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Abstract: Reactive control of a mobile robot requires to map
robot's perceptions into actions by means of a strategy that is
goal-oriented. To explicitly encode this strategy is not an
easy task. Specifically, it cannot be assumed that users of
future service robots will be able to perform this kind of low-
level robot programming. What is sought for is a method that
allows to intuitively program the robot without requiring
knowledge about robot's hardware, its sensor system, robot's
perceptions and actions, and the actual relationship between
them In this paper, the acquisition of basic mobility skifls
from human demonstrations 1s advocated to be such a
method. Based on data obtained from manual operation of
the robot only. a description of the demonstrated skill is
generated, that is operational with respect to the robot. Since
human demonstrations are neither optimal nor do they cover
the real state space sufficiently, skill adaptation and
extension are also considered.

Keywords: Machine Learning, Robotics, Man-Machine
Systems, Programming Support

1. Introduction

Despite  the diversity of mobile robot
applications, and of the environment they are
operating in, two characteristic modes tof
operation can always be distinguished (see also

[34]):

Model-based operation, including path
planning and execution on the basis of an
a priori and possibly continuously refined
geometrical world model. This also
includes mission planning, which might
be based on a given model of the world's
"semantics."

Reactive operation, involving a direct
coupling between robot's sensors and its
actuators. Here, the next action of the
robot is determined by the current sensor
readings, possibly their history, and the
current goal. These operations will from
now on be referred to as the basic or
elementary skills of the robot.

As modelling and planning makes only sense
down to a certain level of abstraction, usually
both modes of operation are combined. Then,
elementary skills represent the interface between

the planning and the control level in robot's
architecture. They also determine the basic
operators available for planning: Only if the
robot is able to associate a symbolic operator
with a sequence of actions that are possibly
dependent on its perceptions, i.e. only if the robot
can operationalize the operator by applying a
particular skill, using this operator at the
planning level makes sense [17]. This is
obviously related to the problem of symbol
grounding [11].

Skill specification

Inidal Design

Exact Approximate Evaluation
Knowledge Knowledge Function
Implementation
Prototyp of robot
program/trajectory/skill

Application and Refinement

Figure 1. Approaches To the Design of
Elementary Skills

To realize elementary skills requires to map
robot's perceptions into actions by means of a
strategy that is goal-oriented. Several
possibilities to encode such a strategy exist
(Figure 1). The "traditional" approach is the
model-based one, which tries to a priori
determine the skills application conditions and to
systematically design a skill based on this
identification. Since exact models are seldom
feasible, usually qualitative models are
employed, resulting, for example, in probabilistic
approaches as in the case of occupancy grids
[8,35], or in the use of fuzzy systems [28,30].
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However, this explicit coding of the required
strategy is not an easy task. Specifically, it
cannot be assumed that users of future service
robots will be able to perform this kind of low-
level robot programming.

What can be expected from users of such robots
is their ability to demonstrate strategies related to
skills (e.g. by manually operating the robot), and
to evaluate the strategy used by the robot, i.e. to
evaluate robot's performance. Approaches to
learning based on human-generated examples
usually appear under the heading of 7skill
acquisition by human demonstration” and
“behaviour cloning,” respectively’. In robotics,
these approaches are mostly related to
manipulation skills [2,12,18]. The acquisition of
basic mobility skills from human demonstrations
has, for instance, been described by Pomerleau
[27] and Reignier [29].

If only an evaluation of robot's performance is
available, leamning from examples is replaced
by learning from reward and punishment
(reinforcement learning, [4,31]). This kind of
learning has already been successfully applied to
the control of mobile robots [21,22,32].
However, a substantial amount of knowledge was
always integrated into the actual reinforcement
function or into the strategy used for exploration.
Say, in successful applications, learning did not
take place in a simple trial-and-error manner that
could easily be supervised even by an
unexperienced user. Instead, some kind of a hint
was always required.

In this paper, a multistrategy approach to the
realization of basic mobility skills is presented.
The several steps involved in this approach are
motivated by two observations:

. Human-generated examples alone
are not enough to allow a robot to learn a
skill sufficiently well [14,16].

. For skill refinement, only a scalar
evaluation of robot's performance can be
expected, such that skill refinement
becomes a reinforcement learning task.
Reinforcement learning, however, can
only be successfully applied in the real
world if the fearning system is provided
with initial hints at a suitable strategy.

' Both expressions denote the same thing. They are.

however, used separately by the Robotics and Machine
Learning communities. and 1t has turned out that both
communities do not know the efforts of one ancther.

