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Abstract: In this paper. a method is presented for fast
learning of visually guided movements. The presented
algorithms have been tested with a manipulator tracking
manoeuvering target. Three parameters critical for the
visuo-motor co-ordination have been identified, and are
learned in less than one hour with repeated movements.
The conditions for fast and precise vision have been
investigated analytically, and the results of this analysis
have been used for improving the image processing during
the motions. After learning. the robot performs smooth and
fast reaching movements and can ¢asily drop small objects
into the waggon of a moving model tramn. Finally, the
method is generalised as a methodology for the
representation of artificial systems, which provides them
with the ability of adapting themselves to many different
tasks. It is also explained how biclogical models can be
used in this scheme
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1. Introduction

Because of the extended possibilities enabled
by vision systems and the continuous price
reduction of hardware, the use of robots guided
by a vision system will probably increase
drastically in the near future. However, to
enable more use of these robots, it is necessary
to eliminate some of their drawbacks. One of
the most important drawbacks is the lack of
flexibility to changes in the environment or the
task. This paper presents algorithms enabling
a robot to adapt its motion and its vision, The
usual automatic calibration of the camera
relative to the robot end-effector is extended to
the calibration of parameters involved in the co-
ordination  of the motion with the vision
processes. The resulting Adaptable Motion
Behaviour (AMB) is tested by tracking
manoeuvering targets with a manipulator
guided by a vision system.

The tracking of moving objects has been
investigated in many papers. Generally, the
objects are reached only in a limited area, and
the parameters are tuned by the programmer
(Allen, 1992: Buttazo. 1994). We require, in
contrast, a robot which optimises its parameters

autonomously, and is able to reach objects in
its whole workspace. In (Wen, 1995; Aboaf,
1988 ), algorithms for improving the returning
of a ball have been proposed. The learning
was performed off-line using a free body model
of the ball trajectory. Tracking @ manoeuvering
object is a more difficult task.” As well as fast
vision processing, efficient tracking algorithms
are required, the motion planning has to deal
with changes of the target position, and the
motor and vision processes have to be closely
related. The visuo-motor co-ordination Is
particularly difficult to model and will therefore
be learned.

Before using the robot to track objects, a
calibration procedure consisting of several
steps must be performed. Efficient reaching
movements are obtained by optimising the
vision processing with respect to time and
precision and by adapting the visuo-motor co-
ordination in three steps. Firstly, the spatial
transformation of the end -effector with images
is identified during specified motions of the
manipulator. Secondly, the motor and visual
processes are synchronised during repeated
movements. Finally, using a human strategy,
the velocity is modulated to optimise reaching
movements  with  respect to time and
smoothness.

The AMB has been tested in several
experiments (Figure 1 ). and demonstrated by
dropping objects into a moving waggon. It is
worth noting that almost all figures result froni
measurements performed during the
experiments, Figures resulting from simulation
will be specially indicated. In the video (Burdet
and Miiller, 1996), the robot can be seen while
learning reaching movements and loading the
waggon.

Two conditions were imposed for the
experiments. Firstly, as the algorithms should be
usable on generally available systems, only
standard low-cost hardware was used. In
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Figure 1. Hardware Used in the Experiments
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many different tasks and adapt their behaviour
by repeated tasks.

Adaptable Motion Behaviour (AMB)

The control structure is schematically shown in
Figure 2. The vision processing determines the
object's position i, in pixel co-ordinates. This
image position is transformed into a Cartesian
position x,, (Section 3.1). The visual tracking

corrects for the reaction time RT, due to the
vision processing and motor reaction, and

predicts the actual object's position x;,

(Section 2.2). The motion planner determines
the trajectory to attain this position and
generates velocity and acceleration bounded
movements using the velocity scaling factor A
{Section 2.3). Finally, the desired trajectory is
realised by the controller using feedback from
the encoders. g, ¢, are the actual and desired

joint positions of the manipulator, and e is their
difference.

Before the robot can efficiently track moving
objects, the vision processing, the hand-eye
transformation, the reaction time and the
optimal velocity scaling factor are learned
during specified motions (Section 3).

2. Description of the Robot

2.1 Hardware

The robot consists of a parallel manipulator

moving in a horizontal workspace of 3x2 m*
and a simple vision system. The manipulator

has 3 degrees- of- freedom: the position
(x,,xz)and the orientation ¢. Three VME

boards are used to exert the control: A frame
grabber stores and thresholds the image taken by
the camera, a 68020 board executes the vision
algorithm, and a 68040 board plans and controls
the arm movements.

The moving object is a light bulb fixed to a
model train. The train's rails are arranged in an
irregular path, which occupies the whole of the
manipulator's workspace, and contains a straight
segment which can be repeated for learning. As
the robot sees only the object (and not the
rails), the object's movement can be considered
to be unpredictable.

