Fuzzy Logic and Target Estimation

Emmanuel Druon

Département Signaux et Systémes

Didier Willaeys

Laboratoire d’Automatique et de

Philippe Vanheeghe

Laboratoire d’ Automatique et

Institut Supérieur Mécanique Industrielle et Humaine d'Informatique Industrielle de Lille
d’Electronique du Nord URA CNRS 1118 URA CNRS D1440
41 Bld Vauban Université de Valenciennes Ecole Centrale de Lille
59046 Lilie Cedex 59326 Valenciennes Cedex Cité Scientifique BP48
FRANCE FRANCE 59651 Villeneuve d’Ascq Cedex
FRANCE

Abstract: Since its definition in 1965 by Professor L.A. Zadeh
161 fuzzy logic has been used in a large number of domains
15 . Fuzzy algorithms can now be found in various ficlds such

as estimation, decision-making and automatic control.The

problem considered here is to estimate with a fuzzy algorithm,
the real target of a manoeuvring object moving in a 2D space.

Numerical values of position and velocity are either sent by

sensors (and therefore considered as noise-corrupted) or es-

timated by a Kalman filter. The proposed method uses fuzzy
logic algorithms to analyze data obtained from different sour-
ces.
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I. Introduction

The problem is to estimate, as soon as possible,
the real target of maneuvering objects directed
towards different possible targets using a fuzzy
logic algorithm.

In this paper, manoeuvring objects are considered
as controlled by a Pure Proportional Navigation
law (PPN law) [3],[8],[13],[14] and [17]. Each
manoeuvring object is assumed to be directed
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towards a predefined non-manoeuvring target.
The velocities of both targets and manoeuvring
objects are assumed to be constant. Target
velocities are supposed to be very low if
compared to manoeuvring object velocities.

Before going any further in this study, the main
parameters of PPN laws need to be briefly defined.

Figure 1 indicates the reference axes and the main
notations used throughout this Section.

LA. PPN law Definition

Using these notations, a PNN law can be defined
[3] as a law setting the evolution of angle yq
according to a proportional navigation constant
A and to angle »:

Tt Target

n € Mancuvering
Ohijcct

Reference Axis

Figure 1. Reference Axes and Notations

Usually, the corresponding velocity vector
evolution is obtained through the control of the
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normal acceleration of the object. Using Figure 1
and Equation (1), [ can be written as:

Ton=AeVgen )

In this paper, the term "proportional navigation
coefficient " is often used. It is defined as:

peis= A=k 3)
Itis also assumed [17] that « is within the interval
I# defined by:

I, = [26] (4)

In order to simplify the equations,the different
targets are supposed to be moving along the
reference axis. Moreover, since their respective
velocity is chosen very low compared to the
velocities of the manocuvring objects, the targets
are assumed to have no acceleration. Therefore,

Q=i ©)

Ty =0m.s? (6)
Targets and manoeuvring objects are defined as
points and no outside perturbation is considered.

The different manoeuvring objects are assumed 1o
be independent. This paper will therefore limit the
study to one manoeuvring object moving towards a
predefined target among different possible ones.

IL.B. Definition of the Problem Parameters

In order to solve the target estimation problem
previously described, a set of target estimation
parameters has been derived [2], [4] and [6]. This
set can be expressed as follows.

1.C. Definition of the Estimarion Parameters [4)

Consider a system (X) which includes a
manoeuvring object O and a set of n target points
T, (Figure 2). In the subsystem (ET) of target

points T,, an observer is defined.
Noise-corrupted values of OT,, #, (the angle

between the reference axis and (OT))), V, and

VT are scent to this observer every time interval At.
i

The observer also knows that object O is moving

towards a predefined target of (ET) usinga PPN

law with a proportional navigation coefficient u
defined within I}1 (see Equation (4)).
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In order to solve the target estimation problem,
the observer assumes at each time t that all the
targets T, are aimed at by object O. This
hypothesis makes it possible to compute, for each
target point T, an estimation vector v;, the
analysis of which characterizes the real target of
Q.

