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1. Introduction

Multi-criteria decision making (MCDM) methods 
are exceptional tools that can be applied in 
many real-world decision problems that require 
determining the optimal alternative when 
considering several competing requirements 
(Aruldoss, Lakshmi & Venkatesan, 2013). However, 
incomplete or uncertain input data characteristics 
are a prominent issue that causes researchers to look 
for modern techniques when modelling such data in 
complex decision-making problems.

In particular, the fuzzy set theory (Zadeh, 1965) 
is considered an effective technique to model 
input data characteristics. Here, a single input 
object x  is modelled as a value ( ) [0,1]xµ ∈  that 
represents its membership degree to the object 
universe X  (Wang et al., 2010). However, the 
classical fuzzy sets are limited when considering 
the decision-making process with incomplete 
information. As it is not always true that the sum 
is equal to the one between the membership and 
non-membership degrees, the Intuitionistic fuzzy 
sets were introduced by Atanassov (1986) as the 
generalised fuzzy set which incorporated the 
hesitation degree. Techniques based on fuzzy set 
theory were further extended when Pythagorean 
fuzzy sets (Yager, 2013) were presented as another 
approach of modelling imprecise membership 
degrees, and the q-Rung orthopair fuzzy sets 

(Yager, 2017) were introduced to increase the 
space of the acceptable membership values.

In 1999, the neutrosophic sets were introduced 
by Smarandache (1999) as the generalisation 
of classical fuzzy and intuitionistic fuzzy sets. 
By applying neutrosophic logic, each input 
data parameter is defined by the independent 
truth membership degree – T, indeterminacy 
membership degree – I, and falsity membership 
degree – F. The inclusion of the indeterminacy 
component (also defined as unknown 
(Smarandache, 2006)) and the ability to model 
these memberships independently distinguishes 
the neutrosophic set from other sets applied 
to model the characteristics of input data. 
Due to these advantages, neutrosophic sets 
were successfully utilised in multiple MCDM 
problems, where the vagueness of input data had 
to be considered (e.g., (Zavadskas et al., 2020b; 
Zavadskas et al., 2021), etc.).

However, as highlighted in the recent paper by 
Smarandache (2019), the neutrosophic set is 
actually the generalisation of the Intuitionistic 
fuzzy set, Pythagorean fuzzy set, q-Rung orthopair 
fuzzy set, Spherical and n-Hyper Spherical fuzzy 
sets. Thus, these sets can be combined under 
one m-generalised q-neutrosophic set (mGqNS), 
which could be suitable for modelling a flexible 
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decision-making framework for complex real-
world problems (Zavadskas et al., 2020a).

One of such problems, in particular, is the 
decision-making by the autonomous robot, which 
is deployed to explore the unknown (or known, 
but structurally changed) environment. Currently, 
environment exploration strategies are commonly 
based on increasing the knowledge about the 
environment properties by moving the robot to 
the boundaries between the explored and unknown 
space (Juliá, Gil & Reinoso, 2012), called frontiers 
(Yamauchi, 1997). By following this approach, 
every time a robot visits a frontier and adds new 
information to the partial environment map, the 
list of available frontiers is updated, and the robot 
makes a new decision of where to move next.

The complexity of this decision-making task 
comes from uncertainties and incomplete input 
data under which the decisions of how to navigate 
in the environment must be made to balance the 
competing high-level objectives. For example, 
robot operators might want the robot to explore 
a specific location, maximise the covered area to 
construct a representative environment map, and 
minimise the travelled distance – all with limited 
interactions from human operators (Calisi et al., 
2007; Akin et al., 2013). Thus, frontier-based 
exploration strategies differ in terms of how the 
frontiers are assessed according to the given 
high-level objective. For example, the robot can 
be sent to the closest frontier to cover the whole 
exploration space (Yamauchi, 1997) or it can be 
directed to heat signatures to help identify humans 
(Cakmak et al., 2017). Also, MCDM methods can 
be applied to combine multiple criteria, such as 
the length of the shortest path to the frontier, the 
amount of unknown space behind the frontier, and 
the ability to communicate with the robot control 
station after reaching the frontier (Basilico & 
Amigoni, 2011; Taillandier & Stinckwich, 2011) 
to determine the utility of a frontier according to 
the high-level objective.