These hints can be obtained from user
demonstrations [15].

Consequently, a human demonstration is used to
initially build the skill and set up an on-line
adaptation and extension mechanism.  The
adaptation itself is then performed using this
initial information plus the feedback from the
user.

Based on previous work [6.14], the following
sections will focus mainly on the differences
between the acquisition of mobility and the
manipulation skills. Especially w.rt.  several
learning techniques, the descriptions will be
rather brief, however, references to the original
publications will be given. The testbed for the
work described here has been the mobile robot
PRIAMOS and the corresponding simulation and
control environment MARS [7].

2. Acquiring Elementary Skills
from Human Demonstrations

"Skill" denotes the learmmed power of doing a
thing competently. From a system's theoretic
viewpoint, this means that for a given state x(1)
the skilled system (the robot) should perform an
action u(t) in order to achieve a goal that is
associated with the particular skill. The action
performed should be the result of a competent
decision, i.e. it should be optimal with respect to
an evaluation criterion {a reward) r(x(t)) that is
related to the goal to be achieved. Essentially, a
skill S is therefore given through a control
function

Cg : u(t) = Cg(x(1))

that implicitly encodes the goal associated with
the skill and produces in each state x(t) a
"competent” action u(t) and a function rg(x(t))
that evaluates the state x(t) w.r.t. the goal. To be
able to apply a skill both safely and efficiently, a
termination criterion tg(x(t)) -> {0,1} and an
error criterion eg(x(t)) -> {0,1} are also required.
The aim of skill acquisition from human
demonstration is to approximate the functions Cg,
rg, ts, and eg from data obtained during human
performance of the skill S in order to facilitate
skill application as shown in Figure 2.
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Figure 2. Skill Application

In the case of elementary or basic skills, the state
X is given as a sequence of sensorial inputs y, i.e.
X(1) = (y(t -d), ..., y(t -d-p)), d, p >= 0, and the
result of a human demonstration is a sequence
((¥(0), u(0), ..., (1), u(T)) of sensor
measurements y(t) and actions wu(t). For data
originating from human demonstrations, d = t; is
the reaction time of the operator during
execution, and p is the minimum perceptual
history that must be known in order to distinguish
states which require different actions. While t;

can be estimated in advance, p is determined
based on the demonstration data. If, for example,
elementary  mobility  skills  are  being
demonstrated. the (y(t), u(t)) pairs are given as
distances ineasured by PRIAMOS' ultrasonic
sensors and  translational/rotational  offsets,
respectively. Due to the low sample frequency of
1 [Hz], d = t; = 1 is chosen in this case.

3. What Is Special About Basic
Mobility Skills?

During the demonstration of manipulation skills,
usually a force/torque sensor provides robot's
perceptions [14]. Such a sensor is able to deliver
information at a rate of at least 30[Hz|; such that
a demonstration of 20 seconds length results in
more than 600 single training samples.
Moreover, such a sensor does in general not
suffer from drop outs, ie. while the sensor
readings may be noisy, individual perception
components will not be missing completely. For
preprocessing such examples, statistic means are
therefore often valid [6,14].

In case of a mobile robot, the situation is
different. First, the distance measuring sensors in
use do in general not allow for scanning the

environment at a high rate. Even with laser range

finders, a complete 360° scan of  robot's
surroundings usually requires more than 50[ms]:
If ultrasound sensors are being used, the
achievable scan frequency is seldom higher than
2[Hz]; resulting in about 50-100 samples per
demonstration only. Beside the limitation of the
maximum scan rate, distance measuring sensors
have other characteristics that must be
considered. They provide valid information only
if objects reflecting the ultrasound waves or the
laser beam are suitably oriented with respect to
the robot. Therefore, even if an object is close to
the sensor, it may happen that it cannot be
detected. This results in steps in the sensor input.
Also, the distance measured by the sensor does
not match the real environmental situation at any
instant.

Figure 3. The Influence of the Operator's
Presence on the Recorded Data
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Finally, in case of mobile robots often the
presence of the operator influences the sampled
data (Figure 2). Since the sensors being used scan
the area around the robot, they will usually also
perceive the operator giving the demonstration.
If this is the case, the impaired sensors'
measurements must be removed in advance te
any kind of data analysis and learning.