A precise definition of each parameter of this
estimation vector c¢an be found in [4]. In this
paper, v; will be defined as follows:

vi<t)={ﬂmgmmedp>,aoi<t>,Aci(t>}T ™

where is the proportional

’ueslimatedl(t)
navigation coefficient estimated for target point
T, at time t; do,(t) is the estimated angle between
vector Vg and line (OT)) at time t; Ac(t) is a
variable derived from the study of PPN laws in
terms of optimal control [2].

7

Figure 2. Notations Used To Define the
Estimation Parameters of the Problem

i

Kalman filter derived in [6] which uses the
noise-corrupted data of position and velocity of
each component of system (Z).

L il d;(l) and Ac,(t) are computed with the

The variable do,(t) can be computed either in a
straightforward geometrical way or using the
previous Kalman filter.

1.D. Theoretical Evolutions of the Parameters

The evolution of each element of estimation
vector vi can be used to identify the real target of
object O. This study has been conducted by V.
Bouletand E. Duflos in [2] and [6]. Only the main
results are going to be prescnted in this paper.
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LD.1 Theoretical Evolutions of u sy G0

Hestimated (1) 18 the estimated coefficient which is

computed to adapt the kinematic reality (in terms
of positions and velocities) to the hypothesis that
object O is moving towards target T,

Using Equations (1) and (3) and using the fact that

P egtimateq (1) €an be defined as:

aDi= —Jueslimatedi' i )]

The study presented in [6] shows that according
to the position of T, with regard to the trajectory

followed by O, the evolution of H estimateq (1) €a0

be derived.
Three different evolutions are identified:

e targets of Type It u (t) is always

estimated
decreasing for t€ [t,,t;] where t,represents
the initial time and t; the final time (usually
the impact between O and the real target)

o targets of Type II: at first W sioniaq () 08

increasing. Then, there is a discontinuity

when 6Oi = 0 and finally, yes”ma[edi(t) is

decreasing.
e thereal target: itis supposed that the object
is controlled by a PPN law with a constant

proportional navigation coefficient. Hence

2 cli(t) is constant.

“cstimatedi (+)
A © r === Target Point of-Type 1

/ / Reul Target

farget Point of Type 11

P Time

Figure 3. Theoretical Evolution of i aieq (D

Figure 3 shows these different behaviors.
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1.D.2 Theoretical Evolutions of do,(r)

If T, is assumed to be the real target and
considering that all the elements of (£) have a
constant velocity and that V. «V,,, it can be

derived [6] that:

e if there is an initial error g&ol(t0)¢? , then
éol(t) is strictly monotonic and corverges
towards 0.

e if there is no initial error, 601(t) is always
close to 0

For the other target points, it can be shown [6]
that:

e if T, is of Type I: the monotonicity of
8o (1) changes once and only once. do.(1)

has the same variations as 7,(t) at the end of
the trajectory

o if T; is of Type II: 6oi(l) is monotonic
Figure 4 shows possible theoretical evolutions of
5Oi(t) if 6Oi(t) is assumed positive.

1.D.3 Theoretical Evolution of Ac(r)

The evolution of Ac;(t) has been studied in [2].
This variable is defined as:

Aci(t)= (1) - (1) (10)
where G;(t) is the optimal control to apply to
object O so that O reaches its target with a
criterion minimizing the terminal miss distance.
That is:

0 () = 31D, (1) (11)

The function u;(t) represents the control ofa PPN
law estimated by assuming that-O is moving
towards T;. This gives, using Equation (2):

Ui(t) = AI . VO . ?.]]- (12)
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A 6Oi o)

1 Target Point of

U fpet
Real Target

\ / Time

e

& Target Point of
Type 11

Figure 4. Hypothetical Theoretical Evolution of
50i(t) if 60i(t0) Is Supposed Positive

The study presented in [2] shows that the
evolution of Ac;(t) can be deduced from the
evolution of 8 (t) by exchanging the evolutions

of Type I and Type II targets.