2.2 Visual Tracking

The unique information the robot has about the
object manoeuvre, is that the changes of
direction and  velocity are performed
continuously at a limited rate. It was therefore
modelled so that the object acceleration

X is a zero mean random variable with
autocorrelation function decreasing with time:

E[x()x(+ r)] . O'fn exp(—ﬂ’ z'|) . (n

E[ f ()] stands for the expected value
j f (t)a'P(r), o, Isthe standard deviation of

the acceleration, S the manoeuvering rate,i.e.
the rate of change of the acceleration, and r
the time variable. The state equation of the
object motions in discrete time is then (Singer,
1970):
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where x, =(x1(k),x3(k)) is the robot position

at time k£, T the sampling time of the visual
analysis and ¥, a vector of Gaussian white

noise. The observation equation is

Xk
z, =[100]| %, |+W, . 3)

Xk

where z, is the position measurement at time &
and W, a Gaussian white noise corresponding

to the measurement error. The trajectory of the
manoeuvering object is modelled by Equations
(2)and (3).

The object's state is calculated using a Kalman-
filter, which guarantees the best estimation in
the least square sense (A.E. Bryson, 1975). As a
delay occurs, due to image processing and the
corresponding motor reaction time, the filter
gives an estimate of the object past state. The
actual object position is predicted using this
estimate and Equation (2) with V, =0.
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Figure 2. Control Scheme of the Visually Guided Robot {see text of Section 1 for explanations)
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Figure 3. Experimental Apparatus. The horizontal scene is filmed by the camera. The control is
executed by the boards contained in the VME-rack (see text of the Section 2.1)
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The tracking has been tested by simulating the
motions along a complex trajectory. Resulting
position functions are shown in Figure 4. The
estimated position is superimposed onto the real
one. The prediction (corresponding to the actual
position) generally foliows the real trajectory,
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state equation (2).
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F¥igure 4. Tracking Along a Complex Trajectory (Simulation). The different curves correspond to
real (-), estimated (.) and predicted (-.) positions. The estimated positions are superimposed onto the
real ones.
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Figure 5. The Measured Object Positions are Nearlv Gauss-Distributed Around the Expected
Positions

but needs some time to deal with the changes
of acceleration. It is not possible to measure
the prediction error in the implementation,
because the real position is not known, however
the results of Section 4 will show that the
tracking 1s also precise in reality. Figure 3
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tracking algorithm: Modelling the moving
object using a second order model led to
estimation errors of about 5 cm. which is more
than 7 times larger than with our algorithm. Our
model, assuming continuously  varying
acceleration, also led to better results than a



model assuming abrupt variation of the
acceleration (Allen, 1991), and a simple second
order filter (Buttazo, 1994).

2.3 Motion Planning

As the robot has to track a moving object, the
robot motion planner has to react to changes of
the object's position during the movement. In
addition, we required that the movements of the
manipulator were smooth and fast. Planning
using techniques from optimal control theory
has been investigated, but required to solve a
sixth order polynomial, which must be
performed numerically and is impossible to
realise in real-time applications with simple
hardware (Miiller, 1995). An alternative solution
had to be found.
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A new flexible motion planner has been built
which plans smooth motions and is able to
handle sensor signals or user inputs at any time
(Luthiger, 1996). With this planner it is, for
example, possible to reset the destination during
the movement. It calculates on-line the next
motion increment as a function of the actual
state, the destination and upper bounds for
the Cartesian velocity and acceleration (Figure
6). This motion planner was used in our
experiments. Each incoming expected object
position is given as a target to the planner,
which automatically tracks it.

To be able to tune the motions kinematics, a
characteristic feature of the movements of the
human arm was used. From (Atkeson and
Hollerbach, 1985), it is known that if a

movement x(s) during a time 7; has to be
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Figure 6. Velocity Profiles Along the x and y Coordinates of a Reaction to a Change of the Target
Occurring at Time ¢* with the Motion Planner Used in the Experiment
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Figure 7. The Velocity Scaling Factor A Determines the Velocity and the Acceleration of the
Movements. It Acts on the Movement Duration and Its Smoothness.
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accomplished slower or faster, i.e. in a time
T, with7, = 7;, the time is simply linearly

scaled:

x'(t)=x(ﬂl), A= (4)

e

With our motion planner, the movements'
kinematics is determined by upper bounds v,

and a,, for the Cartesian velocity and

acceleration. Similar to the "human strategy",
the kinematics of robot motions was determined
using the following A-scaling:

5
vmaxéxlvm/, amaxszl‘aref, (5)

where v,,, and a,, are constants depending

ref
on the manipulator dynamics and the workspace.
With this parameterisation, the kinematics can
be varied using only the velocity scaling factor
A (Figure 7). This parameter controls not only
the motion velocity but (as it acts on the
acceleration) also its smoothness.

2.4 Fast
Processing

and Precise Vision

The position of a moving object is determined
by calculating the mass center of the white
pixels in the binary black and white image. The
time required for this operation is approximately
proportional to the number of pixels to be
examined. Examining the 512x512 pixels of one
entire image requires more than 18 s. For real-
time applications, it is therefore necessary to
restrain the visual analysis to the important
pixels.