However, the strategies above are applied 
considering situations where no initial 
information about the exploration environment 
is known in advance, and the robot is tasked 
to cover most of the exploration space. Yet, 
considering some real-world scenarios (e.g., 
search and rescue missions or evacuation route 
planning (Chandrawati, Ratna & Sari, 2020)), 

it is very likely that robot operators can gather 
a-priori information about the environment 
and utilise it to direct the exploration process 
accordingly (Calisi et al., 2007; Roa-Borbolla, 
2017). Thus, in this research, a novel approach 
to frontier assessment and decision-making 
problem for an autonomous exploring robot 
is proposed. Unlike in previous studies, the 
proposed strategy enables the robot to explore 
areas around the priority locations and reduce 
the amount of input data needed to filter the 
frontiers surrounded by mostly explored space. 
This strategy’s main goal is to maximise the 
covered area around a set of priority locations 
while minimising the robot travelled distance.  
Also, a novel extension of the state-of-the-
art WASPAS method (which was originally 
proposed by Zavadskas et al., (2012)), modelled 
under the m-generalised q-neutrosophic 
environment is introduced, namely, WASPAS-
mGqNS. This novel MCDM method can provide 
additional flexibility for robot operators when 
considering uncertain or incomplete input data 
in environment exploration missions.

This research is organised as follows. The 
proposed frontier assessment strategy is 
presented in Section 2.  The algebraic operations 
of m-generalised q-neutrosophic sets and the 
proposed WASPAS-mGqNS method are discussed 
in Section 3. Section 4 represents the case study 
and the computational example of the frontier 
assessment process. Finally, conclusions are 
presented in Section 5.

2. Frontier Assessment Strategy

In this research, three environment exploration 
strategies are considered: a direct control strategy 
(further referred to as WS), in which the robot 
follows the shortest path between the priority 
locations, visiting them in the order specified 
by the robot operator; information gain strategy 
(further referred to as IG), which utilises technical 
frontier assessment criteria (e.g., estimated time 
that is needed to reach the frontier, or distance to 
the candidate frontier)  derived from (Basilico & 
Amigoni, 2011; Taillan dier & Stinckwich, 2011); 
and the proposed strategy (further referred to as 
PS) which expands the IG strategy by addressing 
the problem of visiting priority locations, specified 
by the robot operator.
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Table 1. Criteria set applied to model frontier 
assessment strategies

ID Optimum Criteria name PS IG

1C Min
Distance to 

the candidate 
frontier.

0.07 0.25

2C Max Expected 
information gain. 0.13 0.30

3C Min
Estimated time 
needed to reach 

the frontier.
0.24 0.35

4C Min
Distance to the 
robot control 

station.
0.04 0.10

5C Min
Distance from the 
frontier to the set 
priority location.

0.37 -

6C Max
Sampling ratio 

around the 
frontier.

0.15 -

The criteria used by IG and PS strategies are 
presented in Table 1, together with their optimums 
and relative weights, which were determined by 
several experts working in the field of MCDM and 
autonomous robots. In the present setup, the grid 
map environment representation model is used 
for frontier detection and the estimation of some 
criteria values.

	-  1C , the distance to the candidate frontier is 
measured by the Euclidean distance between 
the current robot location and the candidate 
frontier. The criterion is minimised to 
prioritise frontiers located close to the robot 
to reduce backtracking behaviour;

	-  2C , the expected information gain is considered 
to be equal to the frontier length and is 
maximised to direct the robot to frontiers which 
are assumed to border wide open spaces;

	-  3C , the estimated time needed to reach the 
frontier is applied to prioritise the frontiers 
close to the robot and reachable by short 
and straight paths. To estimate the criterion 
value, the methodology defined by Basilico 
& Amigoni (2011), which was also applied 
in our previous robot setup (Semenas & 
Bausys, 2020), is applied in this case. The 

constant average robot movement and 
rotation velocities of 0.4 m/s and 0.5 rad/s are 
used in this research;

	-  4C , the distance to the robot control station is 
measured as the Euclidean distance between 
the assessed frontier and the robot starting 
position. This criterion is minimised to ensure 
the prioritisation of frontiers located closer 
to the control station, enabling the robot to 
transmit the acquired data to robot operators;