Figure 5 shows a hypothetical evolution for
different Ac;(t) (assuming that Ac;(t,) is positive).

A Ac1 (LO)
J Targel Point of

\/ oot
Real Target
\\ // Time

L
\:,./'{'ztrgel Point of

Type |

Figure 5. Hypothetical Theoretical Evolution of
Ac,(t) if Ac;(ty) Is Supposed Positive

LE. The Estimated Evolutions of the Parameters

By analyzing the evolutions of each element of
v;(t) and by comparing them with the previously
presented theoretical evolutions, the real target
can be estimated.

In reality, it is important to notice that all these
parameters are computed from noise-corrupted
data. Hence, a Kalman filter is used to estimate
each component of v,(t) [6]. However, this filter

302

is not perfect and it has drawbacks which are now
going to be summarized.

L E.1 Initialization Time

The way the Kalman filter has been implemented
[6] implies an important initialization time in
order to get correct estimations as soon as
possible. In fact 101 sampling periods are
necessary to obtain the first vector v;. The first
estimation is made at the middle point of these
101 samples: at sample number 50.

This implies that an estimation algorithm
working only on these data would be delayed by
at least 101 periods. Since the sampling period
used is of 50 ms [4], the delay is therefore of 5.05 s.

LE.2 Estimated Evolutions of K etimat cdi(t)

Because of the continuous characteristics of the
implemented filter, the discontinuity presented in
paragraph 1.D.1 for Type II targets cannot be
estimated. Consequently, a monotonic evolution

isobtained:p . . (1) for these targets is always

increasing.

For the other kinds of targets, the evolutions are
identical to those previously presented (if the
initialization time is not taken into account).

Figure 6 presents the new evolutions obtained for
'ues:imatedi(t) '

mAp , (1)
J‘eﬂi‘i .
: i __—Target Point of Type I

Kaiman flter

initiplization o

Re. | Target
. / °

7. Target Point of Type 11

- ; Y ‘ —
i 5 T - TR - R <t

Number

Figure 6. Evolutions of u (1)

eslimalcdi
Obtained with the Kalman Filter
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Remark concerning target estimation using
# cstimatedi(t) g

The differences between theoretical and estimated
evolutions are not really significant as far as target

estimation is concerned. Itis still possible to identify
the real target since its M estimated (1) i Still the only

constant estimated value.
LE.3 Estimated Evolutions of do,(t)
The differences in the evolutions of 4, (t)

obtained with the Kalman filter are more

significant. Due to the continuous characteristics

of this filter, the estimated evolution of 8, (t) for
1

targets of Type II are similar to that of the real
target.

Therefore, it becomes impossible to use the data
estimated by the Kalman filter to «separate»
targets of Type II from the real target.

Figure 7 shows the estimated evolutions of
60i(t).

Aén r( t:)

Kalman filter
inftialization

Targ)et Point of Type |

Real Target

Target Paint of Type IT

; SN, Sample
300

0 50 Toc 150 200 250 Number

Figure 7. Evolutions of 3, (1) Obtained

with the Kalman Filter

LE.4 Estimated Evolutions of Acy(t)

The problem for this parameter is identical to the
one presented for &, (t) . The evolutions of Ac;(t)

for target points of Type II are similar to the
evolutions of Ac;(t) for the real target. Therefore,
this parameter cannot be used to correctly
identify all kinds of targets.

Figure 8 shows the estimated evolutions of Ac,(t).
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Target Point of Type I1

Real Target
_/ g

et Point of Type 1
N Kamantitter 1
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Figure 8. Evolutions of Ac,(t) Obtained
with the Kalman Filter

LF. Dealing with the Kalman Filter Imperfections

Based on the previous results, a target estimation
model has been derived. This model takes into
account the facts that:

e the initialization time of the Kalman filter
is important (101 sample periods)

e the evolutions of the target estimation
parameters computed by the Kalman filter
are different from the theoretical ones.