During the time needed for the analysis of one
image, only a limited number of pixels can
be examined. We searched for a strategy,
thereby the object position could be determined
with the maximum possible precision and in
minimum time. Accordingly, to this aim, ae?, a
being the image resolution and ¢ the time needed
for vision processing, was used as cost function
for the visual analysis. The expected value of
this function has obviously to be minimised, i.e.

J= E[a-z]zja(h): dP(h) (6)

has to be minimised, with 4 the two-dimensional
position vector in the image and P(h) the

distribution of the object positions around the
expected positions, i.e. Gauss-distributed
(Figure 5).

We used in (Burdet and Luthiger, 1994) a
Kohonen neural network for adapting the image
processing to the distribution of the measured
objects' positions around the expected objects’,
position. Here, because this distribution is a
Gaussian one, a simpler algorithm has been
designed. The object is visually tracked along
typical trajectories using the algorithm described
at Section 2.2, and the error between the
expected position and the effective position is
calculated. This gives rise to statistics as shown
in Figure 4. The distribution of the object
positions around the expected positions is
approximately Gaussian. The standard deviation
of this distribution determines the image
processing in the following way: the co-
ordinates of the pixels, which will be analysed,
are random numbers following a  Gaussian
distribution with the same standard deviation.
These pixel co-ordinates are stored in a Table
and added to the expected position calculated
by the tracking algorithm to form the window in
which the object will be searched.

This process is performed directly after the
calibration of the camera relative to the robot
workspace described in the next Section. Using
this special window instead of analysing the
whole image enabled us to reduce the time
necessary for analysing one image from 18 s to
80 ms. 80 ms is the minimal time possible
with the simple wvision system used in our
experiment (Miiller, 1995).

3. Learning the Visuo-Motor
Co-ordination

The visual analysis and motion planning have
been treated at Section 2. To reach objects, in
addition to a fast, precise visual analysis, and
smooth reaction movements, it is necessary that
the movements are perfectly co-ordinated with
vision processing. How to realise this, will be
explained in this Section. Three features are
critical for the visuo-motor co-ordination. They
are:

e the geometrical transformation between the
image and the position of the end-effector
(if this is not precjse, the robot will move
to a wrong location)

e the temporal synchronisation of the motor
and vision processes (If this is not perfect,
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the robot will move to a past or future
position)

e the velocity of the overall movement (if this
velocity is too high, the movement is jerky
and too fast in comparison to the {slow)
visual analysis. This will disturb the
manipulation).

These three factors can hardly be determined by
a calculation and must therefore be learned.
These factors are also not independent. They
must therefore be learned in three steps in the
order of the above list. learning procedures
and their implementation will be described in
the next three Sections. After each step, it was
tested if the sub-task had been well learned and
if it had in fact contributed to improving the
reaching motions.

3.1  Identifying the
Transformation

Hand-Eye

In order to reach the object accurately, it is
necessary that the transformation of the
Cartesian position of the end -effector in image
coordinates is properly identified. This
transformation has also to be very fast to save
processing time.

The hand-eye transformation is acquired as
follows. A lamp is fixed to the end -effector,
which is moving to the nodes of aregular grid
in the robot workspace. At each node, the
position of the famp in the Cartesian space and
in the 1mage are recorded in a Table. The
transformation of any point is then performed
using a linear interpolation of its neighbouring
nodes. This transformation requires only 14
multiplications and 15 additions independent of
the precision (to take more points would simply
increase the Table). Using a grid of 16x8=128
points, we obtained a mean error of 2 mm. This
corresponds to half the size of a pixel and is two
times smaller than the measurement noise.

Three alternative methods were also examined.
Using a single linear transformation for the
whole workspace was rejected, because the
standard deviation of the error was too large (47
mm). To reach the same precision as our
method, a feedforward neural network or a
Kohonen neural network required more than
two times extra operations to perform the hand-
eye transformation (Miiller, 1995).

3.2 Learning the Reaction Time

If the estimated object position is given to the
moticn planner as a target, the robot will follow
the object, but with a delay. To reach the actual
object position, it is necessary to correct the
time required for image processing and motor
reaction. This reaction time (RT) depends
principally on the commurmication between the
electronic boards, the timing of the processes
on each board and on the motion planning. It
cannot be accurately modelled and must
therefore be learned. Our aim was to find the RT
necessary for reaching the object in most of the
cases.

Learning the RT was done as follows. The train
carrying the target travels along a closed loop
with constant speed (as constant as possible!).
After the train passes a light detector, the robot
tries to track the moving object during the 30
next images. The sum of the 30 distances
between the end -effector and the object is used
as a measure of the synchronicity. The same
movement is performed 10 times and the mean
synchronicity measure is minimised relative to
the RT (It is necessary to use mean values,
because reaching includes many different
processes whose timing are only partially
reproducible (Miller, 1995)). A stochastic
optimisation was used to find the optimal RT.
This means that the actual RT is perturbed
stochastically, the corresponding values of the
cost function using the old and the new RT are
compared, and the RT corresponding to the
smaller value of the cost function is used in the
next movements,

The RT depends on the kinematics of the robot
movements. Therefore, it was necessary to
find the optimal RT for each velocity scaling
factor A. The result of the optimisation is shown
in Figure 8. This function is stored in a Table
and used to perform further movements.

