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Abstract: With a probe for gas, oil and other
pipelines a huge number of ultrasonic readings of the
wall condition is collected. Based on the recorded
wall thicknesses of this so-called pipe pig the Re-
search Center for Computer Science (FZI) has de-
veloped an automatic inspection system called Neu-
roPipe. NeuroPipe has the task to detect defects like
metal loss. The kernel of this inspection tool is a hy-
brid neural classifier which was trained using man-
nally collected defect examples by the Pipetronix
company. This paper focuses on some aspects of
successful use of learning methods in an industrial
application and on the difficulty of interpretation of
sometimes faulty sensor measurements.
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1 Introduction

Worldwide several hundred thousands kilome-
ters of gas and oil pipelines exist which have
to be checked at regular intervals as a pre-
caution against possible environmental catastro-

phes. Beside other inspection tools Pipetronix
GmbH (PTX) Karlsruhe has developed a spe-
cial ultrasonic based probe called UltraScan (see
Figure 1). This tool is launched into the pipeline
and propelled through the medium flow with
about 1m/s. During this passive movement the
ulirasound sensors mounted at the head of the
pig (see Figure 2), recorded the stand-off, 1.e.
the distance between the sensor and the inner
pipeline wall, as well as the wall thickness (see
Figure 3). These two readings, which are made
every 3mm, are stored on data carriers for off-
line processing.

The data provided by the sensors are pro-
cessed as 2D i1mages, the so-called C-scan (see
Figure 5). The C-scan shows the readings ob-
tained from all sensors as tracks positioned next
to each other. The deviations from the nomi-
nal wall thickness are colour-coded. Since two
values exist for every reading, two C-scans (for
stand-off distance and wall thickness, resp.) are
necessary for a complete representation of the
data.

In the past, the pipeline inspection was done
manually based on the coloured C-scan. In the
Pipetronix Interpretation Department, several
people interpret these ultrasound images over
many weeks for one pipe run. In order to fa-
cilitate interpretation work, the NeuroPipe pro-
gram has been developed which classifies the
possible defects into five basic classes described
in Table 1. The program is designed in a way
that the classification of defects in the pipeline
is as reliable as possible and generally conserva-
tive.

In the next section the different parts of the
system architecture of NeuroPipe are described.
A detailed description can be found in [11]. The
main part of this paper concentrates on the ex-
perience of the interactive learning process used
to generate the hybrid neural defect classifier.
At the end of this paper an improvement of this
interactive learning concept is presented.
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Figure 1: UltraScan Tool Before Inserting in A Pipeline

Figure 2: Ultrasound Sensor Carrier of the Pipe Pig. Based on the Diameter of the Pipe,
There Are Up To 512 Mounted Ultrasound Sernsors
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Figure 3: The Ultrasound measurement sensor. In the upper part of this Figure, the
position of the sensor is outlined along with the corresponding anomalies in the wall.
With the help of the B-scan, which shows the readings of a sensor over tL. distance (see
middle and lower parts), the course of a defect can be tracked along the length of the

pipeline. In the center of the illustration the corresponding stand-off distance is shown
and in the lower part you see the appropriate wall thickness.
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2 System Architecture

The system architecture can be divided into
preprocessing, weld detection and extraction,
anomaly search, defect classification and post-
processing.

The first step of the preprocessing is the de-
compression and the normalisation of the data
measured by the pig. The main responsibility of
this stage is the filtering of the sensor data. This
process eliminates any small fluctuations as well
as implausible or stray values. The implemen-
tation was done with the aid of standard image
processing algorithms.

The task of the weld detection process is the
localisation of any girth, longitudinal and spiral
welds, The detection of defects inside of welds
is not possible because of the physics of mea-
surement. Therefore, these regions could not
be analysed. They are located by difterent neu-
ral networks and excluded so that they are not
treated by mistake as anomalies. Backpropa-
gation networks are used to detect longitudinal
welds and a modification of Kohonen networks
for the determination of the shape of girth welds
(see [14]).

All areas in which wall thickness or stand-
off distance sensor values deviate from specifi-
cations are detected as anomaly regions. After
location, it is essential to separate closely hor-
dering areas from one another This makes sure
that the subsequent classification of the anoma-
lies get only one potential defect in a region.
This guarantees that the decision between two
defects, which lie very close to one another, by
overlooking possibly more serious defect is in-
correct. These areas - located and separated
in such a way — are subsequently described as
defect candidates.

Due to the high resolution of the utilised ul-
trasound technology, however, large numbers of
additional anomalies are generated. They are
caused by welds or internal sound reflectors (for
example inclusions, slags). These indications
are largely eliminated by the above- mentioned
weld search and exclusion algorithms as well as
by other preprocessing routines. Nevertheless,
a number of these defect candidates remains for
the subsequent classification.

The next module of the system architecture
is the hybrid neural classification of the defect
candidates. This part of the inspection system
will be described in detail in the next section.