Since this latter problem makes it impossible to
separate Type Il targets from the real target using
8o.(t) and Ac;(t), a direct geometrical estimation

of d () has been used. This estimation is based

on the geometrical description of the problem
(see Figure 1), and uses the noise-corrupted data.

The drawback of such a direct computation of
d (1) is that the obtained values of 3 (t) are also
i i

noise-corrupted. Therefore, algorithms able to
deal with such data have been developed.

The main advantage of using such a computation
is that values are readily obtained and that the
evolutions of Jd,(t) are globally (if
noise-corruption is not considered) correct.

However, due to the necessity of knowing A,
(which is equivalent to estimating I —— di(t)) to

compute Ag; (t) (see Equations (10) and (12)), a
direct computation of this optimal control based
parameter is unfortunately impossible. Hence, its
ability to estimate the real target of object O
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becomes quite limited. This limitation will be
more precisely expressed in the next Sections.

The target estimation algorithm is therefore
based on two distinct phases. The first one only
uses the direct computation of d, (t). The second

one deals with all the components of v;(t): &, (1),

U

cslimamd(t) and Ac(t) (the last two being

estimated with the Kalman filter).

1I. Fuzzy Logic Algorithms

The work needed to be performed by the target
estimation algorithm is in fact reduced to
multiple function analysis problems. It has to
analyze each parameter of v;(t) to find out which
T, is the real target.

In order to take into account these different
parameters and to be able to deal with the
noise-corrupted d4 (1), a fuzzy logic algorithm

has been developed.

Since this algorithm has two different working
phases, the study of two distinct types of
algorithms has become necessary.

The first type deals with the noise-corrupted
dq (1), the second one uses all the components of

vi(1).
IIA. First Phase: Algorithms Working on &, (1)

Different models of algorithms have been studied
to identify the target of O as soon as possible.
These algorithms are based on those presented by
the authors in [5).

The estimation algorithms are based on a fuzzy
logic controller. The idea is to create an
estimation level, called Danger_Level,(t), for
cach target T,. This Danger_Level (1) is increased
il T, is identified as being the real target and it is
decreased otherwise.

To perform this task, the recognition algorithm
generates a variation value, called Alevel; (t) for
each T according to the computed 3 (1).

The different parts of the target estimation
algorithm are based on a fuzzy logic controller [9],
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[10] and [11]. Therefore, the first module consists
in a fuzzification process. Then, the different
inference rules on which the estimation process is
based, are found. Finally, a defuzzification
algorithm is run to obtain a discrete value for each
Alevel (t).

Each Danger_Level,(t) can then be updated by
using the following equation:

Danger_Level,(t) = (13)
=Danger_Level,(t-1) = Alevel (1)

Schematically, these recognition algorithms can
be represented as shown in Figure 9.

The general description of the target estimation
algorithms having been given, they are now going
to be presented. They are separated into two
different groups. The first group concerns two
algorithms directly using the noise-corrupted
values of & (t). The second one defines a target

estimation algorithm based on data smoothed by
a least-squares approximation algorithm.

‘{)() (o

Fuzzification

Inference Rules

J3]]0U0D AZZN,]

l[)ullu/il'lc.-mnn

=

* Alcveliul}

M
{ Upduting of Danger_Leveljity |

Figure 9. General Description of the Target
Estimation Algorithms Based on the
Evolutions of d, (1)

I1.A.1 Algorithms Using the Noise-corrupted
Values of dq (1)

I.A.1.a. Algorithm I: Algorithm Based only on
5oi([)

I1.A.1.a.1. General Description

Studies in Informatics and Control,Vol.5,No.3,Sept. 1996



This first algorithm is based on a very simple fuzzy
logic controller since it only uses one input: the
noise-corrupted values of d(t). The general

description of this algorithm is exactly identical

to the one shown in Figure 9. In the following, it

is assumed that d (t,) is positive. The case
1

dg.(ty) negative can easily be deduced from the

presented results.