It was first experimentally confirmed that the
learned RT did not depend on the velocity of the
moving object and was valid for other
trajectories (Miller, 1995). Secondly, it must be
checked that reaching is improved by
optimisation. With this aim, the grasping time
T, ., was measured as a function of the RT, for

Brasp

different 4. T,

wrasp 15 defined as the first time at
which the distance between the end -effector
and the target is less than 1 cm in 4 consecutive
images. Figure 9 shows the result for A=1. As
expected, the grasping time is small for the
optimal RT and the associated standard
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deviation is even smaller there than in any other
point. For a lower RT, most of the trials fail.
This means that the chosen cost function really
improves the reaching movements.
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3.3 Optimising the Velocity

Learning the correct RT enables the manipulator
to reach the moving object in most of the
cases, To improve the reaching movements, it
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is important to use a velocity profile which
maximises the accuracy and minimises the
reaching time. In human arm motions with high
accuracy, it has been observed that the velocity
is adapted to the required accuracy and
synchronised with the visual analysis (Milner,
1992). It was further shown that this was
probably achieved by optimising the movements
with respect to smoothness and speed (Hoff,
1992: Burdet, 1996). Following the human
example, we chose to improve the motions by

optimising them with respect to speed and
smoothness.

J= aa:grasp + A4,

(M

where _fgmp is the mean grasping time over 10
trials, A the velocity scaling factor, and o an
arbitrary constant. The minimisation of T'grasp

allows the robot to reach the object quickly. 4
determines the upper bounds of the Cartesian
velocity and acceleration (see Equation (5)).
Thus a small A leads to smooth motion (Figure
10). Finally, o is controlling the relative
importance of time to smoothness optimisation.
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Figure 10. Trajectory with too motion velocity too high (continuous lines) and with optimal
velocity (dashed line) resulting from a simulation. Trajectories with the velocity set too kigh are
jerky because the robot sometimes travels too far and has to come back, or it has to stop, because
the precision attained in the visual analysis is not yet sufficient.

There exist several algorithms for calculating
the optimal trajectory between two points (A.E.
Bryson, 1975; Brobow, 1988). Recent works
have shown that it is even possible to consider
in the optimisation the uncertainty inherent to
real systems (Allen, 1993; Hoff, 1992).
However, visually guided movements can
significantly be modified at each time.
Therefore, using these algorithms, it would be
necessary to calculate the optimal trajectory at
each time, which is impossible with simple
hardware, because the optimisation requires a
relatively long time. Thus, these methods are not

usable for sensor guided movements. We

searched for an alternative method, thereby the

optimisation is valid not only for one
movement, but for a large class of movements.

Let us consider the cost function

256

Thus the minimisation of this function should
lead to smooth and fast reaching movements.

The improvement resulting from  the
optimisation is particularly important when the
objects to be grasped require complex image
processing. In this case, the movement can be
started towards an approximate location, of
which determination requires little image
processing, and the target position is corrected
with refined visual analysis during the motion.
When the velocity bound is too high, the end-
effector moves too far and has to go back,

resulting in unnecessary oscillations, see Figure
12,

The task we have implemented consists of
grasping a long object. Long objects must be
grasped widthwise, thus this task requires the
knowledge of the object's center of mass and
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orientation. A fast algorithm for determining
the orientation of long objects requiring only 1
multiplication/ pixel and 4 additions/ pixel, was
devised (Miiller, 1995). The position was
determined as  before. The object may be
grasped only after the position and orientation
have been accurately determined, i.e after about
ls.

corresponding :fgmp and number of times
missed have been measured (Figure 11). We
can see that Tgsp is decreasing until A=1.3,

which corresponds to the learned value, and
remains constant up to this point. The number of
missed times is also minimal up to this point.
Thus the learned value is really optimal.

8

optimal lambda

1.4 1.6 1.8 2
lambda

Figure 11. Test for the optimisation of the velocity. -: mean grasping time [s], - - : mean grasping
time + standard deviation [s], *: number of times missed

T was defined as the first time at which the

grasp

We have experienced that with the optimal A,
reaching motions are smoother, faster, and the
vibrations are reduced. Figure 12 shows the
difference between trajectories performed with

different value of A, the robot performed 10 different 4. For 4 too low, too much HIng is
reaching movements starting in locations needed to reach the target or the target is not

e ) reached at all. With 4 too high, the motions are
randomly distributed over a 20x20 em® area. A jerky. Motions performed with an optimal value

stochastic optimisation with a=1 was used to Pt dmreainath Sndfast
determine A.

distance and orientation between the end-
effector and the object are less than a specified
constant in four consecutive images. For each

To investigate the efficiency ofthe learmning, A
has systematically been varied and the

Studies in Informatics and Control. Vol. 5. No. 3. September 1996 257




1.1 T i

0.9

T

0.8

y [m]

, oObject’s
| trajectory
\
\

\
\

T

0.6

0.5

~-0.4

x [m]

Figure 12. Trajectories with 4 too high (1=1.6), too low (1=0.9) and optimally set (1=1.3). The
startpoint is (0.0.5) and the trajectory ends when the object is "grasped".