	-  5C , the distance from the frontier to the set 
priority location is a minimised criterion 
that is introduced to enable more exhaustive 
exploration around the set priority location 
without directly moving the robot to it. In 
a sense, this approach can be used to focus 
exploration effort on the prioritised locations, 
similarly as in (Roa-Borbolla et al., 2017), 
thus reducing the time needed to detect 
important information. The criterion value is 
measured by the shortest Euclidean distance 
between each priority location and the 
assessed frontier. It is also worth noting that 
due to the generality of the MCDM approach, 
even in situations where no priority locations 
are set, the robot will explore the environment 
by applying the remaining 1 4C C−  and 6C  
criteria. However, in such cases, to address 
the specifics of neutrosophic sets, the default 

5C  criteria values should be set to a small 
positive constant;

	-  6C , the sampling ratio around the frontier is 
a maximised criterion that is introduced to 
reduce the chance of selecting frontiers that 
are unreachable or are mostly surrounded 
by already explored space (e.g., frontiers 
that are located in the corners or near walls).  
Also, this criterion is applied to address and 
somewhat mitigate the issue of incomplete 
or noisy robot-constructed grid map, as 
this problem can significantly influence the 
autonomous robot performance (Zakiev et 
al., 2019). For example, some frontiers may 
be detected in the middle of the wall due 
to the faulty sensor data and incorrect cell 
occupancy estimation of the used grid map;

In this research, the criteria value is 
determined by sampling a total of 100 cells 
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within a set radius around each frontier 
as presented in Figure 1. In this setup, the 
radius value is equal to 1.5 m. The blue line 
indicates the frontier, and the green marker 
indicates its centre point. The red markers 
indicate sample points that are located on the 
explored or occupied space. Yellow markers 
indicate sample points that are located in the 
undiscovered space. The criterion value is 
assessed by applying the following equation:

6 2
C n

δ
λ

=
⋅                                                 

(1)

where δ  is the number of sampled cells that 
are yet to be discovered, 𝜆 is the sample 
population size and n  is the number of 
sampled cells that are occupied.

Although the approach of estimating the 
amount of free space that would be visible 
by considering robot perception sensor 
parameters can also be applied to determine 
the value of this criterion, this approach 
requires the computation of more input data.

Figure 1. Approach for cell sampling around  
the frontier

Next, the concepts of m-generalised 
q-neutrosophic set and the novel WASPAS-
mGqNS method are introduced.

3. Preliminaries of m-generalised 
q-neutrosophic Set

First, the preliminaries of m-generalised 
q-neutrosophic set (mGqNS) and the algebraic 
operations between the m-generalised 
q-neutrosophic numbers (mGqNNs) that 

are relevant to the proposed m-generalised 
q-neutrosophic WASPAS method, namely, 
WASPAS-mGqNS, are discussed.

3.1 Definition. If the domain of problem-related 
objects is denoted by X , x X∈  is a single 
object. In this research, X  is a set of criteria 
modelled under the m-generalised q-neutrosophic 
environment and x  is a value of a single criterion.

Let 1q ≥ , and 1 3m =  . The m-generalised 
q-neutrosophic set mqA  is defined by the three 
membership functions: 

, , : [0, ],(0 1)mq mq mqT I F X r r→ ≤ ≤

Here mqT  is the m-generalised truth membership 
function, mqI  is the m-generalised indeterminacy 
membership function, and mqF  is the m-generalised 
falsity membership function. The m-generalised 
q-neutrosophic set is defined as:

{ ( ), ( ), ( ) : }mq mq mq mqA T x I x F x x X= 〈 〉 ∈

The three membership functions also satisfy the 
following conditions:

0 ( ), ( ), ( ) 1mq mq mqT x I x F x≤ ≤  for every x X∈ ;
30 ( ( )) ( ( )) ( ( ))q q q

mq mq mqT x I x F x
m

≤ + + ≤  for 
every x X∈ ;

Note that different m  and q  values define 
different neutrosophic sets.