The analysis in Figure 4 gives some clues to how
to derive different inference rules. In a noiseless
environment, the fact that d (t) crosses over the

time-axis identifies T; as being of Type IL
However,since the input data used are
noise-corrupted, it is necessary to build different
fuzzy sets to take that noise into account.
Therefore, two different fuzzy sets are defined in
the negative area. The one closer to zero infers a
low negative Alevel, and the other set a large
negative one. Such a design makes it possible to
decrease the influence of a temporary negative
value for the real target because of the noise.

The problem is more complex in the positive area.
Considering the time evolution of each d, (1), the
1

most natural way of dealing with the positive values
is to consider 3, (t). However, since the data are

noise-corrupted, this solution is not very realistic.

The other way of dealing with the positive values
of 3, (1) is to consider that the only critical area

is the one close to zero. A large positive value of
8o (1) is then considered as insignificant and
i

infers no variation of Danger_Level.. In order to
deal with these two cases, two fuzzy sets are also
considered in the positive area.

The advantage of such a method is that the
recognition level of the considered target is only
incxeased if 3 (1) is close to zero. This solves the

problem of Type I targets.

However, a major drawback appears tor targets of
Type 11 if the hypothesis of a positive d (t,) 1s

considered. For geometrical reasons (established
from Figure 1), the starting value of d, (t) for

Type ITtargets is always lowe: than that of the real
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target. Therefore, 3, (t) for Type II targets always
enters in the «around zero» area before the d, (t)

of any other type. The immediate effect is an
increase, for a given amount of time, of the danger
level of Type II targets whereas a constant value is
inferred for the real one. This result can be
considered as an estimation error since the target T;
identified as being the real one is in fact of Type IL

For this algorithm, the fuzzification process is
obtained by considering the truth value of each
input for different fuzzy sets. The defuzzification
process is based on a center of gravity method.

11 A.1.0.2. The Implemented Algorithm

In order to implement the target estimation
algorithm the description of which has been
derived, different simulations have been
performed. The following fuzzy sets have been
experimentally defined by analyzing the results.

As previously expressed, the universe of d (1) is
covered by four different fuzzy sets, named:

e Large Negative (LN) which concerns
negative values of &, (t) far from zero

e Negative (N) which is for negative values of
3¢ (1) close to zero

e Zero (Z) for the area around zero

e Large Positive (LP) which concerns
positive values of d (t) far from zero

These fuzzy sets are given in Figure 10. The
boundaries are set by simulation results analysis.

TS -(l_ile” min((). 15, ini/d) n 5

mini0.2, ini/3)

(}I(l}

Figure 10. Fuzzy sets associated with &, (t) for

the first recognition algorithm based on the
noise-corrupted values of 50 (1) .The «ini»

value is equal to d, (1)
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To simplify the defuzzification process, crisp
values (non-fuzzy) are used for the output sets.
They are labelled Very Large NegatiVe (VLNV),
Large NegatiVe (LNV), Very Large PositiVe
(VLPV) and ZeRo (ZR). They correspond
respectively to the following Alevel, -3, -2,3 and 0.

The inference rules are rather simple. They are
based on the general description of the algorithm
presented at paragraph IL.A.1.a.1. The operator
used to combine them is defined as the maximum.
They are given in the following decision table
where each entry corresponds to a rule. For
example, the first entry gives the rule:

If doi(t) is N then Alevel,(t) is LNV (14)

Table I Decision table for the first recognition
algorithm based on the noise-corrupted values of

NG

50}‘) LN N 7 LP

Alevel ()] VLNV | LNV | VLPV | ZR

Based on this model, it is now possible to derive
the general evolution of 8, (t} for each kind of

target assuming non noise- corrupted data. It is
given in Figure 11.