4. Generating Training Data

The data obtained from a human demonstration
of a skill to be performed by PRIAMOS consist
of 24 ultrasonic distance measurements, two
translational offsets Dx and Dy, and a rotational
offset Do sampled at any instant. In the ideal
case, these data represent the skill to be acquired
perfectly. In reality, however, this will seldom be
the case. Several sources of suboptimality exist
that result in disturbances, the most prominent
being [16]:

1. the existence of incorrect actions that
must be corrected at a later instance and

2. the human tendency to perform "bang-
bang" instead of smooth control.

The effect of these suboptimaiities cannot be
neglected. Consequently, the robot should not
simply copy the human when performing the
demonstrated skill. Instead, it should avoid those
mistakes that are obvious from the very
beginning, and overcome other deficiencies later,
i.e. through adaptation of the acquired skill.
Additionally, only the information that is reaily
relevant to realizing the skill should be
employed. In particular, it is therefore necessary

1. to identify relevant action components
(i.e. relevant degrees of freedom),

2. to identify relevant perception
compenents (i.e. relevant sensors), and

3. to identify and remove actions that are
obviously not optimal.

4.1 Identification of Relevant Actions

To rank the importance of a particular action
component for the given skill, the contribution of
this component to executing the skill is

determined. Ifljuj{t)| is the normed?’ contribution
(e.g. the change in position w.r.t. a particular
degree of freedom) of action component i at time
t, the individual contribution of this component is

> ()

— t=0
Kl‘ dim(u) L
5 Sl )

where T denotes the amount of samples taken
during the demonstration, i.e. the length of the
demonstration. The set U of relevant action
components can be determined as the minimum
subset of components of u whose combined
contribution is above a certain threshold 0 < § <=
1. Usually, 8R is chosen to be 0.9 <= g <= 1,
depending on the confidence in the efficiency of
the human demonstration. For all experiments
described in Section 7 (see results in Section 7).

4.2 Identification of Relevant

Perceptions

In case of manipulation skills that require
compliant motion, often a direct and constant
dependency between the change in perceptions
(e.c. forces and torques) and the commanded
actions exists. Based on knowledge of relevant
actions, such a dependency can be used to
identify relevant perceptions [6], if sufficiently
many sampies have been taken during the
demonstration.

This is however not the case if mobility skills are
being demonstrated that use PRIAMOS'
ultrasonic sensors {see Section 3). Due to the
limited amount of samples, it is also not possible
to statistically determine the reaction time of the
operator, the dead-time of the system, or the
perceptual history required to generate a
"competent” action. While the system dead-time
can be found by other means, e.g. by an analysis
of  robot's control system, the remaining
identification tasks have to be solved by means of
heuristics.

> The norm || || must take the different nature of the
individual degrees of freedom into account. For PRIAMOS,
it is defined as [x|| = [x| for the translational degrees of
freedom, and ||| = |x|/2 [deg] for the rotational ones.

aa
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1. Let ((y(0); u(0)),....(y(T ), w(T ))) be a
sequence of sensor measurements y(t)
and actions wu(t) resulting from a
demonstration.

2. Define valid(y(t)) := 0:15m y(t) < 5m;
Le. a sensor i is valid at time t iff the
measured distance y(t) is within the
sensor-specific  validity bounds. The
given limits are for PRIAMOS' ultrasonic
Sensors.

3. Let MINg be the minimum number of

sensors that should be valid at any instant
t.
4. Let A be the set of allowed sensors, i.e.
those sensors that have not been impaired
by the operator's presence.
5. Let R be the set of sensors that are
valid and required to identify the goal
situation, i.e. R = {i: 1<= i <= 24 and
valid(yj (T))}
6.LetR:=RMA
7. Let Y = & be the set of unresolved
samples.
8. For any instant t

(a) Let V(t) be the set of valid sensors
at time .

(b) Let V(1) =V(t)nR

(¢) If [V(1)] < MINg

let Y ;==Y U {(y(t), u(t))}

9. 1f Y = & terminate.
10. Let j e R mA be the sensor that is
valid for most samples in Y. j must also
be valid for at least one sample.
11. If no such sensor exists, terminate.
12.Let R:=Rwu {j}, let A := A - {j}.
13. Proceed with 7.

Figure 4. Selection of Relevant Sensors

The procedure shown in Figure 4 selects the
necessary sensors by starting from those sensors
that are required to define the termination
criterion tg (Figure 4, Step 5). These sensors may

be selected by the operator, or they are chosen to
maximize the distance between the terminal
situation and other situations that occur in the
course of the demonstration.