3.2 Definition. A m-generalised q-neutrosophic 
number, mGqNN, is defined as , ,mqN t i f= 〈 〉 .

3.3 Definition. Let 
1 1 1 1, ,mqN t i f= 〈 〉  and 

2 2 2 2, ,mqN t i f= 〈 〉  be two m-generalised
 q-neutrosophic numbers. Then the summation of 
the two mGqNNs can be defined by:

1 2

1

1 2

1 2 1 2

(1 (1 )(1 )) ,

,

q q q
mq mqN N t t

i i f f

⊕ = 〈 − − −

〉                

(2)

The multiplication between the two mGqNNs can 
be defined by:

1 2

1

1 2 1 2

1

1 2

, (1 (1 )(1 )) ,

(1 (1 )(1 ))

q q q
mq mq

q q q

N N t t i i

f f

⊗ = 〈 − − −

− − − 〉           

(3)
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The multiplication operation between the mGqNN 
and a real number 0λ >  can be defined by:

1

1

1 1 1(1 (1 ) ) , ,q q
mqN t i fλ λ λλ ⋅ = 〈 − − 〉                      

(4)

The power function of mGqNN when 0λ >  can 
be defined by:

1

1 1

1 1 1, (1 (1 ) ) ,(1 (1 ) )

mq

q qq q

N

t i fλ λ λ

λ =

〈 − − − − 〉



                 
(5)

To ensure the stability of the neutrosophic set 
logic, the complementary function of mGqNN 
can be defined by:

1 1 1,1 ,c
mqN f i t= 〈 − 〉

                                          (6)

3.4 Definition. The score value ( )mqS N  can be 
determined by:

3 3 2( )
6

q q q

mq
t i fS N + − −

=
                            

(7)

If 
1 1 1 1, ,mqN t i f= 〈 〉  and 

2 2 2 2, ,mqN t i f= 〈 〉  are 
two m-generalised q-neutrosophic numbers, the 
ranking of them is performed by:

If 
1 2

( ) ( )mq mqS N S N> , then 
1 2mq mqN N>

If 
1 2

( ) ( )mq mqS N S N= , then 
1 2mq mqN N=

3.1 WASPAS-mGqNS Method

In this research, the state-of-the-art WASPAS 
method is extended by modelling it under the 
m-generalised q-neutrosophic environment. In its 
general form, the WASPAS-mGqNS method can 
be defined by the following steps:

Step 1. The decision matrix mqD  is constructed 
from a set of available alternatives (in this research 
- frontiers) in accordance to the task-related criteria. 
Arrays of the decision matrix can be denoted by 
[ ]mq ijd , where 1, ,i k=   and 1, ,j n=   are the 
frontier and criteria indexes, respectively. In this 
case, [ ]mq ijd  represents the value of the thi  frontier 
according to the thj  criterion;

Step 2. The vector normalisation approach, 
that was developed for appropriate estimation 
of the certain features of the neutrosophic sets 
(Zavadskas et al., 2020a), is applied to normalise 
the arrays of the decision matrix:

2
1

[ ]
[ ]

([ ] )

mq ij
mq ij n

mq sjs

d
d

d
=

=
∑                                

(8)

Step 3. Next, the neutrosophication of the 
normalised decision matrix mqD  is conducted 
by applying the neutrosophication table, as in 
(Zavadskas et al., 2020b). After this step, [ ]mq ijd  
arrays of the decision matrix mqD  obtain the 
general mGqNN form of [ ] , ,mq ij ij ij ijd t i f= 〈 〉  (as 
in 3.2 definition);

Step 4. The first objective of m-generalised 
q-neutrosophic WASPAS is the computation 
of total relative importance of the alternatives 
(frontiers), which is obtained by applying the 
following function:

max min(1)
1 1

[ ] ( [ ] )O O c
i mq ij j mq ij jj j

Q d w d w
= =

= ⋅ + ⋅∑ ∑   
(9)

Here, maxO  and minO  represent the maximised and 
the minimised arrays of mqD , jw  represents the 
weight of criterion jC , defined by a real number 

0jw > , and c  indicates a complementary 
neutrosophic number;

Step 5. The second objective of the WASPAS-
mGqNS method is the product of the total relative 
importance of the alternatives (frontiers), which 
is obtained by applying the following function:

max min(2)
1 1

([ ] ) ( ([ ] ) )
j jw wO O c

i mq ij mq ijj j
Q d d

= =
= ⋅∏ ∏  

(10)

Here, the component definitions are identical to 
the ones provided for Equation (9). The algebraic 
operations that are applied in both objectives of 
the WASPAS-mGqNS method are provided in 
Section 3 of this paper;

Step 6. The joint generalised value that 
incorporates the results obtained from step 4 and 
step 5 is determined by:

(1) (2)0.5 0.5i i iQ Q Q= +                                     (11)

Step 7. Lastly, frontier rankings are determined by 
utilising a score function ( )iS Q  and the highest-
ranked alternative (frontier) is considered to be 
the next robot goal.