4. Learning... and Loading A
Moving Waggon

Let us briefly review the learning process
described at Section 3. First, an accurate
calibration of the camera relative to the robot
end -effecter was performed in about a quarter
of an hour. Then, a fast and precise vision
processing was learned in less than 1 minute.
Thirdly, the temporal synchronisation of the
motion and the vision processes were improved
by performing specified movements for about
half-an- hour. Finally, the velocity was adapted
to the desired accuracy and to the vision
processing in about 1/4 hour. Thus the learning
was performed in about 1 hour. We note that the
generalisation to  movements in  three-
dimensional space would only increase the
time needed for the static calibration of
cameras relative to the robot's end -effector,

To test the whole system after learning, the
foliowing task has been defined. An electro
magnet is fixed at the end -effector of the
robot, which is moving in a plane 12 c¢cm over
the table. The robot has to drop small metallic
objects into an 3x5 cm? moving waggon. The
robot releases the object when the robot and
waggon positions are matched in  four
consecutive images and the  normal and
tangential object acceleration is small. This
guarantees a correct prediction of the target's
position. The parameters learned with the
procedures of preceding Sections are used. In
particular, the optimal velocity scaling factor is
determined while starting the robot movements
at random locations in the workspace.

Similar tasks were performed in (Allen, 1992)
and {Buttazo, 1994). In (Allen, 1992) a robot
was able to track and grasp a train moving with
a velocity of up to 0.1 m/s in a circle of radius
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0.25 m (which gives a normal acceleration of
0.04 m.e"s:). In (Buttazo, 1994), a mouse-
vatching robot was developed, which moved in
a straight line catching objects moving
perpendicuiarly to this line, with velocity up w0
0.5 nvs and acceleration up t 1.5 m/s”. The
sampling rate of the images was 20 ms and, in
our experiment, it was 80 ms, due to the
limitations of the frame grabber used for vision
processing.

Afier learning, our robot is able to ioad the
waggon when it is moving up to a velocity of
0.6 m/s and has a normal acceleration up to 1.4
m/s’ every time. The robot follows the waggon
until the releasing criteria are fulfilled, and then
drops the object into it. At higher velocities, the
robot follows the waggon, but, as the
acceleration is too high, it does not release the
object. Thus, using cheaper hardware than
(Allen, 1992) or (Buttazo, 1994), we obtained

5. Analysis and Generalisation
of the AMB

A relatively complex task, the tracking of
manoeuvering objects, has been learned with a
robot. In this Section we will investigate which
principles can be deduced from the preceding
developments and be applied to the learning of
other complex tasks with a robot.

5.1 The Underlying Structure of the
AMB

The task the AMB had to accomplish was to
adapt the wvision processing and the visuo-
motor co-ordination in order to perform fast,
smooth and efficient reaching movements. In
order to reduce the complexity, this task was
divided into the following sub-tasks: the spatial

Figure 13. Robot Dropping a Small Object into a Moving Waggon

similar or better results with respect to the
kinematics of the catched object.

Studies in Informatics and Control. Vol. 5, No

co-ordination of the manipulator with  the
vision, the wvisual tracking, the image
processing, the temporal synchronisation of
the motor with the visual processes, the
motion planning, and the movement execution.
These six sub-tasks and the corresponding
features are listed in the two Tables of Figure

14. Each sub-task depends on some components
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described by a few parameters. For example, the
motion planning has to consider the mechanical
structure of the manipulator and the motors
limitations, and the movements are compactly
parameterised by the velocity scaling factor 1.
To each sub-task there corresponds seme
additional requirements, which are fulfilled
when a cost function is minimised. The motion
planning has, for example, to be such that the
reaching movements are fast and smooth. This
is realised by minimising the function

J = a?grm‘u + 4.

movement execution) and has then to be
optimised after all these sub-tasks.

The optimisation of each sub-task was
performed in a pragmatic way. The spatial co-
ordination and the movement execution are
highly reproducible. Therefore, the first could
be stored in a Table, and the second was
improved by means of analytical methods. The
system's uncertainty was too high for other sub-
tasks, so that they had to be improved by

SPATIAL
COORDINATION

VISUAL TRACKING

IMAGE PROCESSING

physicai components

- vision system

- model of obj. mvt.
- vision system

- vision system

parameters

table-look-up

ﬂs Om>Ow

a

constraints

- pixel size

-time for the transf.
-"encoders precision
- manip. elasticity

- meas. error
- obj. manoeuvr.