Then, for each situation, it is checked if
sufficiently many sensors (i.e. more than or equal
to MINg sensors) are measuring valid values

(Step 8). If necessary, new sensors are added
(Steps 10 and 12). If the sensor selection
procedure does not result in a sufficiently large
set of sensors, it is necessary to reduce the
number of required sensors. If not possible, a
new demonstration must be made.

Following the sensor selection procedure, the
perception vector y is reduced to the necessary
sensors, such that the following training data for
the functicns Cs, ts, and eg are finally available:

1. a sequence ((y(0), u(0)), ..., (y(T ), u(T
))) of (possibly reduced) perception
vectors y(t) and action vectors u(t) that
approximately represent the function Csg;

2. a hyperinterval [[ym1,yM1]l, -
[ymn.YMn ]} with ymj < ymj for 1 <=1
<=n, n = dim(y) describing the allowed
range of perceptions (i.e. the function eg),
and

3. a sequence of perceptions representing
non-terminal states (y(0), ..., y(T-1)) and
the goal state y(T ) that serve for building
the function ts.

4.3 Removing Incorrect Actions

Since we cannot assume to have any knowledge
about the skill to be learned apart from the given
examples, altering the sampled action vectors in
order to possibly achieve better performance
does not involve any global optimization
technique. We can only assume that the amount
||lu| of an action is proportional to its effect and
that the subsequent application of two actions uj
and up with up = o [|lup|l, is equivalent to
applying (1 + ojup. Then, the following
preprocessing steps can safely be executed:

- Removal of all actions that do not
contribute at all to solving the task, i.e. removal
of all samples (y, u) with ||ul| <= R, 6 > 0.

- Smoothing of all corrective motions, i.e.
ifu(t) = cu(t + 1) and « < 0,

set u(t) = u(t+1) = 1/2(u(t) + u(t+1)).

4.4  Initializing the Evaluation

Criterion

For building the function rg, a sequence (((y(0),
u(0)), 1(0)), ... ((y(T), w(T)). r(T))) of ((per-
ception, action), reward) triples is required.
Since the optimal skill is not known in advance,

‘In general. no strict equality u(t) = au (t+1) will be
achieved. Therefore, we consider u(t) = cu(t+1) iff | <=1 <=
dim(u): uj(t) = oui(t + 1), a—e <= aj <= a+e.
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determining r(t) can only be based on heuristics.
If it is assumed that demonstration data ((y(0),
u(0)), ...(y(T ), u(1))) are given and the goal
state is represented by y{(T), r = r(t) = re(¥(1)} can
be initialized as

_ [+ -y <) - yie -]

¥ —else

Thus, any state that is cioser to the goal state than
its predecessor is given a positive reward ry,

while any state that is further way is given a
negative reward r-. Similar to the initial control
function Cg, the initially learned evaluation

criterion rg will only be an indication of what the

optimal  evaluation  criterion  looks  like
Therefore, r+ and r- are not set to the extrema of

the range of possible evaluations. E.g. if the
reward obtained after skill execution will be in [-
I, 1], r+ = 0.7 and r. = 0.2 are reasonable

choices.

5. Off-line Skill Learning

During off-line learning, the functions Cg, g, g
and eg are built from the generated training data.

To this aim, the formalism to be used for
representing these functions has to be selected
first. This is in general done ad hoc ie. the

v/

the chosen representation must allow for
incremental learning, since on-line adaptation of
the skill is mandatory.

Both requirements exclude multilayer
perceptrons [20,27] or non-incremental decision-
tree techniques [33] from being used in a general
approach. Also, the specification of the
functional form of the skill by the user, which
reduces skill learning to the identification of
numerical parameters [1], is not an appropriate
solution. In B-Learn II, the investigation of
several function approximation techniques
[3,13,21,25] leads to the selection of neural
networks based on local receptive fields [23],
such as Radial-Basis Function Networks (RBFs)
[26].

Such networks can be built from training data
[3,19,23,24], which is extremely important in a
setting that asks for automation of the learning
phase. Additionally, these networks allow for
directly assessing the knowledge that is available
with respect to a particular situation. Say, by
checking the activation of the individual clusters
available in such a network, it is possible to
easily distinguish if the network is recalling an
example it has seen before, and to which extent it
is generalizing.

For Cg and rg, the clustering algorithm described

in [3] is applied to generate the initial network,
Afterwards, the resulting networks are trained via

i, .

