Example Generation and Processing in

Robot Programming By Demonstration

Luis Seabra Lopes and Luis Manuel Camarinha-Matos

Departamento de Engenharia Electrotécnica
Universidade Nova de Lisboa

Quinta da Torre

2825 Monte da Caparica

PORTUGAL

Abstract: An architecture for supervision and programming
by demonstration in robotised assembly is presented. This
architecture provides, at different levels of abstraction,
functions for dispatching actions, monitoring their execution,
and diagnosing and recovering from failures Through the
use of machine learning techniques, the supervision
architecture is given capabilites for improving its
performance over time Emphasis in this paper is on
generating accurate classification knowledge for diagnosis.
Feature construction, example interpolation and hierarchical
classification are the investigated alternatives for improving
accuracy. The SKIL hierarchical inductive learning algorithm
is briefly presented.

Keywords: Robotised Assembly, Failure Diagnosis,
Programming by Demonstration, Feature Construction,
Example Interpolation, Multi-Level [nduction

1. Introduction

The ability to produce highly customized
products, in order to satisfy market niches, is a
competitive advantage that companies are trying
to take, in today's globalized economy. This
requires the intreduction of new features in
automation systems — flexibility, adaptability,
versatility — relaxing cell structuring constraints
and leading to the concept of Flexible
Manufacturing Systems (FMS).

To accommodate the wide range of product-
processing techniques in an FMS more versatile
machines must be considered [1,18]: easily
integratable CNC  machines, multi-operation
devices, robots with multiple tools / end-
effectors, modular fixtures and feeders. A rich
sensorial environment and advanced
communication infrastructures (and related
protocols: MAP/MMS, fieldbus, ...) are other
important hardware requirements to build up an
FMS.

The efficiency and economical success of
flexible manufacturing systems depend, however,
on the capacity to handle unforeseeable events,
which occur in a great number, due to the
reduction in system structuring constraints. The
complexity of flexible manufacturing processes
makes this task difficult to perform by humans.
Therefore, in manufacturing systems, flexibility
and autonomy are tightly related concepts. The
introduction of "intelligent" functionalities, at
programming level, is vital to achieving

flexibility and autonomy: interactive
programming / planning; sensorial perception
and status identification; on-line decision-
making capabilities, to cope with the non-
deterministic behaviour of less structured cells;
information integration, etc.

With these concerns in mind, an architecture for
evolutive supervision of robotised assembly
tasks, that includes, at different levels of
abstraction, functions for dispatching actions, for
monitoring their execution, and diagnosing and
recovering from failures, has been proposed [1].
In this architecture, particular attention was given
to the acquisition of knowledge about the tasks
and the environment to support monitoring, to
diagnosis and error recovery. Modeling
execution failures through taxonomies and causal
networks plays a central role in diagnosis and
recovery.

A generic training methodology was devised
[18], in which a human tutor could provide the
system with a priori knowledge, with examples of
desired behaviour and examples of concepts to
be learned (programming by demonstration).
Training is considered both at initial system
programming and when unpredicted situations
turn up. Based on the demonstrated examples and
using machine learning techniques, the system
will incrementally build the needed models. An
overview of the approach is included below.

This paper concentrates on learning of diagnosis
knowledge, with emphasis on example
generation, numeric to symbolic conversion and
feature construction and selection. An inductive
learning algorithm, SKIL, previously proposed
by the authors [17], is used in the experiments
and compared, in terms of performance, to a
Nearest Neighbour classifier [2] and to a
supervised clustering algorithm, Q* [15]. One of
the main problems in previous research was the
poor classification accuracy. Progress in this
respect is  reported. Several alternative
approaches, investigated in the context of the
ESPRIT project B-LEARN 11, are described in
detail.

Studies in Informatics and Control, vol. 5, No. 3. September 1996 191



2. Robot Programming By
Demonstration

A crucial point in flexible manufacturing systems
is the acquisition of knowledge to suppoit the
supervision functions. In real execution, a feature
extraction function is permanently acquiring
monitoring features from the raw sensor data
(namely from force & rtorque data and from
discrete sensor data). These features are used to
guide the control function of the operation being
executed as well as to detect deviations between
the actual behaviour and the nominal operation
behaviour. For example, let us consider that,
during the execution of a Trans fer operation,
in which the robot carries a part to be assembled,
an object, unexpectedly originating in the
environment, collides with the gripper causing
the part to move without falling. The first
diagram, included in Figure 1, shows the
perceived sensor data during actual execution.
The second diagram shows a qualitative model of
the operation. The third diagram shows a
qualitative interpretation of the raw sensor data in
terms of the features used in the operation model.
Since a deviation is detected, the diagnosis
function is called to verify if an execution failure
occurred and, in that case, to determine a failure
classification and explanation. For this function,
additional features must be extracted. Diagnosis
is a decision procedure that needs a more
sophisticated model of the {ask, the sysiem and
the environment. The final step, based on the
failure characterization, is recovery planning.

The problem of building the knowledge base, and
in particular the modeis that the monitoring,
diagnosis and recovery functions need, is not
easy to solve. Even the best domain expert will
have difficulty in specifying the necessary
mappings between the available sensers on one
side and the monitoring coaditions, failure
classifications, failure explanations and recovery
strategies on the other side. Also, a few less
common errors  wili be forgotten. Known
prototype  systems show limited domain
knowledge, as they are intended mainly for
exemplification and not to be used as robust
solutions in the real world.

In a very initial phase, the models of the
elementary operations of the system must be
built, considering both sensing and action
aspects. Some operation models can be easily
hand-coded. For instance, part feeding or robot
motion along a given path are operations for
which the control function is relatively easy to
specify. Ensuring the nominal conditions for
these operations is also simple to do. For
instance, a few binary sensors are enough to

identify the status of a part feedei. To hand-code
an evaluation function based on these sensors is a
irivial task.