4. Case Study

To highlight how the proposed environment 
exploration strategy PS and the WASPAS-
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mGqNS method could be applied in autonomous 
environment exploration tasks, they are tested in a 
Gazebo-simulated indoor environment, presented 
in Figure 2. The yellow circles mark priority 
locations that the robot should visit. The blue 
square marks the robot starting position. The main 
goal of the proposed environment exploration 
strategy is to minimise the robot travelled 
distance while also increasing the amount of 
covered area around a set of priority locations 
that human operators identify before deploying 
the autonomous robot.

Figure 2. Simulated indoor environment

The autonomous robot deployed in a Gazebo 
simulator is controlled by utilising the robot 
operating system (ROS) and using a similar 
navigation framework and sensor setup as the 
one introduced in our previous research (Semenas 
& Bausys, 2020). The robot utilises the frontier-
based environment exploration approach. The 
decision of where to move next is made, and the 
highest-ranked frontier is determined by applying 
the proposed WASPAS-mGqNS method. In the 
present setup, the exploration process is completed 
when all four priority locations are visited by the 
robot or the time limit of 10 minutes is reached 
(here, the movement time is used, assuming that 
the robot battery is drained at a constant speed 
while the robot is moving). Also, some reasonable 
additional assumptions are made:

	- It is assumed that the robot operator has 
information that allows him/her to set the 
coordinates of priority locations that the robot 
should visit. However, no information about 
the current state of the environment is known 
to the robot or the operator in advance;

	- Autonomous robot must cancel its current 
task and reach the prioritised location if it is 

nearby. The prioritised location is considered 
as visited when the distance between it and 
the current robot position is less than 1.5 m;

	- Autonomous robot is able to change its 
navigation goal if a higher-valued frontier 
is detected while moving to the previously 
selected frontier;

	- No additional hazards or moving objects 
that could damage the robot are present in 
the environment.

The three previously introduced strategies – PS, 
IG, and WS, are considered in this case study. Here, 
PS and IG strategies follow the frontier-based 
environment exploration approach by applying 
the WASPAS-mGqNS method and frontier 
assessment strategies introduced in Table 1.  
The WS strategy assumes the direct control 
approach, where the robot operator sets the order 
in which priority locations should be visited, and 
the robot follows the shortest path between them.

Next, a computational example is provided to 
highlight how the proposed WASPAS-mGqNS 
method can be applied for frontier assessment in 
an autonomous environment exploration task.

4.1 Computational Example and Case 
Study Results

In this example, one of the environment exploration 
iterations is considered when the robot is applying 
the proposed PS strategy for frontier assessment. 
The values of 1m =  and 3q =  are chosen for 
the m-generalised q-neutrosophic numbers. In 
the considered environment exploration state, 11 
frontiers are assessed by applying the proposed 
WASPAS-mGqNS method.

The crisp sensor data values, which are obtained 
during robot navigation and used to construct 
the initial decision matrix mqD , are presented 
in Table 2. The [ ]mq ijd  values obtained after 
the normalisation and the neutrosophication 
of the initial decision matrix are presented in 
Table 3. Next, the two objectives of WASPAS-
mGqNS method are calculated by applying the 
m-generalised q-neutrosophic algebra (Section 3).  
The final rankings of the candidate frontiers 
in the considered decision-making iteration 
are determined by applying the score function 
(Equation (7)) and presented in Table 4. In this 
example, the frontier denoted as 2P  is considered 
as the optimal location for further environment 
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Table 2. The initial decision matrix values for frontier assessment problem in a sample decision-making iteration.