X

Figure 5. Two-dimensional Region List Drawn "in Reverse Order." During Evaluation, the
Brighter Regions Are Considered First

representation is chosen to be suitable for
learning a specific skill under specific
conditions [1,12,27]. However, an untrained user
cannot be expected to perform this selection for
every skill he/she wants the robot to acquire.
Therefore, it is necessary that the representation
is constructed from the training data. Secondly,

gradient descent.

The criterion functions tg and eg are represented
as a region list, i.e., an ordered list of labelled
hyperintervals ((Figure 5). Two lists originate
from the demonstration data: the first initially
consisting only of a hyperinterval representing eg
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System

Figure 6. Direct Adaptation Scheme with Critic (Evaluation Function) and Explorer (Exploratory
Elements)

that describes the encountered state space, and a
second one that represents the goal state (i.e. the
termination criterion tg) by a hyperinterval, too.

For building these hyperintervals, in case of the
error criterion all relevant sensors are being used.
Initially, all states are considered to be valid that
are in the perceptual boundaries for the given
skill. For building the termination criterion, we
start from the final state and extend the state
description in a greedy way until a sufficient
distance of the final state to all other states
occurring during the demonstration exists. Then,
we define the termination criterion as a
hypercube with the goal state as its center and its
width depending on the resolution of the sensors
and the desired positioning accuracy.

6. Skill Refinement

Refining a basic skill on-line means to alter the
functions Cs; ts; and es with respect to some
external feedback. The actual mechanism used
for this adaptation depends on the representation
of the functions as well as on the information
contained in the feedback [13].

The minimum feedback that is assumed to be
available in the context of learning from human
demonstrations is an evaluation of the
performance of the robot after the application of
an individual skill. The task is therefore to refine
a continuous real-valued function on the basis
of a delayed reinforcement signal. Gullapalli's
approach based on stochastic real-valued units
(SRV units, [9,10]) provides a suitable starting
point for solving this direct adaptation task
(Figure 6}, which can formally be described as
TOLIOWS!

Given: An initial skill represented by functions
Cs, ts, and eg a model rg that acts as a critic, and

an external feedback source providing a scalar
evaluation r of the effect of the skill application.

Determine: New functions Clg, 75, and eflg
whose application results in a higher, if possible
optimal evaluation, and a new model rfg that

takes the changes introduced by .the adaptation
into account.

Since Cg and rg are represented as RBF networks,

the refinement of both functions comprises the
following steps’:

Extension of Cg towards new situations: The
local representation employed in RBF networks
allows for detecting situations that have not been
encountered so far. If the activation rj of all
neurons i representing a cluster is below a
threshold rmip, i.e. if

Yi E{],...,ﬂ}:f’,(x)<rmin

it can be concluded that x is a new situation. If it
is desired to extend the network to cover this
situation, a new cluster nt+1 is generated. The
action u  (i.e. the weights wp+]j) to be

associated with this cluster can be requested from
the user or cloned from the action associated with

*Explanations are given for Cg For rg, actions u should be
replaced by rewards r.
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the cluster that is nearest to the n2w one. In any
case, the width ¢ of the new cluster is w0 be
initialized such that it does not atfect the already
existing clusters, 1f 1 <= k <= n is the index of
the nearest existing cluster, and & is a threshold
that controls the maximum overlap between

clusters, o is intialized as o = 1 in case

of Gaussian transier functions i, this means that

Adaptation of a known action u: The typical
action to be untertaken in skiil refinement is the
adaptation of the action © calculated by
evaluating the network representing Cg in the

given situation x. Assuming that the new act
up, obtained a feedback signal ry, whereas the
original action u resulted in an evaluation r with r
< rp, the network representing Cg 15 adapted on-
line by minimizing the error (uj - upj) and using

n = nQ sgn (rp-r) as learning rate.

The only kind of information that can be
expected from the wuser during the skill
application and refinement process is an
evaluation after the terminatior of the skill
execution”. To perform the actual adaptation, we
use the following rules:

i It the user

zd it the curvent st

aske tate i
cal state or an eror state.
he corresponding funchon

(i.c. e, resp. ig) is updaied.

o
i

2. Qtherwise, the user is
asked if the cruerion that
fired did so correctly. If this
is the case, the conurol
function Cg is updated,

otherwise, the criterion 1s
updated. In the latter case,
an add:tional feedback can
be given by the user that can
be used for updating the
control function Cg.