Object
r 1 Bl kn
PERCEPTION Ft A
Perceived Sensor Data
SENSOR \/
DATA 7 -
PR h £ Normal
EX TRACTION H ';‘;E:‘," Hoval
AN normal
i
MONITORING Nominal Behavior Model
FEATURES '
MONITORING Actual Behavior Description
— —
| —N TN
BEHAYIOR  hrcristion Didotted:
ASSESSMENT | © ((Wm
Ty
Lvolution of forces & torques
during a failure is divided in time
intervals and cheracterized in
= \‘) N twms:ozzm (;&!;]upgs;a—))
GIAGNOSIS ¥ nicity (M), ...,
SEATURPS | O e b
1
DIAGHGSIS aFe7
{ T FAILURE
| CATRGORY &
{EXPLANATION :
A~~~ L
RECOVERY ({7 Coltision with part moved )
PLANNING ¢ dueto unexpected object
=7 in motion path )—j
0 I~
RECOVERY NN ey

STRATEGY ; 1. Placx the part in & positioning device?™
L Calibrate the parti position; ¥/k)3
3. Pick the part aguin;
A AN I
Figure 1. Example of the Error Detection
and Recovery Cycle

For complex operations, that do not have a well-
defined model, the control functions are very
costly to program in the classical way. An
example is compliant motion in robotized
assembly: the variations in size, weight, friction
coefficient, etc., of the parts involved are so wide
that a clear generic model of the needed
compliance does not exist. The same way,
evaluating the behaviour of the system during
execution of a given operation can be much more

192 Studies in Informatics and Control, vol. 5, No. 3. September 1996



complex than assessing the status of a feeder
based on binary sensors.

OPERATIONS RECOVERY

Figure 2.Traiaing and Supervision

The Programming by Human Demonstration
paradigm (in this case RPD — Robot
Programming by Demonstration {5, 6, 8, 9, 18])
seems indicated to overcome such type of
difficulties. According to this paradigm, complex
systems are programmed by showing particular
examples of their desired behaviour. Usually,
emphasis is put on robots learning from their own
perception of humans performing certain tasks.
[n our approach, any interaction with the human,
that enables the robotic system to perform better
in the future, is also included in the programming
by demonstration framework, and is referred to
as a fraining action. Functions for training and
learning are included in the supervisor
architecture (Figure 2).

An adequate user interface facilitates transfer of
the human's knowledge to the system. This
knowledge can be coherent and complete or can
be empirical, based on real examples of complex
situations which have no known model. For
instance, to teach the robot how to insert a peg
into a hole (a compliant operation), the tutor can
guide the robot arm to reach that goal, while
collecting both force & torque data and applied
velocities. Then, the best tutoring experiments
(according to some criteria, for instance the
minimization of insertion time) are selected to
serve as examples that a neural network or a
fuzzy controller uses to learn the control function
of the operation (application of learning in
compliant motion is being investigated by our B-
LEARN partners [12]).

In what concerns the definition and
characterization of elementary operations, our
research focus has been centered in execution
evaluation. including monitoring (detection of
failures) and diagnosis (classification and
explanationj. For instance, the knowledge
required for monitoring of motion operations was
obtained by training in the following way: traces
of all testable sensors were collected during

4 EXECUTION
MONITORING,

several runs of each operation; for each
continuous feature, the typical behavior of the
attribute during execution of the operation was
calculated as being the region
between the average minus standard
deviation behaviour and the average
plus standard deviation behaviour.

The system is also trained to
identify/classify execution failures.
The result is the creation and
refinement of a qualitative failure
model, composed of failure
descriptions and taxonomic and
causal relations between them. For
training, several external exceptions
are manually provoked and the effects as well as
the corresponding traces of sensor values are
recorded. Examples of provoked external
exceptions are: unexpected objects on robot arm
motion path; misplaced or missing parts;
defective parts or assemblies; misplaced or
missing tools. For some of the resulting
execution failures, it was easy to hand-code
classification rules. For others, classification
knowledge is generated by inductive algorithms.

Finally, recovery strategies are programmed for
the most common errors. A good user interface
should facilitate also the specification of
recovery strategies. Feasible possibilities, that we
have not considered, are graphical simulation and
virtual reality. In the current prototype, recovery
strategies are entered in textual form. We are
looking at early planning systems as
STRIPS/PLANNEX [3], HACKER [19], and
also at case-based reasoning and explanation-
based generalization techniques in order to
incorporate, into the supervisor, learning
capabilities at the planning level [18].

In any case, the main idea is that programming
the supervision system includes both traditional
programming  (implanting in the system
monitoring, diagnosis and recovery rules, known
a priori ) and programming by demonstration
(examplar-based approach).

It is convenient to distinguish between training of
elementary operations and specific task-level
training (Figure 2). In the first case, the
implanted knowledge and the provided examples
are concerned with characterizing the basic
primitives of the system (elementary operations,
those used in task planning) and their related
skills. Only after this phase, the system should
start training and then executing specific tasks.

In real execution, when a failure is identified, and
there is no known recovery procedure, recovery
planning is attempted. If a plan is found and,
when applied, brings the system back to nominal

Studies in Informatics and Control, vol. 5, No. 3, September 1996 193



state, this plan will be generalized and stored for
further use. If it is not possible to recover
automatically, help from a human expert is
requested. Eventually, the solution provided by
the human is also generalized and stored. This
kind of incremental programming and
generalization may also be viewed as training. At
the level of elementary operations, execution
evaluation contributes to the tuning of the related
skills [5,12].

This  approach  allows  for rogressive
independence of the human operator, who will
not have to be permanently supervising the
assembly process. On the other hand, as the
system relies more on continuous self-evaluation
of its behaviour than on very accurate models,
the requirements on operator specialization are
relaxed. The main limitation of the proposed
approach is the cost of training in the initial
phase: generating a sufficient number of
examples of each learning concept, mainly when
physical devices are involved, is a tedious task.

