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Abstract: This paper presents a new strategy that exploits
Artificial Neural Networks (ANNs) for a direct selection of
edge points from an image. First, the Canny spatial filtering
is used to obtain a set of candidate edge points which tum
out to be the local maxima of the filtered image. A
preliminary smooth selection of these points that exploits
neighbourhood information is made to produce a set of
pseudo-edges. Some features are extracted from this set and
are used to teach an ANN to classify whether or not a point
belongs to a real edge. Since the selection works at the pixel
level (even if on a strongly reduced subset of the whole
image), the generation of training data is easy even with less
expert users. Concemning performances, the ANN locally
improves edge extraction where significant edges are missed
by a selection criterion that is fixed all over the image (e.g.
the classical hysteresis selection). The proposed method
demonstrates how to provide an easy man-machine interface
in those visual sensing systems used in autonomous
applications that need a powerful and flexible edge
extraction.
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1. Introduction

The extraction of visual primitives is a basic
operation in many computer vision systems. It
helps simplify image analysis by dramatically
reducing the amount of processed data, while
maintaining the semantics of a scene. In
particular, high-frequency information related to
image edges is often considered as one of the
most meaningful and compact subsets o1 an
analyzed image [1].

An image edge is usually generated by a sharp
discontinuity in the intensity function due to
many possible reasons: different depths of the
objects present in the scene, their reflectance
properties or their lighting conditions. For this
reason, an edge is related in some way to the
image gradient whose intensity presents strong
peaks near light discontinuities. However, in real
images, there are many edges that are not related
to the boundaries of an object, and that are
caused by acquisition noise, surface textures, or
irregular shapes. Even though such edges
produce image discontinuities, they do not
provide information about the semantics of a
scene, like those produced by the boundaries of

objects, and are usually seen as noisy data for
high-level processing.

In many applications, it is necessary to process
information on object boundaries in order to
perform an analysis of a scene in a security
surveillance context or to search for patterns for
visual inspection problems, or even to find some
targets to be used in autonomous navigation. A
common approach is to develop an efficient
Visual Sensing System (VSS) which translates
the complexity of the raw image data into a
simpler domain, and to use the reduced data as
input to a high-level module for attaining the
application goal. Such a Visual Sensing System
is required to be able to discriminate and
preserve only the contours of the objects that are
meaningful for the scene description, and to
reject those that can be seen as noisy data. For
this reason, an efficient edge extraction inside the
VSS is essential to any real application based on
object recognition.

The most common edge detectors are multistage
detectors and do not work directly with grey-
level information, but take advantage of
intermediate representations, and retain some
particular points as candidate edges. Algorithms
presented in the literature deal mainly with the
first stage, which is essentially accomplished by
filtering in spatial frequency [2, 3, 4] or by
matching with edge templates [5, 6] and then by
detecting the maxima as candidates for edge
points. After this stage, most algorithms perform
some form of threshold selection in order to
discriminate the points belonging to features of
interest from those points due to noise and false
indications.

One of the most inportant edge-detection
techniques is the one developed by Canny [4],
often used as a comparison term for testing other
algorithms. This method, apart from the
optimality of the image filtering, takes advantage
of a hysteresis selection of the resulting maxima
which makes it possible to extract edges of better
quality. However, performances are extremely
sensitive to the setting of parameters: this fact
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involves that, to achieve a reliable detection on a
wide class of images, a continuous parameter
tuning is required. This can seversly compromise
the performances of autonomous applications, as
each image requires ad hoc settings Even if
threshold selection is fundamentai to achieve
good results, only a few works dezl with
threshold setting, both with fixed values [7] and
with values that are dependent on the considei=d
image [8, 9].

As a sample for a potentic| industrial application,
in previous woris [10, 11, 12] we focused on the
regulation of a Visual Sensing System used to
extract visual world features for autonomous
mobile robots which might adapt to the change of
environmental conditions. The visual primitives
are used for the recognition of some targets
inside the environment (e.g. doors and other
landmarks). Since this system is used in fast
changing environments, a continuous correct
tuning of the parameters of its modules is
required (image acquisition, edge extraction and
edge selection). Properly trained Artificial Neural
Networks (ANNs) proved to be able to give the
correct  regulation, starting from  some
environmental features.