3. If the control function
is updated, the critic rg is updaied, too.

at either a robot-specific error occurs,

rom the demwonstration 1s reached. or

if the conuol function must be updated, the
contribution of any particular action u(t) to the
obtained evaluation must be determined. To
solve this temporal credit assignment problem,
nfien exponentially discounted rewards are used.
However, our approach has been to use an
=xpenentially discounted adaptation rate,

For updating the region list, we simply include or
exclude the final state x: If a new goal or error
state must be learned, a corresponding region is
inserted. Otherwise, a new unlabelled region
covering the current state is inserted, thereby
excluding a part of the old region from the error
or the termination criterion.

7. Experiments

For the evaluation of the described method,
several skills were taught to PRIAMOS (for a
thorougher evaluation, see [3]). The skills we use
for demonstration purposes are the sensor-based
motion around a corner (Figure 7) and docking
{Figure 9).

in the first experiment, the skill to be learned was
the reactive motion around a corner (Figure 7).

Goal frame F g

Figure 7. Motion Around A Corner

This skill was demonstrated ten times, resulting
in example files containing between 40 and 52
samples each. The sampled data were analyzed
and preprocessed, using MINg = 4 and op =
3.05.
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Using this parameterization, 39 to 49 samples
remained in each example file (resulting in a total
of 449 samples) Following that, RBF neitworks
were constructed to represent the functions Cg
and rg, resulting in a network of 224 clusters for
Cs.

Table . Skill application and refinement {test
1): Neurons inserted in the networks
representing Cg and rg and new termination
condition tg generated during 4 subsequent

skill applications in known environment, but
starting from different locations. The goal was
reached in any of the trials.

g Function | Triall | Trial2 | Trial3 | Trial 4
Cs 9 4 1 0
ta 9 4 1 0
ig i 0 0 0
Success |0 1 1 1

Table 2. Skill refinement (test 2): Neurons
inserted in the networks representing Cs and
rg and new termination condition tg generated
during 4 subsequent skill applications in an
unknown environment. The goal was reached
in any of the trials.

Function | Triall | Trial2 | Trial 3 | Trial 4
Cq 12 -+ 0 0
rg 12 4 0 0
tg 1 1 0 0
Success 0 1 1 1

To evaluate the learned skill, it has been applied
in the refinement of two different environments.

Table 1 shows the results for the training
environment (a T-shaped corner), Table 2 gives
the resulis for the L-shaped test environment.
Obviously, a certain area of the input space was
not covered by the initial demonstrations, such
that new neurons had to be inserted during the
first trials. After the third trial, however, the
input space seemed to be covered sufficiently.

A second skill to be demonstrated, learned, and
refined was the docking skill (Figure 9). Here,
two demonstrations using the real robot resulted
mn 75 and 84 samples, respectively. By
eliminating irrelevant actions with 6g = 0.05, and

combining the two demonstration files, training
files containing 122 samples for both Cg and rg
were obtained. With MINg =4, 14 sensors {out
of 24) were chosen to be potentially relevant
From these data, the clustering algorithm
generated networks containing 89 (for Cg) and 35

Or Tg) regions.
for rg) reg

Table 3. Skill application and refinement (test
3): Neurons inserted in the networks
representing Cs and rs and new termination
condition ts generated during 4 subsequent
skill applications in known environment, but
starting from different locations. The goal was
reached in any of the trials.

Function | Triall |Trial2 | Trial3 | Trial4
Cq 11 3 0 0
rg 13 4 0 0
tg 1 0 0 0
Success 0 1 | 1

Table 3 shows the results obtained from applying
the initially leamed skill. Most notable is the
relatively large number of neurons inserted
during the first trial. At the end of this trial, the
termination  condition was not  correctly

Studies in Informatics and Control, Vo! 35, No. 3, September 1996 2%1



identified, such that the termination criterion had
to be extended as well. This extension, hawever,
proved to be sufficient for all subscquent irials.

Target positjoh—___

With respect to the applicability of the presented
programming technique, we believe that the
assumptions we have made, i.e. to rely on the
ability of a human teacher to demonstrate a
soluiion to a given task, and to provide at least a

Initial positign

Figure 9. Docking

8. Conclusions

Throughout this paper. an approach to acquiring
basic mobility skills from human demonstrations
has been presented. This approach takes the
explicit constraints w.r.t. real mobile robots and
their sensor systems as well as the need for
example preprocessing and skill refinement into
account. The skill refinement procedure that was
presented worked well in the presented examples.
This effect is ceitainly due to the fact that the
initial examples provided by the user were
already good evidence of the strategy to be
learned. In case of vreally bad teacher
performance, a refinement technique relying only
on a scalar feedback to be provided at
termination time will not be sufficient.