Training and execution make up a long-term
learning cycle along which the models of
operations, manipulated objects and the
environment are built and refined. Experience
gained in making a certain product is useful for
making other products. In this way, training a
specific task is simplified, especially from the
humans'  perspective.  Long-term  learning,
however, poses many problems concerning
knowledge representation, an issue with great
impact on reascning processes.

3. Learning in Diagnosis

In plan execution, the diagnosis function is called
when the monitoring function detects off-nominal
feedback in the system. Diagnosis can be
decomposed into four steps: failure confirmation;
failure classification; cause explanation; and
status identification. In abstract, the first two
steps are classification problems while the
remaining two are explanation problems.

3.1 Domain Knowledge

In [1] it was proposed to divide errors into three
main families: system faults, external exceptions
and execution failures. Execution failures are
deviations of the state of the world from the
expected state detected during the execution of
actions. External exceptions  are abnormal
occurrences in the physical environment that may
cause execution failures. System faults are
abnormal occurrences in the assembly resources

194 Studies in Informatics and Control, vol. 5, No

hardware and software or in the communication
systems.

Error

S

Akternal“£EXZS§£31,ExeFut10n
n

Except
/ pELe Fallurq\
’/. e / ig-
obstruction %572
unexpected
= = aymedns COlllSlOn

object
A te-s/ N
side collision

w1th no damage
urexpeutea

object at/near
motion path

side collision
with part lost

may-caus

Figure 3. Example of Causal Links at
Different Levels of the Error Taxonomy

Depending on  the available  sensorial
information, a more or less detailed classification
and explanation of the detected execution failure
may be obtained. Therefore, the model of errors
should be a taxonomy. At each level of this
taxonomy, cause-effect relations  between
different types of errors should be added.
Typically, execution failures are caused by
system faults, external exceptions or other past
execution failures, although, in general, errors of
the tluee kinds may cause each other.
Determining explanations for detected execution
failures can become wvery complex when errors
propagate. The proposed approach to modelling
errors in terms of taxonomic and causal links
aims at handling this complexity (Figure 3).

Training the system to understand the meaning of
sensor values and learning a qualitative and
hierarchical model of the behaviour of each
operation is a crucial step in diagnosis.
Programming such model by hand would be
nearly impossible. Since the human defines the
"words" (attribute names and values) used in the
model, the human is capable of understanding a
more or less detailed description that the model
provides for each situation. It is then easier to
hand-code explanations for the situations
described in the model. The explanation that
must be obtained for the given execution failure
includes not only the ultimate cause (an external
exception or system fault), but also the
determination of the new state of the system [18].

3, September 1996



3.2 Learning and Classification

As emphasized above, the difficulty in hand-
coding the models that the supervision functions
need, raises the question of how to build such
models automatically. The classification phase of
the diagnosis task can be performed based on
knowledge generated by induction.

In the experiments described below, three
learning algorithms will be used. The first one is
a Nearest Neighbor classifier [2]. This type of
classifiers do not perform any data compression
on the provided examples. The available
classified examples are directly used to classify
new examples. The class assigned by a k-
Nearest-Neighbor classifier (in short k-NN) to a
new sample is the most frequent class in those k
examples that, according to a distance metric
(typically the Euclidean norm), are closer to this
new sample. Since, in most cases, it is difficult to
define a distance metrics for qualitative features,
k-NN classifiers are more suited for continuous
domains. Error estimation based on k-NN
classification is usually a good reference for
assessing the performance of other algorithms.
The absence of data compression is its main
limitation. Below, the basic form of the Nearest
Neighbor classifier (the 1-NN) will be used.

The second algorithm used is Q¥*, limited to
continuous domains, that performs supervised
clustering [15]. It learns a set of prototypes (the
same as codebook vectors in LVQ [7]) of the
classes present in the provided training set. The
algorithm is self-organizing, since prototypes are
dynamically created and modified during the
iterative learning procedure. When some training
example cannot be classified correctly by the
existing set of prototypes, an additional prototype
is created. Q* nicely handles multimodal class
distributions. To classify unknown samples, after
learning, a 1-Nearest-Neighbor strategy is
followed on the generated set of prototypes.

The k-Nearest-Neighbor classifier and the Q*
algorithm are available in the TOOLDIAG
package [14].

Both k-NN and Q* are only able to learn uni-
dimensional concept descriptions: the resulting
knowledge is only able to assign classes to
objects from a given domain. The same can be
said about other systems that we have used,
previously, in the assembly domain [1,17]. For
instance, these algorithms and systems cannot
handle the problem of discriminating collisions
from obstructions and normal situations, handling
simultanecusly the  discrimination between
different types of collisions.

Having as a motivation the automatic
construction of the models required for the
assembly supervisor, the idea of generating a
concept hierarchy has become attractive. The
problem of learning at multiple levels of
abstraction has not been adequately considered
yet in the literature. In some approaches, a fixed
decomposition of concepts is used, and learning
is applied at each level [11]. However this is not
flexible enough. Fixed decompositions have also
been used for feature values [11, 16]. A new
algorithm,  SKIL  (structured  knowledge
generated by inductive learning), was developed
to perform this task [17].

The concepts in the hierarchy learned by SKIL
are characterized by a set of symbolic
classification attributes. At the lower levels of the
hierarchy, concepts are described in more detail,
ie. more attribute values are specified.
Moreover, in detailing or refining a concept, in
which attributes take certain values, it can make
sense to calculate other attributes. Therefore, the
user may provide a set of attribute enabling
statements of the form (Aj, Ajj, EAjj), meaning

that when the value of Aj is determined to be Ajj,
then attributes in EAjj should be included in the

set of attributes to consider in the continuation of
the induction process. For example, when
learning the behaviour of a Transfer
operation, if a collision is found, it can make
sense to determine some characteristics of the
colliding object, like size, hardness and weight.
This could be expressed by the following
attribute enabling triple:

(failure_type, collision, {obj size, obj_hardness,
obj_weight})

The attribute values of the concepts in the
hierarchy are determined inductively based on
training data specified in terms of a set of
discrimination features, which can be numerical
or symbolic. Each example in the training set is
composed of a list of attribute-value pairs
followed by a vector of feature values.

