is also very simple and it only
requires a dedicated unit-capacity buffer.

These characteristics make the proposed approach
easy to apply at low costs. On the other hand, as
shown by the case- study, the technique allows us
to increase the system utilization, thus improving
its performance indices and avoiding the
unfavourable effects of deadlock at the same time.

Acknowledgment

This work was supported by Italian National
Council for Researches under the contract CT
96-00056.

REFERENCES

1. BANASZAK, ZA. and KROGH BH,
Deadlock Avoidance in Flexible
Manufacturing Systems with Concurrently
Competing Process Flows, IEEE TRANS,
ROBOTICS AND AUTOMATION, Vol. 6,
No. 6, December 1990, pp. 724-734.

2. COFFMAN, E.G., ELPHICK, M.J. and
SHOSHANI, A. System Deadlocks,
COMPUTING SURVEYS, Vol. 3, No. 2,
June 1971, pp. 67-78.

3. FANTI, M.P., MAIONE, B., PISCITELLI, G.
and TURCHIANO, B., System Approach To
Design Generic Software for Real-time
Control of Flexible Manufacturing System,
IEEE TRANS. SYSTEMS, MAN AND
CYBERNETICS - PART A: SYSTEMS AND
HUMANS, Vol. 26, No. 2, March 1996, pp.
190-202.

4. FANTI, M.P., MAIONE, B., MASCOLO, S.
and TURCHIANO, B., Event-Based
Feedback Control for Deadlock Avoidance
in Flexible Production Systems, to be
published in IEEE TRANS. ROBOTICS
AND AUTOMATION.

5. FANTI, M.P., MAIONE, B., MASCOLO, S.
and TURCHIANO, B., Low-cost Deadlock
Avoidance Policies for Flexible Production
Systems, Proc. of the IASTED Int. Conf.
Applied Modelling and Simulation, Lugano,
Switzerland, June 1994, pp. 219-223, to

Studies in Informatics and Control, Vol. 5, No. 4, December 1996

10.

1.

12.

1

15.

appear in INT. J. MODELLING AND

SIMULATION.

FANTI, M.P., MAIONE, B., MASCOLO, S.
and TURCHIANO, B., Performance of
Deadlock Avoidance Algorithms in Flexible
Manufacturing Systems, JOURNAL OF
MANUFACTURING SYSTEMS, Vol. 15,
No. 3, 1996, pp. 164-178.

FANTI, MP, MAIONE, B. and
TURCHIANO, B., Deadlock Avoidance in
Flexible Production Systems with Multiple
Capacity Resources, Report N. 28/95/§,
Dipartimento di Elettrotecnica ed Elettronica,
Politecnico di Bari, 1995, pp. 1-22.

HARARY, F., NORMAN, RZ. and
CARTWRIGHT D., Structural Models: An
Introduction To the Theory of Directed
Graphs, J. WILEY & SONS, INC. New
York, 1965.

HSIEH, F. and CHANG, S., Dispatching-
Driven Deadlock Avoidance Controller
Synthesis for Flexible Manufacturing
System, [EEE TRANS. ROBOTICS AND
AUTOMATION, Vol. 10, No. 2, April 1994,
pp- 196-209.

LEUNG, Y.T. and SHEEN, G.J., Resolving
Deadlocks in Flexible Manufacturing Cells,
JOURNAL OF MANUFACTURING
SYSTEMS, Vol. 12, No. 4, 1994, pp. 291-
304.

PEDGEN, C.D., Introduction to SIMAN,
System Modelling Corporation, State College,
PA, USA, 1993.

REINGOLD, E.M., NIEVERGELT, J. and
DEO, N., Combinatorial Algorithms,
PRENTICE HALL, Englewood Cliffs, NJ,
USA, 1977.

VISWANADHAM, N., NARAHARI, Y. and
JOHNSON, T.L., Deadlock Prevention and
Deadlock Avoidance in Flexible
Manufacturing Systems Using Petri Net
Models, IEEE TRANS. ROBOTICS AND
AUTOMATION, Vol. 6, No. 6, December
1990, pp. 713-723.

. WYSK, R.A.,, YANG, N.S. and JOSHI, S.,

Detection of Deadlocks in Flexible
Manufacturing Cells, IEEE TRANS.
ROBOTICS AND AUTOMATION, Vol. 7,
No. 6, December 1991, pp. 853-859.

WYSK, R.A., YANG, N.S. and JOSHI, S,
Resolution of Deadlocks in Flexible
Manufacturing Systems: Avoidance and
Recovery Approaches,” JOURNAL OF
MANUFACTURING SYSTEMS, Vol 13,
No. 2, 1994, pp. 128-138.

383