If, however, good teacher performance can be
expected, we consider the main limitations of the
technique to derive from the ultrasonic sensors,
whereas the tools and methods in current use
seem to be quite stable. Consequently, our future
work will concentrate on the use and integration

of additional sensor systems, especially a laser

scanner,

qualitatively correct evaluation of  robot's
performance, are realistic. Obviously, we cannot
expect that the action and perception skills
acquired via an interactive learning approach are
comparable to those originating from an in-depth
task analysis and explicit robot programming.
However, especially if robots are to become
consumer goods, they will be exposed to users
who are not at all familiar with computers or
robots. For such users, explicitly programming
their robot according to their personal
requirements is not an option, whereas teaching
by showing, ie. Robot Programming by
Demonstration, definitely is.

Acknowledgment

This work has been funded by the ESPRIT
Project 7274 "B-Learn II". It has been carried out
at the Institute for Real-Time Computer Systems
& Robotics, Prof. Dr.-Ing. U. Rembold and Prof.
Dr.-Ing. R. Dillmann, University of Karlsruhe,
Germany.

232 Studies in Infermatics and Control, Vol. 5, No. 3, September 1996



REFERENCES
ASADA, H. and YANG, B.-H., . Skill
Acquisition from Human Experts

. GULLAPALLIL, V.,

Through Pattern Processing of Teaching
Data, Proceedings of the IEEE International
Conference on Robotics and Automation,
1989.

ASADA, H. and LIU, S., Transfer of
Human Skills To Neural Net Robot
Controllers, Proceedings of the IEEE
International Conference on Robotics and
Automation, 1991.

BAROGLIO, C., GIORDANA, A,
KAISER, M. NUTTIN, M. AND PIOLA,.
R., Learning Controllers for Industrial
Robots, MACHINE LEARNING, 1996.

BARTO, A. G, SUTTON, RS. AND
ANDERSON. C.W_, Neuron-like Elements
That Can Solve Difficult Learning
Control Problems, IEEE
TRANSACTIONS ON SYSTEMS, MAN,
AND CYBERNETICS, 1983.

DECK, M., Interaktive Akquisition von
Elementarfihigkeiten fiir mobile Roboter.
Master's Thesis. Universitit Karlsruhe,
Fakultdt fir Informatik, Institut fiir
Prozefrechentechnik und Robotik, 1995.

DILLMANN, R., KAISER, M. and UDE,
A.,. Acquisition of Elementary Robot
Skills from Human Demonstration,
International  Symposium on Intelligent
Robotics Systems, Pisa, Italy, 1995.

DILLMANN, R, KAISER, M,
WALLNER, F. and WECKESSER, P,
PRIAMOS: An Advanced Mobile System
for Service, Inspection, and Surveillance
Tasks, in T.Kanade, H. Bunke and H.
Noltemeier (Eds.) Modelling and Planning
for Sensor Based Intelligent Robot Systems ,
WORLD SCIENTIFIC, 1995,

ELFES, A.. Using Occupancy Grids for
Mobile Robot Perception and Navigation.
TEEE COMPUTER, 1989.

GULLAPALLI, V., A Stochastic
Reinforcement Learning Algorithm for
Learning Real- Valued Functions,
NEURAL NETWORKS 3, 1990.

FRANKLIN, J.A. and
BENBRAHIM, H., Acquiring Robot Skills
via  Reinforcement Learning, IEEE
CONTROL SYSTEMS MAGAZINE 14(1),
1994.

1.

14.

16.

17,

19.

20.

21.

. HIRAI S,

. KAISER, M. and

. KOEPPE, R.

HARNAD, S., The Symbol Grounding
Probiem, PHYSICA D 42, 1990.

NOGUCHI, H. and IWATA,
K., Transplantation of Human Skiliful
Motion to Manipulators in Insertion of
Deformable Tubes, IEEE International
Conference on Robotics and Automation,
1995.

. KAISER, M., RETEY, A. and
DILLMANN, R., Designing Neural
Networks for Adaptive Control, I[EEE

International Conference on Decision and
Control (34th CDC), 1995.

KAISER, M., RETEY, A. and
DILLMANN,R., Robot Skill Acquisition
via Human Demonstration, Proceedings
of the International Conference on
Advanced Robotics, 1995.