The algorithm is a recursive procedure that takes
as parameters a list of examples, a list of
classification attributes, a list of attribute
enabling triples and a list of features. At each
stage of the induction, the main goal is to
determine the values of as many classification
attributes as possible. For each attribute, the
discrimination power of features is evaluated,
using an entropy measure [13]. For continuous
features, segmentation of feature values is done
at each decision node, in a way that maximizes
its discrimination power [17]. The feature that,
for some attribute, gives the lowest entropy is
selected to be test feature. Expansion stops when

Studies in Informatics and Control, vol. 5, No. 3, September 1996 195



the values of all attributes have been determined
or when it is not possible to extract more
information from the data.

The basic knowledge transmutation used by
SKIL is, therefore, an empirical inductive
generalisation (see the Inferential Theorv of
Learning [10]), only that at multiple levels of
abstraction. The generated knowledge structure is
a hierarchy of anonymous concepts, each of them
defined by the combination of several ariribute-
value pairs. The number of specified attributes
and values defines the abstraction level (of
course, as a special case, SKIL can also work as
any traditional classification algorithm, i.e. with
only one classification attribute). The formation
of these concepts, guided by the attribute
enabling triples, highly depends on the training
data. The hierarchy is, simultaneously, a decision
tree that can be used to recognize instanices of the
concepts.

4. Experimentation

From the supervision point of view, the results
obtained in previous research, using ditferent
learning systems, were not satisfactory, due to the
low classification accuracies on  unseen
examples. Accuracy did not go beyond 90%, and
the most typical results were between 50% and
70%.

100 MEAR £

75

50 A

In robotics applications, information about the
status of the systemn must ofien be obtained from
complex sensors that provide numerical data
difficult to analyse. Some failures can easily be
idenufied by simple  discrete sensors. For
instance, in case the wrong tool is attached to the
robot, this can be detected by 2 binary sensor.
Siuch knowledge can easily be coded by hand as
ruies, However, how to characterize a situation in
which the force profile in the robot wrist is not
normal? Different external exceptions can occur
causing execution failures that manifest through
abnormal force and torque profiles. These
profiles, although sometimes recognizable by the
human, are difficult to model analytically.
Therefore, it is desirable that the system learns to
"look" at the force profiles in order to identify
different situations.

An obvious explanation for the poor accuracy
results obtained in previous experiments was that
the relevant features in each situation were not
directly "visible" in the sensor data. It was then
decided to perform exaustive experiments with
different feature construction strategies on four
learning problems, related to a «pick and place»
macro-operation. Other directions for improving
accuracy, that were explored, are multi-level
induction and example interpolation. This latter
method did provide surprisingly good results.

MEAN FY

e

2 —4—F 8 10 ™27
-25

28 N — / \—. 50

-75

-100

a) Collision in part & part lost

\Wﬂ/ 2z N
=80

%

100

b) Front collision and part moved

Figure 4, Examples of Typical Force Behaviour During Two Different Types of Failures ip
Approach-Ungrasp

196 Studies in Informatics and Control, vol. 5, No. 3, September 1996



4.1 Selected Test Problems

Figure 5. The Experimentl Scenario

front  collision and obstruction, 88

examples were collected.

LP-2: failures in transfer of part — five classes of
Four learning problems were selected for the system behaviour are considered: normal,
experiments. In each of them, the goal is to learn Jront collision, back collision, collision to
to recognize some relevant aspects of an the right and collision to the left. 47
execution failure, by maximizing the accuracy of examples were collected.
the learned knowledge. Each collected example L.P-3: failures in approach-ungrasp — the classes
is composed of traces of the forces and torques in of failures to be learned are: normal,
3D, in a time interval surrounding the failure collision and ebstruction; 117 examples
The length of each trace is of 15 measurements, were collected.
therefore cach example is characterized by 90 LP-4: failures in motion with part — five classes
raw variables. The learning problems are: of system behaviour are considered:
: e . ) normal,  bottom  collision,  bottom
LP-1: failures in approach-grasp — four , o .
: . . obstruction, collision in part and collision
classes of system behaviour, that will be : )
: . in tool; 164 examples were collected.
learned, are considered: normal, collision,
L] 1 L] T T T
& “normal” e
400 F s “back" + ]
x “front" ©
x : a "right" x
200 | Do "left” » ]
x .
a L a a
- * A
oF- - ot gt sole ey e it ey smeetl a. ... a ?: et ?, + 4
+ a gt :o
a o A ®e
x
=200 r + : g
: +
-400 F L) b
-600 F ]
(o]
_800 3 -
' 1 1 i i 1
-600 -400 =200 0 200 400 600
Figure 6. Sammon Plot of the Training Data Available in Problem LP-2 (Transfer)
Studies in Informatics and Control. vol. 5. No. 3. September 1996 197



Table 1. Accuracy Results for Several Feature Construction Strategies.