- time

additional requirements

precision

best expectation of the
state

fast, precise movements

objective function

Z . , Spatial error
points

Efat]

E[(xk - f;d;()z]

rel. to biol not known "retinal” struct. not known
TEMPORAL MOTION PLANNING MOVEMENT
SYNCHRONISATION EXECUTION

physical components - vision system - mechan. struct. - manip. dyn.
- VME -+ boards

parameters reaction time A @

constraints

time:

- vision system

- comm. betw. boards
- motion planner

- motors limit.

- motors limit.

additional requirements

best reaching

fast reaching, smooth
mvts

precise movements

objective function

Z:mugm d (obj., man.)

a Tgm.\p +4

(Pe+ Dé)?,
e=qy —4g

rel. to biol

not known

similar to model

similar to model

Figure 14. Representation of the AMB. The task of performing fast, smooth and efficient reaching
movements of a moving object has been divided into six simpler sub-tasks. More explanations are
given in the text of Section 5.1

The learning of the task corresponds to
learning all of the sub-tasks, i.e. to minimise the
cost function from each of the sub-tasks. It was
therefore necessary to study the relationships
between the sub-tasks in order to know which
order they might be learned (Figure 15). The
Tables of Figure 14 were very useful for this
examination. For example, the motion planning
is dependent on all other tasks (except for the

either using a statistical analysis, or stochastic
optimisation. Accordingly, mean values over
several movements were used as cost functions.

5.2 A Representation for Learning
Systems

The lack of flexibility of present robots is one of
the most important reasons for their restricted
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use in industry. To extend the application area
of robots, it is necessary to grant them the
ability of executing many different tasks and of
adapting to new situations. In some
dictionaries, this property is given as the
definition of intelligence (Le Petit Larousse
lilustré, article intelligence). Intelligence is the
property used to differentiate human from
(other) animals or animals from machines
(Richard, 1991). In fact, until recently, it has
been thought that the ability of adapting
oneself efficiently to new tasks is only carried
out by humans. Researchers from the artificial
intelligence and cybernetics communities
suggested however that, by the combination of
simple rules, it is possible to obtain behaviours
which are so complex that any human would
judge them to be intelligent (Penrose, 1989;
Braitenberg, 1986). It is beyond the scope of
this paper to evaluate whether it is possible or
even desirable to realise such "intelligent"
robots. However, we believe that it is possible
to construct robots which possess a certain
autonomy and adaptability.

spatial

coordination

movement
execution

motion
planning

Zimmermann, 1991). However, efficient
learning algorithms do not guarantee efficient
learning. Relative to the efforts invested in the
realisation of learning systems, the results
obtained are limited. We believe that the reasons
for this come not only from the difficulty of the
task, but also depend on the approach made. It
has often been thought that it is possible,
considering the system as a black box, to
optimi.e the whole system in one step. This
concept does not operate, because of the high
complexity of most systems . For example, we
have shown that it is practically impossible to
identify the djymamics of a robot operating in
its entire workspace with a look-up-table or an
artificial neural network (Burdet and Luthiger,
1995). By contrast, we proved in an
implementation that using a suitable model,
the  manipulator's dynamics can easily be
identified (Burdet, 1996). A good model of the
arm dynamics is a prerequisite for learning to
perform movement optimally (C.H. An and
Hollerbach, 1988; Burdet and Luthiger, 1995).

Bernstein suggested that the human motor

visual
tracking

image
processing

temporal
synchronisation

Figure 15. The sub-tasks of the AMB are partially ordered according to their relationships with
each other. A—B means "B depends on A". The subtask "movement execution" is independent of
the other sub-tasks, because the position of the manipulator is measured only by the encoders and

not by using vision

In the last fifteen vyears, the adaptation
properties of robots have been an important
topic of research (Kaiser, 1995), and efficient
learning algorithms have been developed (A.E.
Bryson, 1975; Lan, 1990; D. Nauck, 1994;

system reduces the complexity of motor
processes by using some motor invariants
(Bernstein, 1967). We believe that, similarly,
the emergence of robots able to attain a certain
autonomy and adaptability, requires the
definition of invariants of the robots behaviour.
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The main problem to design intelligent systems
in the above sense may consist in finding a
suitable representation. The sysiem has to be
designed in order to allow a variety of different
tasks to be realised, but with a mimimal set of
parameters, so that the behaviour should easily
be adapted.

In the preceding Sections, we have described
how a relatively complex task, the efficient
tracking of manoeuvering objects, can be
learned by a robot. This has been realised with
techniques inspired by biological models, and
through a pragmatic approach. In this Section,
it has been suggested that an important factor
for learning complex tasks with a robot is a
suitable representation of the system. We have
searched for those features in the representation
of the AMB which can be generalised. In the
following, we propose guidelines for the
representation of robots based on the
representation of the AMB, which should enable
them to adapt themselves to many different
tasks. In Section 5.2.2, it will be explained how
biological models can be used in such a
representation.

5.2.1 Guidelines for the Representation of
Learning Systems

A robot system s compossd of physical
components, it is submitted 10 several external
and internal constraints, has to perform some
tasks and to meet additionai requirements.