Il A.1.a.3. Simulation Results

This first target estimation aigorithm has
been implemented to determine its
performance. The speed performance is
defined by the target estimation distance. It
corresponds to the distance OT from which
the danger level of a given target is higher
than any other one till the end of the
simulation. The precision performance is
given as an error ratio as shown in Figure 12.
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Danger_level;

Real target
The o) | The 8y)i | The Bpy(t) of the e
of all the targetd of Type Il i | target is in the Z afa
are in the LP fargets enters
area the Z area The 8¢yit) of Type T
Arbitrary L tar Temains
intiial z  the LP ama Typel
value \ targets -
: rd
time
The 8(3;t) | : The 80y(t) df Type II targets
ofall the | &¢ cither in the W or LN areas
other targets
are in the LP] £ Type 11
area : targets

Figure 11. Estimated Evolutions of
Danger_Level ,(t) for Noiseless d ; (t) for

Algorithm I

Danger__l,cveli Target
identified as
being the real

target

Maximum recognition
error

AT E 3 F———————

Level; \

Targel identified
as being of Type |

Time

Jarget identified
as'being of Type 11

error vatio = (1 - Level/Levely) * 100

Figure 12. Graphical description of the error
ratic used to derive the precision performance
of the recognition algorithms. The
Danger_Level, evolutions are hypothetical.

The simulation part is divided into two sections.
The trajectory simulation, solving the kinematic
equations presented in paragraph LA and the
estimation part implementing the proposed fuzzy
estimation algorithm.

Runge-Kutta integration methods were used to
solve the kinematic equations. The integration
time (At) was chosen equal to the sampling period

tudies in Informatics and Control,Vol.5,No.3,5ept. 1996



used by the Kalman filter: 0.05 second.

This theoretical trajectory was then altered by
corrupting the data with white noise. The noise
standard deviations chosen were 0.0016 radians
for 1;, 20 m for r; and 10 m.s’! for V.

The proposed scenario is shown in Figure 13,
Manoeuvring object O is moving towards target
T; using a PPN law with a coefficient # equal to 3
and a d, (ty) equal to 0.5 radians (28°60). The

velocity of the targets was set to 15 m.s'! and all
the targets are supposed to be moving along the
x-axis. The manoeuvring object velocity was set to
800 m.s™%. All the targets are equidistant from T,
and this distance is set to 3 kilometers.
Manoeuvring object O is starting at a distance of
15 kilometers from target T,. Simulations have
been performed with different values of 7, (o).

Figure 13. Simulation Scenario

Figure 14 shows the Danger_Level,(t) evolutions
obtained for n,(ty) = 45° with this first fuzzy

algorithm.

As noticed if comparing Figures 11 and 14, the
obtained evolutions correspond to the
estimated ones.
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Danger Leved,

’ Keal rarget
300.00 ! \\\‘ Targets
190.45 | :

of Tvpe II

4
e “‘M
2662 : o

|
130,16 | RS ] Turgets
28170 L ! i \1\‘ of Type 1
-362.00 ¢ L : ! :
0.00 217 433 6.50 8.67 10.83 13. Time in
seconds

Figure 14. Simulated danger level evolutions
obtained with algorithm I. The initial
conditions are as described in the
simulation scenario with 7, (t,) = 45°.

Average of the cstimation distances:
for n between 0 and 90": 7500 m
for 1) between 0 and 607 : 9700 in

Estimation distance in meters Variance of the estimation d.lsl;?
1.2e+004 for 1) between 0 and 60° ; 1.6 10

"‘-‘—\\ B0 for 1 between 0 and 607 : 2.7 10° m2
8000 // \L
—'“F_‘\\«, 5

AN L.

M,

/-ﬁi/j/ | Xf\\

Maximum estimation distance: 11300 m

U penu

N
N

ik
3 v 1,

Figure 15. Estimation distance of the real target
as a function of 1,(1,) for algorithm L. The ini-

tial conditions are those described in the
simulation scenario.