Learning Problems
LP-1 Lp-2 LP-3 LP-4
Number of Classes ~4— B 5 3 5
Number of Examples 88 ‘f'\"n 117 164
Algorithm i SKIL.l Q* ‘ 1-NN | SKIL | ©* ?I-NN SKILI Q* | 1-NN SKILI Q* l 1-NN
Strategy }Ij:étsfcs Accuracy Results (%)
F1 90 754 | 886 | 864 | 483 | 68.1 | 68.1 | 748 | 88.1 | 88.0 | 57.1 683 | 683
F2 42 80.1 | 852 | 875 S43 | 702 | 70.2 | 857 | 923 | 923 | 620 | 70.7 | 70.1
§ F3 36 788 | 875 | 852 | 568 | 745 | 723 | 868 | 90.6 | 91.5 | 595 726 | 70.1
C:Z F4 48 | 825 | 886 | 886 | 529 | 574 | 574 | 81.7 | 863 | 863 | 624 | 62.8 | 62.8
E F1+2 132 | 815 | B8.6 | 864 | 483 | 660 | 68.0 | 652 | 800 | 880 | 66.0 | 69.5 | 66.5
F1+3 126 789 | 886 | 8.4 | 483 | 68.1 | 68.1 | BO.1 83.0 | 88.0 | 65.0 70.1 | 66.5
Fl+4 138 780 | 864 | 898 | 443 | 70.2 | 68.1 | 796 | 88.9 | 88.9 | 550 | 683 | 67.1
F1 210 697 | 909 | 921 | 50.1 | 66.0 | 681 | 748 | 863 | 872 | 553 | 695 | 695
F2 84 75.6 909 | 943 | 70.0 | 745 | 723 | 810 | 91.5 | 923 | 605 | 750 | 713
§ F3 112 816 | 898 | 943 | 640 | 766 | 745 | 822 | 880 | 89.7 | 604 | 78.1 | 76.2
§ F2+3 168 868 | 909 | 92.1 | 63.4 | 745 | 745 | 90.9 | 906 | 89.7 | 633 | 756 | 744
E F1+243 378 889 | 909 | 932 | 66.3 | 63.8 | 68.1 | 88.1 88.9 | 889 | 645 | 720 | 713
E F4 112 83.5 | 86.4 852 | 527 | 638 | 61.7 | 762 | 838 | 838 | 652 | 642 | 634
Fl+4 322 | 875 | 886 | 898 | 464 | 66.0 | 660 | 744 | 89.0 | 890 | 622 | 689 | 683
F1+2+3+4 490 880 | 88.6 | 909 | 668 | 66.0 | 68.1 873 | 89.0 | 89.0 | 63.0 | 695 | 70.1
It should be emphasised that a real physical setup F2: It would be desirable that the Execution

(not a simulated scenario)} {see Figure 5) was
used to collect the training data in these Tour
learning problems.

4.2 Feature Consiructien

As emphasised above, often there is  no model
of these sensors or the situations that they help
understand. On the other hand, the direct
application of learning techniques to the raw
sensor data may show limited success in
generating such models automatically. The
relevant features in each situation may be not
directly "visible” in the sensor data. In this
Section,  several  strategies for  feature
construction are tested on the selected problems.
Feature construction, an issue that remains an art,
being highly domain-dependent, has not received
enough attention from the Machine Learning
researchers, traditionally more concermed with
feature selection only [4]. For simplicity, each
strategy is identified by a code, and the
combination of strategies is identified by listing
the codes of each of them.

Supervisor could reason about the evolution
of force and torque values, measured during
the execution of actions, in terms of its
overzll characteristics, and not in terms of
the individual numerical values, i.e. in short,
as humans do. A human, making a
qualitative description of such behaviour,
would probably divide it into intervals, and
would mention roughly how long these
intervals were, which were the average
values of each interval, as well as the
average derivatives. Dealing with time
intervals is not an easy task, mainly when the
goal is to apply existing machine learning
algorithms to generate new knowledge.
Strategy F2 consists of dividing each trace
into three sub-intervals (five measures each),
each of them calculating averages and
slopes. For each trace, a monotonicity
measure, defined as the number of increases
in consecutive samples in that trace minus
the number of decreases, is also obtained
[17].

F3: Similar to strategy F3. Instead of three, each
force or torque trace 1s divided into five sub-

F1: Use directly the values in the force and intervals.
torque traces. F4: In the four selected learning problems, the
failure situations to be learned are all related
198 Studies in Informatics and Control, vol 5, No. 3, September 1996




to different types of collisions of the robot
arm with its environment. When a collision
occurs, the arm enters a state of abnormal
vibration that disappears after some units of
time. Although the corresponding force and
torque signals are not periodic, their
processing by the Fast Fourrier Transform
{FFT) could provide information in a useful
form. It is necessary to assume that the
collected traces of 15 samples represent the
interval of periodic waves. For each trace,
the FFT produces e¢ight harmonics of which
only the frequency modules are used as
features for learning.
As already mentioned, each example is
composed of six force and torque traces: Fx, Fy,
Fz, Tx, Ty and Tz. The example description can
be enriched by eight additional traces, namely the
traces of forces and torques in 2D and 3D: Fxy,
Fyz, Fxz, Fxyz, Txy, Tyz, Txz and Txyz.

The four training sets were processed according
to the described feature construction strategies.
In the first experiments, only the measured traces
were used (6 traces per example). Similar
experiments were conducted using both the
measured traces and the calculated traces in each
example (14 traces in all). Estimation of the
classification accuracy was then made by the
leave-one-out test, using the three considered
algorithms, SKIL (in this case without any
hierarchical decomposition), Q* and 1-NN. The
accuracy results are presented in Table I.

The results are heterogeneous and not fully
satisfactory. The worst results were obtained with
problem LP-2, probably because of the lack of
examples (see, mn Figure 6, a 2D Sammon plot of
the 47 examples in this problem and the classes
they represent). Globally speaking, the best
results were obtained in problems LP-1 and LP-
3: accuracy around 80% in the case of SKIL and
89% in the case of Q* and 1-NN.

To evaluate the potential of the feature
construction strategies, the obtained results are
compared to the first row in Table I, that
corresponds to directly using the measured force
and torque values ("no processing"). As far as
SKIL is concerned, there seems to be no big
difference between strategies F2, F3 and F4. In
average, each of them produces an improvement
of around 6% when compared to "no
processing”. However, simultaneously applying
different strategies can produce improvements of
more than 12%.