The following guidelines for the system's
representation  should favour its adaptability to
many different tasks (Figure 16

I, The system's components are represented
using a minimal set of parameters allowing
the largest number of possible
configurations.

(o]

A minimal set of sub-tasks is defined. so
that every task should be described by a
combination of these sub-tasks.

Each sub-task has a cost function which
corresponds to constraints and additional
requirements: these are fulfilled when the
function is minimised with respect to the
parameters.

(5]

4. To allow actual optimisation, the cost
functions have to depend on a minimum
number of parameters, ideally only one

5. To deal with the uncertainty inherent to real
processes, the cost function must be the
expected value of the stochastic functions

corresponding to the processes, and the
improvement must be performed by a
statistical ~ analysis or a  stochastic
optimisation.

6. The optimisation at the task-level
corresponds to the optimisations of each of
the sub-tasks. Therefore, it must be known
which sub-tasks depend on each other , and
that two sub-tasks cannot be mutually
dependent. Mathematically, this means that
the sub-tasks dependencies must form a
partial ordering (Lang, 1993).

We note the following:

s In the case of independent sub-tasks, the
cost function of the entire task is the sum
of the functions of the sub-tasks. The sub-
tasks can then be learned in an arbitrary
order and even simultaneously. In this case,
the cost functions define a mathematical
measure on the task space (Lang, 1993).
Such a case occurs when the task consists
of a series of subtasks to be performed, as
for example when an object has to be
caught, and further to be placed in a precise
location.

e The above guidelines can seem abstract or
useless. However, they can help structure
the design, and therefore can save time
and avoid errors. For example, using the
dependencies order relation, one can check
in a simple way if two sub-tasks are
mutually dependent. If they are, then these
sub-tasks are in fact similar, and have to be
iearned in the same step.

= The proposed optimisation scheme leads to
a suboptimal solution at the task level. The
principal advantage of such an optimisation
15 feasibility. The above  described
stepwise optimisation is much more likely
to be achieved than a global optimisation
of the task in one step.

5.2.2 How Biological Models Can Enable the
Emergence of Learning Robot Systems

There exist several reasons why biological
strategies should not be blindly copied. Firstly,
artificial systems have goals different from
biological systems'. Secondly, the artificial
"hardware” and biological "hardware" are quite
different, so that in some cases the biological
behaviour cannot be reproduced using an
artificial system. Thirdly, there are sometimes
simpler ways to realise the biological behaviour
than using the biological model.
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Figure 16. A Representation of a Robot System Enabling Adaptability to Many Different Tasks
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However, biological examples are often the
unique proof of existence available. One
application of biological models in robotics is
to guide the intuition. They can give ideas of
useful properties to add to the behaviour of
robotic systems. For example, in our case, the
human improving its arm movements during
practice (Schneider, 1989; Piaget, 1936; van
Hofsten, 1990) gave us the idea of the AMB.

We have proposed how to subdivide complex
tasks into simpler sub-tasks. In this scheme,
biological models can be used directly for
some sub-tasks. That is the second role of
biological models in robotics. In the AMB, for
example, the motion planning strategy and the
optimisation of the velocity came directly from
the human model. Another example is how
the observation of insects gait has been used to
control walking machines (Cruse, 1990;1994).

6. Conclusions

In this work, a method for learning efficient
reaching movements has been proposed and
demonstrated in an implementation. Using the
AMB, the robot autonomously learned efficient
visually guided movements. The usual (static)
calibration of the camera relative to the robot
workspace has been extended to the calibration
of parameters involved in dynamic processes.
The procedures composing the AMB are
efficient and fast, and can be used for automatic
calibration of robots controlled by a vision
system.

The importance of the system's representation
for the learning of complex tasks has been
pointed out. It has been noticed how the
principles according to which the AMB has
been designed, can be generalised to a
methodology for the representation of complex
artificial systems, and how biological models
can be used in this scheme. The performances of
the AMB have shown that this methodology can
lead to robots able to adapt themselves to
changing environmental conditions. This should
extend the flexibility of present robots and
therefore decrease their cost.

From a control theoretical standpoint, the
control of our robot and of the human arm are
similar. Recent work has produced evidence that
the motion is planned in extrinsic Cartesian co-
ordinates (Shadmehr and Mussa-Ivaldi, 1993),
that the visual control is exerted at discrete
times (Milner, 1992) and the spinal control and
muscle elasticity roughly correspond to

feedback control (Mclntyre, 1990). The control
scheme of Figure 2 is therefore a coarse model
for the control of the human arm, and our
implementation has proved that this model
works. QOur artificial robot system, leaming
visually guided movements, can be compared
with a young child learning reaching motions
(van Hofsten, 1990).
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Appendix

Conditions for Fast and Precise
Vision Processing

During the time A4 7, needed for the analysis of
one image, only a limited number of pixels A
can be examined. We search for a strategy,
thereby the object position is determined with
the maximum possible precision and in a
minimum time. Accordingly, to this aim, a<¢, a
being the image resolution and ¢ the time needed
for vision processing, is used as cost function
for the visual analysis. This function naturally
has to be minimised not for one image, but for
the mean of several images:

J = Ela-]= [athy e dp(h) . (8)

h is the two-dimensional position vector in the
image, and Prh) the distribution of the object
positions around the expected positions. For
convenience, we take

de(h) =1, ©9)

and further hypothesize that the time needed for
examining M pixels is proportional to M. To
simplify the calculation, we will also consider
a continuous pixel density.