In particular, the edge extraction module was
based on the Canny filtering, followed by a
hysteresis selection whose thresholds were set by
an ANN properly trained and fed by some image
features. This method allows good adaptiveness
to changes in environment conditions and
produces edges of good quality by solving the
problem of threshold setting. llowever, it
requires many images to generaie a <suitable
training set, since the image-pattern relation is an
one-to-one relation, and the ANN requires many
patterns for generalizing the association rule that
maps image features into correct thresholds.
Moreover, during the phase of training-set
generation, it is not easy to choose the right
hysteresis thresholds from ameong the many
possible ones, even by an expert operator.
Indeed, it is necessary to evaluate many different
values before finding the right ones; and even the
best ones may not be satisfactory enough, since
the tuning process works globally inside an
image, without considering local characteristics.
This results in a long and difficult work that
cannot give quality improvements over the
classical Canny edge extraction with manual
parameter setting, and only the automation of
on-line extraction can vield good results.

In the authors' opinion, the solution for achieving
an ANN-driven edge extraction that is efficient
during on-line operation (in terms of good locally
adaptive selection) and even during the training
phase (in terms of a fast and easy preparation of
the training <et), is to perform directly edge-

point selection. This way, the ANN can learn
how to extract significant edges that could not be
detected by using thresholds fixed all over an
image because their local properties would be
hidden by a global method. Moreover, since each
poini can generate a pattern, only a few images
are needed to generate an adequate set of training
features. And the generation of the related target
is sunpler, since the user just needs to establish
wheilier each point of the pseudo-edge set is a
true edge or not.

In the following, a new method is presented, that
exploits the ANN capabilities of learning the
local properties of an image for extracting edge
points. First, we give an outline of the optimal
Canny filtering with the hysteresis selection of
the resulting candidate edge points. Then, a
detailed description of the proposed method is
reported: creation of a pseudo-edge set (PES)
from the output of the Canny filtering, choice of
the features able to characterize each local point
of the PES, and use of the ANN for the
classification of the edge points. Finally, we
show how easily the training set is created and
how the ANN improves edge extraction
performances over other classical algorithms.

2. The Canny Algorithm

In [4], Canny solved the optimum edge detection
by formalizing it as the problem of identifying a
filter that produces the maximum response near
an edge point, when some constraints were
imposed:

s (Food detection: the probabilities to miss
the detection of an existing edge and to
detect an edge that does not exist must
be kept small.

e Good localization: the points belonging
to a detected edge must be as near as
possible to the real edge.

¢ Single response: the detector must give
only one response to a single edge, or at
least a fixed small number of responses.

For the one-dimensional case, let G(x) be the
function with the edge discontinuity in x=0; and
let fix) be the impulse response of the searched
filter, which is finite and bounded by [-W, W]. If
we assume that the function G(x) is affected by
noise (additive white Gaussian noise with nj as
its mean-squared amplitude per unit length), then
the previous conditions can find a mathematical
formulation with the following functional:
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which is maximized subject to the third constraint
above by fixing the number of false responses R,,
due to the noise.

Canny computed optimal filters flx) for some
classes of edge functions, but in general, as the
above functional is very difficult to solve, he
found a good general approximation for any kind
of edge function in the first derivative of a
Gaussian which behaves only a little worse than
the optimal solution:

Ax) = (&/éx) NG, with N(x) = exp (-x2/(2 02))

It is possible to extend this result to the two-
dimensional case in the following way. An edge
in an image /(x,y) is a line whose points are
characterized by a position and an orientation n
which is the direction normal to the contour
followed by the edge. A point of an edge of
orientation » can then be found as a local
maximum along # of the operator N,(x,v) (the
Canny Filter} applied to the image /{x,y):

(¢/n) (N (xy)+l(xy) )= 0

where:
N, (x,y) = (¢/én) N(x,y)= n VN(x,)
Nxy) = exp (- (524 32 /(2 69))

For the associativity of convolution, it is possible
to locate an edge point, by first convoluting the
image with N(xy), and then searching for the
zeroes of any directional second derivative.
Then, a point P={x,y,) that satisfies the
following condition:

(c%/én?) ( N(x,y)=l(xy) ) (xo.y0) ~ ?

is a point of the maxima points set (MPS) and is a
candidate to be an edge point in a direction
normal to the orientation » and with intensity S:

n=[ (VWeyniy) [ |VNp)sien)|

]

(x0y0)
S=|N,(xyxl(x,y) ’ (x0y0) I v
(N(x,y)%l(x.3)) | (xp.yp)

In order to better discriminate between the
responses due to noise and those due to true
edges, a threshold is used for discarding the
points of the MPS with a low intensity §. A
careful analysis of the properties of responses
shows that the former responses are frequently
characterized by low intensity, whereas the latter
are more localized and with higher values of S.
On the basis of this analysis it is possible to fix a
value for the threshold.