The combined use of strategies F1, F2 and F3 on
the measured and calculated  ftraces,
corresponding to 378 features, provided the best
result in problem LP-1: 88.9%. Applying strategy
F2 to all traces (84 features) provided the best

result in problem LP-2: 70.0%. The combined
use of strategies F2 and F3 on all traces (168
features) provided the best result in problem LP-
3: 90.9%. In problem LP-4, the best result was
obtained with strategies F1 and F2 on the
measured traces only (132 features) provided the
best result. The idea of considering the resulting
traces of forces and torques in 2D and 3D
(bottom halif of TableI) did not lead to any
improvement or loss in accuracy.

The results obtained with Q* and I-NN are
generally better than those obtained with SKIL.
In the case of "no-processing”, the difference
between SKIL and the other two is 15%, on
average. Q* and 1-NN seem to be quite
successful in searching useful information in the
data. That explains why these two systems do not
benefit so much from constructed features. While

AN A

l®

Figure 7. Qualitative Features in A Force or
Torque Trace, Used in Assessing Vicinity
Between Examples (in this case ++-+-)

SKIL can improve more than 12%, on average,
after feature construction, the other two improve
5% at most.

4.3 Example Interpolation

One conclusion that can be drawn from other
experiments in the assembly domain (see [17]) is
that, in general, the classification attributes (=
classes) that are better learned — i.e. with greater
accuracy — are those represented with more
examples in the training set. The negative impact
of the lack of examples on accuracy can be
reduced by appropriate feature construction
strategies and by control of classification errors
inside the algorithm itself. However, one
question did naturally arise: would it be viable to
generate additional examples, by some adequate
interpolation method, that enabled more accurate
generalization?

An experiment, in what can be named example
interpolation, was conducted. For interpolation it
is necessary to define: a) a criterion for example
vicinity; and b) a procedure for generating a new
example from two other neighbour examples.

Studies in Informatics and Control, vol. 5, No. 3, September 1996 199



Table II.

Accuracy Results for Several Feature Construction Strategies, Using Interpolated as well

as Original Examples

[ Learning Problems
Le-i LP-2 LP-3 LP4
Number of Classes 4 5 3 5
Number of Examples 178 8 263 359
Algorithm SKIL| Q* T}LNN SKIL| Q* }1-NN sx,u,] Q* II-N'N sml Q* ll-NN
Strategy r::a-rgfes Accuracy Results (%)
F1 90 | 896 | 886 | 909 | 805 | 830 | 83.0 | 921 | 957 | 966 | 847 | 884 | 902
F2 42 | 827 | 921 | 898 | 851 | 787 | 787 | 960 | 974 | 974 | 880 | 854 | 86.0
g F3 36 858 | 886 | 88.6 [784 | 809 | 809 [ 934 | 966 | 974 | 894 | 860 | 854
<|  Fa4 48 | 927 | 909 | 909 | 704 | 638 | 63.8 | 936 | 932 | 950 | 882 | 756 | 78.1
§| Pz | 132 552 | 899 | 909 | 505 | 830 830 [ 957 [ 966 | 966 | 86.1 | 884 | 890
Fl+3 126 |g45 | 899 | 909 [80.5 | 851 | 830 {966 | 974 | 966 | 856 | 884 | §9.2
Fl+4 138 1899 | 875 | 909 | 805 | 787 | 787 | 940 | 95.7 | 974 | 894 | 878 | 87.8
F1 210 | 830 | 943 | 955 | 807 | 809 | 830 | 924 | 957 [ 957 | 847 | 884 | 909
F2 %4 | 858 | 943 | 966 | 785 | 830 | 851 | 919 | 966 | 974 | 873 | 896 | 87.8
gl__F 112 1907 {943 | 966 | 751 | 851 | 851 | 929 | 966 | 974 | 87.7 | 89.6 | 92.1
E F2+3 168 | 942 | 943 | 955 | 736 | 851 | 851 | 974 | 974 | 974 | 923 | 896 | 90.9
T Fl42+43 378 | 942 | 943 | 966 | 768 | 809 | 823 | 954 [ 957 | 957 | 929 | 909 |95
£ F4 112 | 925 | 886 | 898 | 690 | 68.1 | 723 | 937 | 949 | 949 | 87.1 | 8i.1 |8L.1
Fl+4 222 | 922 {943 | 955 | 807 | 809 [ 787 | 922 | 974 | 966 | 883 | 86.6 | 87.2
Fle2+4344| 490 | 942 | 943 | 955 | 768 | 787 | 787 | 957 | 974 | 966 | 91.6 | 86.6 | 87.8
In  these experiments, two examples are generated by interpolation. Modifications in

considered neighbours if they belong to the same
class and at least one of the force and torque
traces is qualitatively similar in both examples. In
this context, two traces are said to be
qualitatively similar if the averages of values in
each of them have the same sign, and the slopes
between the first group of threc values and the
second one, the second and the third, etc., also
have the same signs (see Figure 7). For each
example m the original training set, neighbour
examples will be searched. An interpolated
example is generated for each pair of neighbour
examples. Interpolation is done as follows: when
traces are similar in both examples, the trace in
the new example is the average of the other two;
otherwise, the trace in the new example will be
directly inherited from the example that
motivated the search.

The described example interpolation method was
applied to the four data sets used in the previous
Section, expanding their size between 83% and
125% (see top of Table 1f). The new data sets
were processed using the feature construction
strategies of the previous Section. Finally, SKIL,
Q* and 1-NN were applied to the processed data
in each problem, producing accuracy statistics
{Table I1). It should be noted that, in this case,
the leave-one-out accuracy test is performed only
on the original examples and not on those

200

Studies in Informatics and Control, vol. §,

SKIL and in the TOOLDIAG package had to be
made to account for this requirement.