Average of the error ratios:
Error Ratio (/1({)) for 1 between 0 and 907 8%
- i for 1) between 0 and 607 869

e Variance of the error ratio:
i for 1) between O and %)°: 00048
for 1) between 0 and 60 : 0.0021

\T’/f 5

--{:' ,\,30 &

04 % R P E

e s
BTAND <
\\ N\ / \
o2/ ™ &

10

Figure 16. Target estimation error ratio as a
function of #,(t,) for algorithm L

The initial conditions are those
described in the simulation scenario.
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Figures 15 and 16 show respectively the target
estimation distance and the error ratio for n, (1)

varying between 0 and 90°.

Table II sums up the results obtained with this
first algorithm.

Table II Performance of the first target
estimation algorithm based on the
noise-corrupted values of 3, (1)

Result type Average Variance

Target 7500 m 1.610" m?
estimation

distance for
7,y
varying
between 0
and 90°.

Target 9700 m 2.710° m?
estimation

distance for
1,(ty)
varying
between O
and 60°

Error ratio 88% 0.0048
for 7,(t,)
varying
between 0
and 90°.

Error ratio 86% 0.0021
for 171(:0)
varying
between 0
and 60°.

Best 11300 m
estimation
distance

Il A.1.a.4. Results Analysis

The results presented in Table II show that the
estimation of the real target of a manoeuvring
object controlled by a PPN is possible even with
a simple algorithm. However, the observed
performance is not impressive. The error ratio is
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very important. It indicates that there is an

estimation error at the beginning of the

simulation.As previously explained, this is mainly

due to the poor analysis performed for positive

values of d 5 (t). The estimation distanceis not really
i

good either. On the average, it takes one third of the
simulation time to correctly identify the real target.

The obtained results also show that for #7,(ty)

between 60 and 90°, the estimation algorithm has
not always identified correctly the real target. In
order to understand the problem in this now
called "critical zone", a more precise study of this
area has been performed.

1L A.1.a.5. Analysis of the Critical Zone Defined for
14(ty) Between 60 and 90°

A geometrical analysis of this critical zone shows
the estimation error around 71 (t5)=80° due to
the fact that for the simulation conditions used,
more than one target is in the line of sight of the
manoeuvring object close to impact. The analysis
of the results in this area shows that these
troublesome targets are those aligned with the
real target for ;0.0 (the value of 5 derived from
the real target close to impact) equal to 90°. The
problem is graphically described in Figure 17.

/Z -~ Mineuvenng object
s

Realtarget Py | Troublesome targets located

Vo
L in the line of sight of the object
NPy close o impact
‘ :
P
2 ®
v I)l

— s
&

P

Figure 17. Graphical Explanation of the
Critical Zone

This graphical explanation can be proved
mathematically. In [4], the expression of 7, is
derived as follows:

1
nimpam:”(tﬂ) - 1-A. é()(t[)) (15)
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For ;. =90% for the values of u and 3o
defined gy the simulation scenario (respectively 3
and 28°6) and using Equation (3), Equation (15)
gives:

7(to)=80% (16)
A more precise study of the estimation distance

in the critical zone has been conducted. The
results are shown in Figure 18,

Estimation distance

m melers Simulution conditions
1000 S P baen from the rea] tareet?
Vo \ ’ ! {tp) = 15000 m
BODOR s dzonin s santnyhor i Boyity) =286

i : | p=3
sooof- < AP e o S E / - 4- Vo = 800 m.s !
b i

1\ { Vpi=15 m.s7!
a0 -4 - F -k
i 4
Z000 “'.fi.’.\
2000 5
P id i
& &5 T 75 30 5s =B ()

Figure 18. Estimation Distance of the Real
Target in the Critical Zone

As can be observed in Figure 18, the closer
77(tp) is to 80°4, the more difficult it is to estimate

the real target. This is mainly due to the fact that
targets P;, P, and P, are aligned in the «close to
impact» line of sight of the object for a longer
time.