To make sure that a real contour will not be split
into several small segments, Canny proposed a
hysteresis selection: if a candidate point has
intensity that is above a higher threshold T, it is
immediately selected, as well as its connected
neighbours that are above a lower threshold
T;<Ty. This way, the probability of choosing an
isolated edge point is reduced and the lengths of
the connected chains of true edges are
maximized. Figure 1 shows an example of
hysteresis selection which succeeds in producing
a closed edge, whereas a simple threshold
selection fails.

A A A
6
1 10 9 8
-
STOP
v v v

Figure 1. Scheme of Hysteresis Selection

The circles are points of the MPS. The black
ones have gradient intensity above T, the grey
ones have intensity between T[ and TH. A point
of the MPS is selected: (i) if its intensity is higher
than Ty (points 1, 4, 5, 7, 9, 10), or (i) if it is
higher than Ty and has some previously selected
neighbours (points 2, 3, 6, 8). The selected points
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are numbered progressively and ihe followed
connections are thicker. The doited cornnections
have not been considered since points 3 and |
have already been selected The propagation
toward an initial direction stops if no neighbour
point can be selected anymore.

3. ANN Driven Direct Edge
Point Extraction Using A
Preliminary Canny Filtering

The hysteresis selection of the maxima points
detected by the Canny filter (the points of the
MPS) exhibits the main disadvantage that, if its
threshold values are kept fixed, optimal results
cannot be achieved. Thus, it is necessary to set
the threshold values carefully for each image
because this choice strongly influences the edge
extraction in a manner different from image to
image.

In a previous work [9], we solved this problem
by teaching an ANN to choose the correct
threshold wvalues for a successful hysteresis
selection. In particular, the ANN was fed with a
number of features describing the statistics of the
histogram reporting the occurrence probabilities
for the edge strength of the points selected by the
Canny Filter. After an initial training, performed
on about 600 indoor images, the tests have shown
a high percentage of success {95%) in extracting
edges in a way similar to the expert's,

However, even if the resuits show the ability of
the ANN to automatically find the coirect
calibration of the hysteresis thresholds, this
approach exhibits the linitation that the
hysteresis selection acts giobally, For this reason,
it cannot adapt to the local characteristics of
particular image regions, thus losing some
significant edges whose features are lost in the
global context.

This limitation can only be solved by an
approach different fromn the hysteresis selection.
In this work, a new method is investigated that
takes advantage of an ANN for a direct selection
of the edge points. The ANN is trained to classify
whether a point can be labelled as an edge point
or not. The ANN is fed with features computed
from a spatial reorganization of the points of the
MPS, and works as an on-off classifier on each
point of the reorganized data. This way, the
ANN can be taught to perform a selection
criterion which exploits the local properties of
each point, and not only a global optimization, as
in [9].

3.1 Spatial Organization of the Points
in the Pseude-Edge Set

The points of the MPS (the local maxima of the
image  after the Canny filtering) with a
preiiminary smooth threshold selection are used
to create a set of pseudo-edges (PES). From this
sef, which is a reorganization of the points of the
KPS in a connection context, some features are
exiracted that give local connection properties
such as orientation and intensity information for
each point and for each pseudo-edge. The PES
contains points which are both edge points and
noisy ones, and the target is to discriminate
between them.

The method used for creating the PES works as
follows. The local maxima of the output of the
Canny filter are taken which are arranged in an
image with a reduced number of sparse points
that result to be the maxima of the gradient of the
original image after a Gaussian filtering. These
points belong to the MPS and are sparsely
distributed, over the original image grid, thus
having  position information as well as an
associated gradient vector. The points have no
connection information among their possible
neighbours, as the AMPS set can be expressed as
MPS={(P{xy) ,F)), i=1,-,N}, where P; is the
generic point, x, and y, are its co-ordinates, and
F, is the associated gradient vector, with intensity
S, and orientation #;.

@

Figure 2. Example of Pseudo-edges Organization

The points of the MPS have been selected with a
small  threshold (white circles indicate some
discarded points) and organized into four pseudo-
edges. From this organization, some statistical
Jfeatures describing each point's properties are
obtained.
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The points are reordered into the PES which is
made up of connected pseudo-edges, PES={PE;,