The results obtained with this approach are much
more satisfactory. In what concerns SKIL,
accuracy is around 90% in most of the
experiments with problems LP-1, LP-3 and LP-4.
in problem LP-2, which still has a smaller
number of examples, accuracy is around 73% to
80%. The combined use of strategies F2 and F3
on all traces (168 features) provided the best
resuits in problems LP-1 (94.2%) and LP-3
{97.4%). Applying strategy F2 to the raw traces
(42 features) provided the best result in problem
LP-2: 85.1%. The combined use of strategies F1,
F2 and F3 on all traces (378 features) provided
the best result in problem LP-4: 92.9%.

These experiments prove that the original
training sets contain information that SKIL,
despite all the extracted features, could not find.
Even Q* and 1-NN, that proved to be more
successful in extracting the information relevant
to the problem at hand, benefited significantly
from example interpolation. The improvements
due to interpolation alone (without any feature
construction) were, on average, of 22.8% with
SKIL, 10.6% with Q* and 12.5% with 1-NN. If
the performances of the three algorithms on the
original  unprocessed  training  sets  were

No. 3. September 1990



heterogeneous, being less interesting, the
performance of SKIL, now, aiter interpoiation,
the results are equivalent: average estimated
accuracies on the four leaming problems are of
86.7% with SKIL, 88.9% with Q* and 90.2 with
1-NN (see summary in Figure 8). Therefore, it
seems that interpolation enabled the algorithms
to approach the limit of what is possible to get
from the used data.

The SKIL algorithm works much like 1D3 [13].
Its advantages are in handling numerical data and
generating hierarchies of structured concepts.
Like ID3, SKIL cannot take into account error
estimation information when choosing a test
feature for a given decision node. That is one of
the reasons for its great efficiency: for a problem
as large as LP-4 in the last row of Table II (359
training examples, 164 test examples, 5 classes
and 490 features) SKIL performs the leave-one-
out test in less than 30 min. To do the same job,
Q*, that is also supposed to be very efficient,
takes more than 45 min. Generating additional
examples by interpolation, and then applying a
simple learning algorithm can be an alternative to
heavily processing learning algorithms. In
principle, interpolation only generates examples
that make sense. To do the same job, the learning
algorithm will have to spend a lot of time for
exploring uninteresting alternatives.

Attribute Attribute Vale «
behaviour { normal, failure }

part status { ok, moved, lost }

failure ‘ype { collision, obstruction }

collision_type { part, tool, front }

a) Attributes

Attribute Attribute Enabled Attrib
Value

behaviour failure { failure_type }

failure_type | collision { collision_type }

b) Enabling triples

Figure 9. Approach-Ungrasp Problem
Specification

The left-hand side of each rule specifies a
conjunction of conditions on feature values that
is enough, according to the training data, to
recognize the concept described by its
classification attributes on the right-hand side.

Hierarchical information, given to SKIL in the
form of attribute enabling triples, guides the
induction, without requiring a fixed hierarchical
structure. The key attributes of a given concept
are determined first, and only then the details are

LP-1 LP-2 LP-3 LP-4 LP-1 LP-2

LP-3 LP-4 LP-1 LP-2 LP-3 LP-4

Figure 8. Summary of Accuracy Results Using the Three Algorithms (SKIL, Q* and 1-NN):
a — average of the three worst results; b — no processing; ¢ — average of the three best results without
example interpolation; d — average of the three best results with example interpolation

4.4 Multi-level Induction

As we have intuitively shown in [17], multi-level
induction is another direction of research that
may yield good results in terms of classification
accuracy. SKIL was also developed with this
problem in mind. Consider, for instance, the
domain specification in Figure 9, used to learn
the behaviour of the robot during the operation
approach-ungrasp. The starting attributes
are behaviour and part status. The behaviour
taxonomy generated by SKIL can be translated
into a set of rules (Figure 10).

paid attention.

This philosophy leads to higher classification
accuracy. For the operation approach-
ungrasp, 117 examples were collected. The
SKIL leave-one-out test returns an accuracy of
85%. If the attribute values are combined to
produce a one-level set of classes (no hierarchy),
the SKIL leave-one-out test returns an accuracy
lower than 60%.

Studies in Informatics and Control, vol 35, No. 3, September 1996 201



@ id : v Fx3?
Dxl?
[] Taxonomy Node é [51] 4
(O Decision Tree Node ° E E
o o}
% (FA(x, 17, 21) & 0]
Fx1( x, [4:5, 1] ) & Dx1( x, [0.5,0.5[ ) )
>
{ behavior( x, normal ) & Q
part_status(x, ok ) )

x: (Fo(x, [-995,7[ ) & Dz2(x, {-542, -51] ) &

Fx3(x, {464, -13[) )
=>

{ behavior( x, (ailure ) & part_statns( x, moved }
(_aqgm&ty_pix. obstrection } )
R L

Figure 10. A Fragment of the Taxonomy

Generated by SKIL for the Approach-

Ungrasp Primitive, and Some
Corresponding Rules

5. Conclusions

On-line decision- making capabilities must be
included in manufacturing systems in order to
comply with the new requirements of flexibility
and autonomy. Research results concerning
execution supervision in flexible assembly
systems  were presented. The  proposed
supervision architecture includes functions for
dispatching of actions, execution monitoring and
failure diagnosis and recovery.

The lack of comprehensive monitoring and
diagnosis knowledge in the assembly domain
points out to the use of machine learning
techniques, leading to an evolutive architecture.
The general approach is to collect examples of
normal and abnormal behaviour of each
operation ~or  operation-type/operator  and
generate a behaviour model that the diagnosis
function will use to verify the existence of
failures, to classify and explain them and to
update the world model.