In the postprocessing step those anomalies
which are classified as serious defects are stored
in a database. For each of these defects, fea-
tures like depth, remaining wall thickness, vol-
ume, etc. are calculated. These determined val-

ues are used for evaluation of the pipeline con-
dition.
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Figure 4: Data Flow of the NeuroPipe
System

3 The

Process

Neural Classification

In a preliminary study on defect classification in
pipelines (see [12, 13]), two approaches were ex-
amined and compared. The first approach was
based on the raw data. For this purpose rect-
angular areas of a fixed size were selected from
defect candidates and as a whole used for input
into a neural network. The second approach es-
tablished a constant number of 18 characteris-
tic values from the defect candidate which were
again classified by a neural network. Because of
the varying geometric expansion of the defects
size independent features must be applied as a
basis for a classifying network.

The results of the study made it clear that
only the approach regarding the classification of
characteristic values led to useful results. The
reason for this lies in the varying geometric ex-
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pansion of the defects. The sizes of the rectan-
gular regions of these defects range from a small
number of readings up to several millions. Be-
cause of this large variation it is not possible for
all the readings of a defect candidate to serve
as an input for the neural network. Through
the selection of a subregion essential information
can be lost. Another way may be to interpret
the regions as temporal sequences and use this
representation for the classifier. This would in-
crease the complexity of the problem too much.

In the NeuroPipe system therefore, a con-
stant number of 88 characteristic values is de-
termined by the defect candidate (e.g. wall
thickness/stand-off data) which then serves as
input to the neural networks. For example, the
first and the second derivatives in the x,y direc-
tion, histograms representing the distribution of
the readings on the wall, and statistical terms,
related to the readings belonging to these raised
values, are used.

The composition of the characteristic values
was initially carried out arbitrarily since only
vague expressions over the significance of in-
dividual characteristic values for classification
were available. 1,400 correctly classified exam-
ples were available which were obtained through
an extremely time-consuming, manual classifi-
cation process (approx. 1/2 year). No partic-
ular representative set of data emerged since
the "serious” characteristic values were not so
frequent. Pipetronix, however, required a high
quality classification.

The collection of a representative data set is
very expendable. The supervisor must select
learning examples which are currently not classi-
fied properly and of manifold type. He does not
know how important different misclassified ex-
amples are and if 1t 1s possible to reduce the mis-
classification rate by them. Neural nets would
be taught with all examples to achieve the best
possible classification rate. If the new examples
are not representative ie. descriptive enough,
this iteration process will be very time consum-
ing.

In order to improve the generalisation of the
network, the number of inputs was reduced ac-
cording to the following procedure:

1. The neural network was trained.

2. Gradually each characteristic value which
had not contributed to the classification
was deleted from the input samples.

3. If there are deleted dimensions continue
with step 1.

This way the input vector was reduced from
86 to 41 dimensions.

To get a better idea of the structuring of the
input space, and as a basis for the hierarchical
setup of the neural networks (see [2]), a two-
dimensional Kohonen map was prepared from
30 * 30 neurons (see [4, 9]). Figure 6 shows the
900 neurons. Each of them is assigned to all
classes which activated it. Since it is possible
that a sample can be a member of several cat-
egories, the necessity for multiple memberships
of a neuron to different classes 1s obvious. This
experiment shows that there are regions on the
map which homogeneously belong to one class
and complex regions with interwoven margins.

As shown in Figure 6, there are large homoge-
neous areas which belong to only one class. The
idea of a hierarchical network comes from the
fact that more than 50% of the defects can easily
be separated by using a simple interim network
from such areas with a more complex structure
(border areas on the map). The hierarchy of the
classification is set up in this case by using an
RBF network and 5 feedforward networks, for
each class of a separate net (see Figure 7).

First 1t 1s attempted to classify a possible
defect by means of the modified RBF network
(see [5, 6]). If the RBF network is not respon-
sible for the defect classification (there exists
no RBF neuron, which is active) the five back-
propagation networks are called upon.

The advantage is that the five specialized
feedforward networks only concentrate on the
data that are located in more complex interwo-
ven margins at the area boundaries. The advan-
tage, in comparison to one network with 5 out-
put classes is that each neural network should
only have the necessary knowledge for the clas-
sification of one class, without reference to other
classes. This 1dea proved to be correct due to the
fact that the complexity of the network topology
varied strongly, according to different classes.

For the modified RBF network, a rectangle
function was used as an activation function. Bi-
nary weights were used between the RBF layer
and the output layer (see [5, 6]). The neurons
were positioned by a clustering algerithm and
their radius chosen in such a way that the clash
of having two neurons from different classes
would never occur.