1L}, where PEJ is a pseudo—edge
represented as a list of connected points,
PEJ:{P_jk’ k=1,--,M§,}, L is the number of pseudo-
edges, and Z(M,)<=N (i.e. the number of points
in the PES is smaller than or equal to the number
of points in the original set A7PS). Each list is
found by starting from an initial point P; of the
MPS. Any neighbour of the starting point P; is
recursively followed, its gradient intensity is
evaluated and, if it is higher than a small
threshold, it is added to the pseudo-edge PS and
discarded from the initial set MPS. When there
are no spatial connections anymore (or intensity
values above the threshold), the propagation
stops and another pseudo-edge PE,, ; is created,
starting from a new point of the MPS. A very
small threshold is used to partly reduce the
amount of points in the AMPS being mapped onto
the PES, since many points with a very low
intensity are mainly noise, and they are not
representative at all as edges. However, the
threshold has to be kept small enough in order to

statistics about it. Many efforts and experiments
have shown the features in Table 1 as the most

A

*CF@ )

4 o ®
°

O(Ij,k)
+ e 6] _],k'l)

Figure 3. Examples of Some Features of A Point
of the PES

The point Pj, belonging to PE; of length l(PE
has a graa'} nt intensity CF(]!

y and a ai erent:a[

find edge points with both strong and small orientation 50( i = oP; k) O(P k- 1)-
intensity values (see Figure 2).
Parameter Description Property of
CF (ij) gradient intensity of the point P;, the &-th pointin [P
the PE;
o P; difference between the gradient orientation of the |P
ik . . o
point P;; and that of the previous point in PE;

C ]5( PE ) mean gradient intensity of the pseudo-edge PE; PE

F(PE;
07(;( PE}) mean difference in gradient orientation on the PE; |PE

J
CE . (PE max. gradient intensity of the pseudo-edge PE, PE
max ‘

O0may(PE;) | max. difference in gradient orientation on PE; PE
o2 (PEJ.) variance of the gradient intensity of PE, PE

CF
02 (PE)) variance of the difference in gradient orientation on | PE

do / PE;
I(PE;) length of PE; PE

Table 1. The Features Set Derived from the PES Organization

A feature of the generic point P

i) (the k-th point of the pseudo-edge PE}) can be a property of the

point itself (property P) or of the pseudo-edge PEJ,- to whom the point belongs (property PE).

3.2 Features for the Description of the
Points of the Pseudo-edge Set

Once the PES has been computed from the
output of the Canny filter, some features are
computed for each point of its pseudo-edges.
Some features depend only on the properties of
the point, whereas some others give information
about the properties of the pseudo-edge using

Studies in Informatics and Control, Vol. 5. No

useful for our approach. See even Figure 3 for
some examples of some features of a point of the
PES.

3.3 Choice of the Target for Each
Point of the Pseudo -edge Set

Using the current approach, the generation of the
training set to be used to teach the ANN the
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correct discrimination between noise and edge
points is an easy task. Indeed, once the features
have been carefully designed, the wraining input
patterns are computed automatically using some
images acquired under different environmental
conditions. Moreover, the associaticn of the
target with each pattern (the on/off information
needed to train the ANN how to classify a point,
given the associated features) is reduced to the
problem of a pre-classification of the points of
the PES.

Figure 4. Example of Pixel Selection for A
Training Image

The PES is the union of the points pre-classified as
real edges (black) and those pre-classified as noise
(grey). The user who wants to generate the targets
for each point of the PES just needs o mark the
chosen edge points with a graphical tool which
automatically compleies the task.

This pre-classification is a trivial task that can be
done rather easily even by a user who is not
expert in Image Processing. Indeed, with an
appropriate tool, it is only required to delete from
the image the points of the PES that are judged to
be due to noise. It is a great step forward as
compared with the preparation of the training
data for the method developed in [9], where the
user had to try several possibilities for each target
(i.e. for each of the 600 images of the training
set), and had to be expert, since the relation
between a target and the resulting edge extraction
is not so obvious as for the method presented
(see Figure 5).

3.4 Characteristics of the ANN Used
for the Classification of the Points

The ANN used for the classification task is a
Multi-Layer Perceptron with one hidden layer.
The final architecture of the network consists of 9
input neurons and 1 output neuron. Several
experiments have shown that a hidden fayer of 21
neurons gives the best results, aiming at
generalizing the classification rule.

Image i

Maxima | I C.ann?f

extractor Filtering
PES Input
Organization Features

ON / OFF [¢

Edge Points l

Figure 5. On-line ANN Extraction of Edge
Points

An image is filtered with the Canny Filter and
the features of the point of the PES are computed
and given as input to the ANN that classifies
each point as an edge or roise.