Accuracy

To simplify the calculations, a relationship
between the accuracy and the pixel density must
first be established. Let pixels be arranged in an
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Figure 17. The Geometrical Relationship Between the Resolution a and the Grid Step d4

infinitesimal regular quadratic grid with step d
The resolution of this grid is (see Figure 17).

a=+2d. (10)
The area of a large square with side L = &d is
V= L= (kd)’. (1)

The mass, i.e. the number of pixels in the
square, is given by

M=k?, (12)
and the pixels density pis

M

s (13)

o)

From Equations (10) through (13) we get

7z

a(h) = ——== (14)

Joth)
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Optimal Windowing

Restricting the visual analysis to a window
smaller than the entire image is a common
technique for reducing the time for image
processing (Buttazo, 1994; Wen, 1995).
Generally the window size is determined by
the actual velocity and acceleration of the
moving object (Buttazo, 1994). The advantage
of this strategy is that when the velocity is small,
the window will also be small, and
correspondingly, the precision will be high.
Nevertheless, errors in  the velocity and
acceleration predictions leads sometimes to a
failure in reaching the target, so that in the next
image the window has to be large enough to find
the object once again, and the processing time
will be 24t and not A 1.

Let us now find which radius the (circular)
window must have to minimise the cost
function (8), which takes into account both the
case where the object is inside and the case
when it is outside of this window.
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At
Jp ()
+P[d(oc,wc) > r]ﬂ——[———

VP(2ZR)

where P[d(cc,wc)< r] denoties the probability
that the distance doc, wc) between the mass
center of the object oc and the center of the
window wc is less than r. pfr) is the pixel
density, if the pixel mass M (4 ¢) analysed in
the time A ¢ is uniformly distributed onto the
window. Finally, = means "is proportional to".

J(r) = Pld(oc,wc) <r]
(15)

Further let R (A4 ¢) be the radius of the smallest
circle, in which the moving object can surely be
found. For example, when the velocity of the

object is bounded by v, ., then R = v 4t
Equation (15) then becomes
. I’! e I o
J(r) =)L1[V/E;) At +(1-A4) (;R)2At
(16)

BYRLIY S T

N
with C constant and A(r) = P[d(oc,wc)<r/.

When the object positions are Gauss-distributed
around the expected positions, then

%)

A=1-¢ > (17)
and it follows that
- ‘ifﬂlz]
J(r):mﬁ ARG R J(r--zm) (18)

It can easily be proved that dJ(r)/dr is negative
in [0, R], therefore J(¥) is minimal for » = R.

We conclude that the window must be chosen to
be large enough so that the target should never
be missed. A windowing-method depending on
the velocity as in (Buttazo, 1994), is not
optima! in the sense of Equation (8).

7.3 Nonhomogeneous Pixel Density

We will show here that the analysis with a
uniform pixel density can be further improved
inthe sense of Equation (8). Inthe middle of
the human retina there is an area, called the

fovea, with higher cell density and higher
sensitivity.  Would such a nonhomogeneous
pixel density also improve the properties of the
artificial retina?

Let the window be dimensioned so that the
object is found with probability 1. In this
czse, it follows, using Equation (14), that:

dP(h)

Jo(r)’

with A ¢ the time needed for the analysis of one
image. When the density depends only on the
radius r, then dP =rdp dr F(r), where F(r) is the
radial density function. It then follows that:

J=AtIdP(h)a(h)iAtj (19)

F(r)

R
J=2;rj'0 -\/p_(r_)

Uniform Pixel Distribution

rdr. 20)

If the M pixels are uniformly distributed within
a circle of radius R, then

M
p=

=—,
TR

(21

and it follows that:

-
A (22)

JM

Pixel Distribution Proportional to the
Distribution of the Object's Positions

If the pixels are distributed proportionally to the
density of the object position around the
expected position, then p(r) = MF(r), and it
follows that:

27 R
J= T jo JFG) rar . 23)

For Gauss-distributed objects' positions, this
gives:

NG}
R s i
J=———2E j —————] e 2o/ rdr
M0 2ro
2 24)
1( R
20 &)

If R =20 isused, it finally follows that:
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R

R
J=—=(l-e)=063 (25)
v M

ﬂ_‘

N

The comparison of Equations (22) and (25)
clearly shows that it is better to use a pixel
density proportional to the object distribution
than a uniform distribution.

Summary

The results of the above analysis indicate that
for fast and precise visual analysis, only sormne
pixels in the vicinity of the expected position
should be analysed. The density of the
examined pixels should further be proportional
to the density of the objects positions around
the expected positions.
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