1P 2P 3P 4P 5P 6P 7P 8P 9P 10P 11P

1C 3.20 4.22 6.64 10.42 6.15 12.02 11.29 12.36 18.41 14.80 18.50

2C 2.9 3.5 3.6 10.8 2.0 6.7 4.6 4.6 5.7 1.5 5.7

3C 11.99 13.59 20.02 29.71 19.43 33.02 31.54 34.95 48.96 42.09 49.59

4C 3.38 4.27 6.78 10.54 6.33 12.17 11.45 12.46 18.56 14.97 18.66

5C 6.05 5.36 8.25 8.81 6.11 10.96 9.83 8.66 7.59 6.88 5.16

6C 0.51 0.53 0.46 0.50 0.27 0.52 0.50 0.51 0.52 0.59 0.51

Table 3. The constructed neutrosophic matrix for frontier assessment problem in a sample  
decision-making iteration

1P 2P 3P 4P 5P 6P 7P 8P 9P 10P 11P

1C
(0.08,
0.92,
0.92)

(0.11,
0.90,
0.89)

(0.17,
0.87,
0.83)

(0.27,
0.78,
073)

(0.16,
0.87,
0.84)

(0.31,
0.74,
0.69)

(0.29,
0.76,
0.71)

(0.31,
0.74,
0.69)

(0.47,
0.55,
0.53)

(0.38,
0.67,
0.62)

(0.47,
0.54,
0.53)

2C
(0.17,
0.87,
0.83)

(0.20,
0.85,
0.80)

(0.20,
0.85,
0.80)

(0.61,
0.34,
0.39)

(0.11,
0.89,
0.89)

(0.38,
0.67,
0.62)

(0.26,
0.79,
0.74)

(0.26,
0.79,
0.74)

(0.32,
0.73,
0.68)

(0.09,
0.91,
0.91)

(0.32,
0.73,
0.68)

3C
(0.11,
0.90,
0.89)

(0.12,
0.89,
0.88)

(0.18,
0.86,
0.82)

(0.27,
0.78,
0.73)

(0.18,
0.86,
0.82)

(0.30,
0.75,
0.70)

(0.29,
0.76,
0.71)

(0.32,
0.73,
0.68)

(0.45,
0.58,
0.55)

(0.39,
0.66,
0.61)

(0.45,
0.57,
0.55)

4C
(0.09,
0.91,
0.91)

(0.11,
0.90,
0.89)

(0.17,
0.86,
0.83)

(0.27,
0.78,
0.73)

(0.16,
0.87,
0.84)

(0.31,
0.74,
0.69)

(0.29,
0.76,
0.71)

(0.31,
0.74,
0.69)

(0.47,
0.55,
0.53)

(0.38,
0.67,
0.62)

(0.47,
0.55,
0.53)

5C
(0.23,
0.82,
0.77)

(0.21,
0.84,
0.79)

(0.32,
0.73,
0.68)

(0.34,
0.71,
0.66)

(0.24,
0.81,
0.76)

(0.42,
0.62,
0.58)

(0.38,
0.67,
0.62)

(0.33,
0.72,
0.67)

(0.29,
0.76,
0.71)

(0.27,
0.78,
0.73)

(0.20,
0.74,
0.80)

6C
(0.31,
0.74,
0.69)

(0.32,
0.73,
0.68)

(0.28,
0.77,
0.72)

(0.30,
0.75,
0.70)

(0.16,
0.87,
0.84)

(0.31,
0.74,
0.69)

(0.30,
0.74,
0.70)

(0.31,
0.74,
0.69)

(0.31,
0.74,
0.69)

(0.36,
0.69,
0.64)

(0.31,
0.74,
0.69)

Table 4. The results of WASPAS-mGqNS method for a sample decision-making iteration

1P 2P 3P 4P 5P 6P 7P 8P 9P 10P 11P

(1)0.5Q
(0.72,
0.34,
0.40)

(0.73,
0.34,
0.38)

(0.64,
0.41,
0.47)

(0.61,
0.41,
0.47)

(0.68,
0.38,
0.43)

(0.55,
0.50,
0.54)

(0.57,
0.49,
0.53)

(0.57,
0.49,
0.53)

(0.51,
0.56,
0.59)

(0.55,
0.51,
0.56)

(0.53,
0.54,
0.58)

(2)0.5Q
(0.36,
0.82,
0.79)

(0.38,
0.81,
0.78)

(0.34,
0.81,
0.78)

(0.41,
0.68,
0.68)

(0.28,
0.85,
0.84)

(0.34,
0.75,
0.74)

(0.32,
0.79,
0.77)

(0.32,
0.79,
0.77)

(0.31,
0.77,
0.76)

(0.24,
0.85,
0.85)

(0.34,
0.77,
0.75)

Q
(0.74,
0.28,
0.32)

(0.75,
0.27,
0.30)

(0.67,
0.36,
0.37)

(0.66,
0.28,
0.32)

(0.69,
0.32,
0.37)

(0.58,
0.38,
0.40)

(0.59,
0.39,
0.41)

(0.59,
0.39,
0.41)

(0.54,
0.43,
0.45)

(0.56,
0.43,
0.48)

(0.57,
0.41,
0.44)

( )S Q 0.691 0.696 0.626 0.629 0.645 0.569 0.573 0.573 0.537 0.545 0.554

Rank 2 1 5 4 3 8 6-7 6-7 11 10 9
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observation and is chosen as a next goal for the 
exploring autonomous robot.