Concerning the off-line training strategy, the
network uses the Error Back Propagation
technique with an accelerated implementation
[13] which features a good speed-up, as
compared with the basic algorithm [13]. In our
simulation, we have used a non-linear activation
function for the neurons which is different from
the one used in [Vo88]. it allows to manage both
positive and negative values and can be
expressed as follows:

[(2) = (F-F) / (&+eT), with f: R—>(-1, +])

Let x be the input vector (x;, i=/,..0), h the
hidden vector (hj, j=1,..,J), and y the vector of
the output values (y, k=1,..,K). [U] and [V] be
the matrices of the input and output weights,
respectively. The x, & and y vectors are related
to one another by the following equations:

h=f (U X)) m=11
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Figure 6. Comparison of Edge Extraction Methods:

(a) original test image;

(b) edge extraction by ANN selection at the pixel level (in black, selected points, in grey, rejected ones);

(c) edge extraction by ANN regulation of the hysteresis thresholds;

(d) Marr-Hildreth edge extraction with optimal parameters set by hand.

V=S Zy (Vi b)), n=1.K
with =11 and k=1K

The ANN is trained on a collection of input-
output patterns (xp -1, p=1,.P), P being the
number of training patterns, i.e. in our case, it is
the number of PES points for all the training

images. The Error Back Propagation training
strategy is briefly described in the following.

A pattern x,, is presented at the bottom layer of
15 :

the network and the output Yp is produced. The

achieved output is then compared with the target

t, and the discrepancies are collected into a

single scalar value using a cost function.

E;=(I12) - 1, 12 = E(IU], [V])
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Figure 7. Comparison of Edge Exiraction Methods:
(a) originci test image,
(b) edee extraction by ANN selection at the pixel level (in black,
selected poinis, in grey, rejected ones);
(¢} edge extraction by ANN regulation of the hysteresis thresholds,

(d) Marr-Hildreth edge extraciion with optimal parameters set by hand.

using the steepest-descent algorithm. The
el b= (UL IVD: Tk iterative updating rules for the entries of the input
and output weight matrices (Ujk and Vij= with

=1, j=1,.J k=1.,K)are:
The contribution of each input-target pattern is

considered and the giobal error function £ is
computed. £ is regarded as a multi-dimensionai
potential surface which depends on the weights
[U] and [V]. Given the training set, the weights where:
that minimize the global error £ are computed

!f_’fk(l): - Aij(.‘) + o AI/J-k(l-]).
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p=1-P
U0 = 1 AU(1) + o AU {e-1),
where:

AU =2,19;, (i-h{,’p) Sisls S P

6’;}0 = 2"}( I. (yk,p-fk,p ) (]'".VZka) V][L ]s k::],",K
and where 7 stands for the iteration index.

In the above equations, the coefficient n is the
speed gain and o is the coefficient of the
momentum of inertia, used to avoid that the
algorithm may converge to local minima of the
energy function. Moreover, to speed wup
convergence, the following heuristic criteria are
applied:

o The weights are updated
according to the above equations.

o If the global error at iteration
(£) turns out to be smaller than the
previous one at iteration (/-/), then
n=pn, with p>>1, and the weights are
updated.

° Otherwise, if the error
increases, n=en, with ¢<<l, =0 and
the current iteration is discarded.

4. Results and Conclusions

The proposed method for extracting edges
classifies points directly. The training set can be
obtained by using just a few images, since from
each image we can extract a large PES. Thus, a
reduced number of 15 images is enough for
representing  several different environmental
conditions.

The performances of the developed method have
been computed both in relation to the
classification task and in terms of the visual
quality of the extracted edges. The ANN can
correctly detect 95.2% of the edge points of a
test set of ten images, thus revealing good results
of the classification task.

Figure 6 and Figure 7 show some visual results
and comparisons with other edge-extraction
methods. First, the comparison is made with the
ANN regulation of the hysteresis threshoids
developed in [Ac95], which performs as the

classical ~ Canny  edge-extraction  method,
followed by the hysteresis selection with
thresholds set optimally by hand. The direct pixel
selection performs a little better, since small
unwanted edges (e.g. near the handle of the door
and at the bottom of the door in Figure 6 ) are not
extracicd and important edges missed by the
previous method are here detected (the bottom of
the door and the basket in Figure 7). Then, the
comparison is made with the Marr-Hildreth edge
extraction, regulated by hand with the best
thresnold for avoiding noisy edges.

In conclusion, the ANN-driven direct point
selection solves the problem of the human
intervention for achieving an optimal edge
extraction, and makes it possible to use edge
analysis in autonomous systems. Even though
this method has been applied to the Canny
algorithm, it is able to set ad hoc parameters for
those algorithms that use a filter for the
enhancement of edge points, followed by a
selection for removing false points. Moreover,
the selection criterion exploits local features of
an image and outperforms even optimally tuned
classical algorithms.
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