Concerning the failure identification
/classification problem, the application of the
SKIL algorithm, that generates concept
hierarchies with a higher degree of accuracy,
provided interesting results. Alternative ways to
improving accuracy were investigated, namely
feature construction and example interpolation.
Summary features, like averages and slopes,
extracted from sensor traces, made an interesting
improvement in accuracy. Frequencies, extracted
by the Fast Fourrier Transform, did also
contribute to improving accuracy, although to a
lesser extent. However, it seems that the

measured values (unprocessed) should not be
excluded from the learning process. A method
for example interpolation, specifically developed
for the problems at hand, expanded the training
sets, leading to significant improvements in
accuracy.

It must be noted that example processing is a
highly domain-dependent topic. The example
processing methods developed for force-based
supervision in assembly can inspire the
developing of methods for other domains, but
probably will not give the best results if directly
applied.

Acknowledgments

This work has been funded in part by the
European Union (ESPRIT project B-LEARN 11
and FlexSys) and JNICT (a Ph.D scholarship and
project CIM-CASE). Special thanks go to
Manuel Barata, for giving access to his FFT
software, and Dirk Tilsner, for an introduction to
the TOOLDIAG package.

REFERENCES

1. CAMARINHA-MATOS, L.M., SEABRA
LOPES, L. and BARATA, J., Execution
Monitoring in Assembly with Learning
Capabilities, Proc. IEEE Int'l Conf. on
Robotics and Automation, San Diego, CA,
1994,

2. DUDA, R.O. and HART, P.E., Pattern
Classification and Scene Analysis, JOHN
WILEY & SONS, New York, 1973.

3. FIKES, R.E, HART, P.E. and NILSSON,
N.J., Learning and Executing Generalized
Robot Plans, ARTIFICIAL
INTELLIGENCE, Vol. 3, 1972, pp. 251-
288.

4. C. Jutten [coord] ELENA Enhanced
Learning for Evolutive Neural
Architecture. Deliverable R3-B4-P,
ESPRIT 6891, 1995.

5. KAISER, M., GIORDANA, A. and
NUTTIN, M., Integrated Acquisition,
Execution, Evaluation and Tuning of
Elementary Operations for Intelligent
Robots, Proc. IFAC Symp. on Artificial
Intelligence in Real-Time Control, Valencia,
Spain, 1994.

6. KANG, SB. and IKEUCHI, K., Toward
Automatic Robot Instruction from
Perception — Temporal Segmentation of
Tasks from Human Hand Motion, IEEE

202 Studies in Informatics and Control, vol. 5, No. 3, September 1996



10.

11.

12.

TRANSACTIONS ON ROBOTICS AND
AUTOMATION, 11, 1995, pp. 670-681.

KOHONEN, 1, Learning Vector
Quantization, Helsinki University of
Technology, Lab. Computer and Information
Sci., Technical Report TKK-F-A-601, 1986.

KUNIYOSHI, Y., INABA, M. and INOUE,
H., Learning by Watching: Extracting
Reusable Task Knowledge from Visual
Observation of Human Performance,
IEEE TRANSACTIONS ON ROBOTICS
AND AUTOMATION, Vol. 10 (6), 1994,
pp. 799-822.

MCCARRAGHER, B.J, Force Sensing
from Human Demonstration Using a
Hybrid Dynamic Model and Qualitative
Reasoning, Proc. 1994 IEEE Int'l Conf on
Robotics and Automation, San Diego, USA,
1994.

MICHALSKY, R.S., Inferential Theory of
Learning: Developing Foundations for
Multistrategy Learning, in R.S. Michalsky
and G. Tecuci (Eds.) Machine Learning. A
Multistrategy ~ Approach,  Vol. v,
MORGAN KAUFMANN PUBLISHERS,
San Mateo, CA, 1994,

MOZETIC, 1., The Role of Abstractions in
Learning Qualitative Models, Proc. 4th
Int'l Workshop on Machine Learning, [rvine,
CA, 1987, pp. 242-255.

NUTTIN, M., GIORDANA, A., KAISER,
M. and SUAREZ, R., Machine Learning
Applications in Compliant Motion,
ESPRIT BRA 7274 B-LEARN I,
Deliverable 203, 1994.

. QUINLAN, J. R., Induction of Decision

Trees, MACHINE LEARNING , 1, 1986,
pp. 81-106.

14.

15.

16.

17.

18.

19.

RAUBER, T.W., BARATA, MM. and
STEIGER-GARCAO, A., A Toolbox for
Analysis and Visualization of Sensor Data
in Supervision, Proc. Tooldia'93, Int'l Conf.
on Fault Diagnosis, Toulouse, France, 1993.

KAUBER, T.W., COLTUC, D. and
STEIGER-GARCAO, A., Multivariate
Discretization of Continuous Attributes
for Machine Learning, in K.S. Barber
(Ed.), Proc. 7th Intl Symp. on
Methodologies for Intelligent Systems
(Poster Session), Trondheim, Norway, June
15-18, 1993.

REICH, Y., Macro and Micro
Perspectives of Multistrategy Learning, in

R.S. Michalsky and G. Tecuci (Eds.)
Machine  Learning. A Multistrategy
Approach, Vol. 1V, MORGAN

KAUFMANN PUBLISHERS, San Mateo,
CA, 1994, pp. 379-401.

SEABRA LOPES, L. and CAMARINHA-
MATOS, L.M., Inductive Generation of
Diagnostic Knowledge for Autonomous
Assembly, Proc. IEEE Intl Conf. on
Robotics and Automation, Nagoya, Japan,
1995 pp. 2545-52.

SEABRA LOPES, L. and CAMARINHA-
MATOS, LM, Planning, Training and
Learning in Supervision of Flexible
Assembly Systems, in L.M. Camarinha-
Matos and H. Afsarmanesh (Eds.) Balanced
Automation Systems, CHAPMAN &
HALL, 1995, pp. 63-74.

SUSSMAN, G., A Computer Model of
Skill Acquisition, ELSEVIER, New York,
1975.

Studies in Informatics and Control, vol. 5, No. 3, September 1996 203