DILLMANN, R,
Hierarchical Learning of Efficient Skill
Application for Autonomous Robots,
International Symposium on Intelligent
Robotics Systems, Pisa, Italy, 1995,

KAISER, M., FRIEDRICH, H. and
DILLMANN, R., Obtaining Good
Performance from A Bad Teacher,
International  Conference on  Machine

Learning, Workshop on Programming by
Demonstration. Tahoe City, CA, USA, 1995.

KAISER, M., KLINGSPOR, V., MILLAN,
J. del R, ACCAME, M., WALLNER, F.
and DILLMANN, R., Using Machine
Learning Techniques in Real-world
Mobile Robots, IEEE EXPERT, April
1995.

and HIRZINGER, G,
Learning Compliant Motions by Task-
demonstration in Virtual Environments,
4th Int. Symp. on Experimental Robotics,
1995.

KWOK, T.-Y. and Yeung, D.-Y.,
Constructive Feedforward Neural
Networks for Regression Problems: A
Survey. Technical Report HKUST-CS95-
43. Hong Kong University of Science and
Technology, Department of Computer
Science, 1995.

LIU, S. and ASADA, H. , Teaching and
Learning of Deburring Robots Using
Neural Networks, Proceedings of the
IEEE International Conference on Robotics
and Automation, 1993,

MILLAN, J. del R., Rapid, Safe, and
Incremental Learning of Navigation
Strategies, [EEE TRANSACTIONS ON

Studies in Informatics and Control, Vol. 5, No. 3. September 1996 233



22:

23,

24.

25.

26.

27.

28.

234

SYSTEMS, MAN, AND CYBERNETICS,
1996.

MILLAN, J. del R. and TORRAS, C, A
Reinforcement Connectionist Approach to
Robot Path Finding in Nen-maze-like
Environments, MACHINE LEARNING,
1992,

MOODY, J. and DARKEN, C. | Learning
with Localized Receptive Fields, i, T.
Sejnowski, D. Touretzky and G. Hinton
(Eds.) Proceedings of the Connectionist
Models Summer School , Carnegie Melien

University, 1988.

MUSAVI, M.T., AHMED, W. . CHAN,
K.H., FARIS, K.B. and HUMMELS, D.M.,
On the Training of Radial Basis Function
Classifiers, NEURAL NETWORKS 35,
1992,

NUTTIN, M., GIORDANA, A, KAISER,
M. and SUAREZ, R. ,. B-Learn Il - D 203.
B-Learn II - ESPRIT BRA Project No.
7274, 1994,

POGGIO, T. and GIROSI, F. , Networks
for  Approximation and Learning,
Proceedings of the IEEE 78(9), 1950.

POMERLEAU, D. A, Efficient Training of
Artificial Neural Networks for
Autonomous Navigation, NEURAL
COMPUTATION 3, 1991,

REIGNIER, P., Fuzzy Logic Technigues
for Mobile Robot Obstacie Avoidance,
Infernational  Symposium  on  Intelligent
Robotic Systems, Zakopane, Peland, 1993.

. THRUN, S. B,

(3]
i

. WALLNER, F,

. REIGNIER, P., HANSEN, V. and

CROWLEY, J.L., Incremental Supervised
Learning for Mobile Robot Reactive
Control, INTELLIGENT AUTONOMOUS
SYSTEMS 4, 1995.

. SONG, K.-T. and TAI, J.-C., Fuzzy

MNavigation of A  Mobile Robot,
Proceedings of the IEEE/RSJ Conference on
Intelligent Robots and Systems, 1992.

. THORNDIKE, E. L., Animal Intelligence,

MACMILLAN, New York, 1911.

COLUMBUS: An
Autonomously Exploring Mobile Robot,
ADVANCES IN NEURAL
INFORMATIONPROCESSING SYSTEMS
5, 1992.

. URBANCIC, T. and BRATKO, L ,

Reconstructing  Human  Skill  with
Machine Learning, Proceedings of the
Europsan  Conference  on  Artificial
Intelligence, 1994.

. WALLNER, F. and DILLMANN, R,

Efficient Mapping of Dynamic
Environment by Use of Sonar and Active
Stereo-vision, International Symposium on
Intelligent Robotic Systems "94, 1994.

LUTH. C. and
LANGINIEUX, F., Fast Local Path
Planning for A Local Robot., Proc. of the
Second International  Conference  on
Automation, Robotics, and Computer
Vision, 1992,

Studies in Informatics and Control, Vol 5, No. 3, September 1996