All of the feedforward networks which were
used for these tasks learned with the help of the
RPROP-algorithm (see [7, 8]), which as with
normal backpropagation process (see [10]) was
based on the decline in the weight gradients.
The advantage of RPROP over the backpropa-
gation process lies in rapid convergence through
the use of the second derivative like [3]. Further-
more, the RPROP algorithm requires no learn-
ing parameter.
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Figure 5: B-scan and C-scan show metal loss, lamination and dent. Each image is divided
into two main areas. The upper half shows the stand-off distance, the lower half the wall
thickness. Each area consists of two parts. The upper part shows the C-scan described
above where white is used for the nominal values of the stand-off distance and the wall
thickness respectively; the lower part contains the B-scan of one selected sensor.
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Using this hierarchical classifications method
about 96% of all classifications were correct
while the quality of mixed classifications' also
showed a remarkable improvement.
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Tigure 7: The Architecture of the Hierar-
chical Classification Network Using One
RBF and Five FF Networks

4 Experience with the Iterative
Learning Process

One of the major problems is the absence of
known rules for the classification process. The
description of the classes is on the mind of the
analysts. Tt was not possible for them to de-
scribe the relevant class features. All descrip-
tions we had were some high level features. For
example "if the shape of the B-scan in the wall
looks like this then it 1s a metal loss”. But there
were also some laminations with the same B-
scan shape. The problem is that the image pro-
cessing of the human brain is powerful enough
to fade out all irrelevancies.

Because of this absence of rules and supported
by unfixed experiences we had to develop our
own features. So. these features were designed
without any relation to the application and with
no idea of what might actually happen to these
features when they were to be classified. This
heuristic procedure is the first step of uncer-
tainty in the process because many different con-
figurations are possible.

'Some areas of the pipeline wall consist of multiple
defects. For such candidates a multiple class affiliation
exists.

One of the effects of this procedure was that
the features seemed to be a bit strange for the
humans who generally worked on the recognition
of the defects because the network used other
features than the humans did. Another effect
of this was that the controlling of the learning
results of the network could not be done so eas-
ilv. For example to detect which learning ex-
amples were needed for better training of the
networks. Now one problem arises, namely that
defects which are similar for a human being may
not be similar for the classifier. This problem of
measuring similarity influences the selection of
learning examples.

Because of different points of view of the clas-
sifier it is impossible to predict which are the
examples of defects necessary for improving the
results of the system. To collect such learning
examples high manual effort has to be made.
As written above the connection of the features
with the chosen learning examples depends on
one another in an extremely high manner. Last
but not least the neural network itself depends
on the features and examples.

To improve the classification results it 1s al-
ways necessary to consider different points and
adjust the parameters. But the major difficulty
is to detect the right component for such an ad-

Justment.

As one can easily recognise, the whole learning
process acts like a reinforcement learning pro-
cess. The classification rate of NeuroPipe acts
as an estimation funciion. The developer de-
cides which of the modules feature extraction,
learning examples or neural networks should be
changed. This iterative process is very time -
consuming and highly application dependent.

In the case of NeuroPipe there have been
many loops of such an iterative process. Given
this it is necessary to automate this process for
a general case.

5 Practical
NeuroPipe

Application of

The presented system has been used commer-
cially since July 1994 by the Pipetronix com-
pany. One of the applications was a large
project collecting some 90 GBytes of data from a
pipeline several hundreds kilometers long. The
following statistics obtained from a section of
10 km gives an impression of the amount of
the collected data. However, this figure essen-
tially depends on the diameter of the pipeline,
the quality of steel and the state of the pipeline
regarded corrosion. In addition, it depends on
client’s specifications such as reporting thresh-
old or minimum interesting length of the indi-
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vidual defect types. Generally, a classification
rate of much more than 90% is reached which
significantly facilitates the work of the analyst.

The NeuroPipe program running on a Sparc
20 analyses about 20 times faster than a human
can do. The tool never gets tired and makes no
inadvertence mistakes. The quality of the classi-
fication is always the same. As NeuroPipe finds
out all anomalies, classifies them and stores the
pipeline position, the analyst can concentrate
himself on more dangerous defects which are re-
viewed manually. Through the use of NeuroPipe
the required time for the analysis of a whole pipe
with review by the analysts was reduced by a
factor of three and the accuracy of the defect
lists 1s now higher than before.

Correct classification rate (incl.
multiple significant indications of
different neural networks)

ty check

Total number of entries 75,000
Number of entries after database 4,000
poslprocessing

appr. 95%

Features identified due to plausibili- | appr. 2-3%

6 Summary and Outlook

It has been successfully shown that it is possi-
ble to classify pipeline defects with the help of
neural networks and that good results are ob-
tainable by using hierarchical hybrid networks.
This has also been confirmed by the actual de-
ployment of the system. The used networks were
taught using 1,400 example defects. This was
carried out in three stages with increasing clas-
sification rates. Summingup, one can emphasise
the fact that the defect classification success rate
is much more than 90%. This was achieved by
a skillful, hierarchical arrangement of different
networks.

As described above, the definition of features
for the classification task of an application is
very difficult. It is highly related to the selection
of learning examples. In the case of the Neu-
roPipe system, the recording of the examples
was very time- consuming. It was not possible
to decide which of the defects was learned well,
because the internal representation through the
calculated features was extremely different from
the human point of view.

We are now concentrating on the development
of a learning system {connectionist model simu-
lator CMS) which also uses the neural networks

for the feature extraction and learning ex-
amples selection tasks. The CMS should easily
be integrated mmto different applications as an in-
teractive learning component. Through the re-
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inforcement learning a stepwise developing of a
classifier from the learning of features up to the
whole classifier will be possible. An 1mprove-
ment can be achieved by analysis and presenta-
tion of t.ie system knowledge.
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