Next, the case study results are discussed. As 
robot movement trajectories might be different 
in multiple simulations due to the various errors 
and incompleteness of robot sensor data (for 
example, artefacts in environment representation 
model, which is used for path planning), a total 
of 10 simulation runs were conducted for the PS, 
IG and WS strategies, and the averaged results of 
these tests are presented in Figure 3.

Figure 3. The average of covered areas in square 
meters and the total length of the robot travelled 

distance in meters after 10 simulation runs.

As it could be expected, on average, the WS 
strategy shows the best performance in the 
simulated environment when considering the 
average distance travelled by the autonomous 
robot. However, by applying this approach 
the robot acquires less information about the 
exploration environment when compared to 
the IG strategy and the proposed PS strategy. 
Considering the length of the robot travelled 
distance, the worst performance is observed 
when the IG strategy is applied. Although this 
strategy enables the robot to cover most of the 
exploration space, it also significantly increases 
robot backtracking and does not guarantee the 
visitation of all the priority locations. As such, the 
addition of 5C  and 6C  criteria shows potential 
in keeping the robot close to the prioritised 
locations while also minimising its chance to 
select the frontiers that are surrounded by largely 
explored space.

These results are also represented by the sample 
robot movement trajectory presented in Figure 4. 

(a)

(b)

(c)

Figure 4. (a) - robot movement trajectory when 
the WS strategy is applied; (b) - robot movement 

trajectory when the IG strategy is applied; (c) - robot 
movement trajectory when the PS strategy is applied

For example, (a) showcases a sample of the robot 
movement trajectory when the WS strategy is 
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applied. Here, the robot moves by following the 
shortest path between the set priority locations 
and finishes the exploration mission on an 
average of three minutes. On the other hand, it 
is common for the IG strategy to skip some of the 
priority locations and exhaustively explore the 
environment until the given time limit is reached 
and the robot is stopped, as highlighted in (b). 
However, the proposed approach, presented in 
(c), showcases that although this method covers 
less area when compared to the IG strategy, 
the robot is attracted to the priority locations, 
enabling it to explore the frontiers around these 
locations, and thus, detect more environment 
information (when considering the WS strategy) 
while also constructing time-efficient movement 
trajectory (when considering the IG strategy).

The obtained case study results lead to the 
conclusion that the proposed frontier assessment 
strategy enables the robot to maximise the 
covered area around the prioritised locations 
while maintaining a relatively short travel 
distance. However, it is worth noting that the 
actual robot behaviour mostly depends on the 
physical structure of the environment. In other 
words, in situations where the space around the 
prioritised location is cluttered or there is a lack 
of available frontiers, the robot might not be able 
to increase the amount of covered area before the 
task termination conditions are met.

5. Conclusion

Environment exploration by autonomous robots 
is a complex task that requires the balancing of 
competing high-level objectives. The additional 
complexity of such tasks stems from the uncertain 
and incomplete input data information applied in 
the decision-making process.

Although neutrosophic sets can be applied to 
model uncertain input data characteristics, a 
more generalised and flexible approach might 
be required in some complex decision-making 
tasks. Therefore, an extension of the state-of-
the-art WASPAS method modelled under the 
m-generalised q-neutrosophic environment 
is proposed, namely, WASPAS-mGqNS. An 
autonomous robot applied this novel method 
extension and the formulated frontier assessment 
strategy to balance the high-level objective 
requirements in autonomous environment 
exploration task. The case study results highlight 
how the proposed approach can enable the robot 
to cover more exploration space around the set 
priority locations while maintaining a relatively 
short movement trajectory. The obtained results 
also highlight that the proposed WASPAS-mGqNS 
extension could be applied to solve complex 
decision-making problems, such as iterative 
optimal frontier selection problems in autonomous 
environment exploration tasks.
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