It is also important to notice that the estimation
is more difficult for 571 () values inferior or equal
to 80°4. The reason is the curvature of the
trajectory implied by a positive initial value of
¢ (1) - If the same simulations are performed for

a negative one, the estimation is harder for 4 (t,)
values superior or equal to 80°4,

To conclude with this first algorithm, it seems
important to say that its poor performance
generates a large critical zone. A similar graph is
plotted for a more elaborate algorithm in [1] and
further on in this paper, proving that for better
algorithms, this zone is thinner.

II.A.1.b. Algorithm II: An Algorithm Using
Dynamic Fuzzy Sets

11.4.1.b.1. General Description

Studies in Informatics and Control,Vol.5,No.3,Sept. 1996

The main problem of the previous algorithm is
that it uses the positive area as a static one.
However, the analysis of the different g (t)

evolutions shows that this area has, in fact, two
different roles.

On starting simulation, its role is not really
significant since all the 8 (t,) are assumed as
1

positive. As the simulation progresses, its role is
more and more important since it allows the
dissociation of Type I targets from the real one.

Considering this fact, a new algorithm based on
the noise-corrupted values of d,(t) has been

derived. The idea is to use time varying fuzzy sets
in the positive area in order to take into account
the two roles of this zone. The boundaries of these
fuzzy sets are dynamically modified so that they
have more and more importance as the
simulation proceeds.

To precisely control the evolution of the danger
level, a new fuzzy set is created for the input data.
It is called Positive (P). This new set is necessary
for two reasons. First, it allows the fuzzy logic
controller to gencrate negative variations if the
inputis large positive. Second, it makes it possible
to take the noise into account as done in the
negative area. The fuzzy set Z infers a very large
positive variation. P only generates a large
positive one.

The fuzzification and defuzzification processes
are obtained as previously. The fuzzy sets for the
negative area are unchanged.

11.A.1.b.2. The Implemented Algorithm

An experimental study based on multiple trials
with time decreasing functions has made it
possible to define an acceptable evolution of the
boundaries for the fuzzy sets in the positive area.
Hence, this evolution is defined to get a full
significant role for different sets after a time
equal to 2 x gtfdjmcﬁ /3Where 1 yirec, is defined

as the time for objéct O to reach target T, in a
straight line, that is:

Ity 17

| =
f dlrecli VO

where r;(1,) represents the initial distance OT,
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and V, the module of the velocity vector of O.

The fuzzy sets associated with different input data
are shown in Figure 19.

To simplify the defuzzification process, the
output sets are crisp (non-fuzzy) seis. Four such
sets have been defined. They are labelied Very
Large NegatiVe (VLNV), Large NegaiiVe
(LNV), Large PositiVe (LPV) and Very Large
PositiVe (VLPV). Their corresponding
numerical values are: -3,-2, 2 and 3.

n
LN N AZ P LP

1

/

max(k, 0+ 1
max(k,0+0.15

e

Szjim

015 002

Figure 19. Fuzzy sets associated with d , (1) for

the second recognition algorithm using
dynamic fuzzy sets. The term k is time
dependent and defined by:

50i(t0)-- (6Ol(t0)ot.2.tf dimj/:&)

The decision table shown as Table III gives the
inference rules which have been derived from the
general description of the recognition algorithm.
As before, each entry defines an inference ruie.
The combination between different rules is
performed with the maximum operator.

Table III Decision table for the second
recognition algorithm based on dynamic fuzzy
sets

() |LN| N | Z | P | LP

Alevel (t)| VLNV | LNV [VLPV| LPV |VLNV

Using the previous Table, it is possible to derive

the theoretical evolution (based on noiseless

information) of the danger level associated with

each target. At first, each danger level is

increasing for all the targets since o, (t) for each
i

T, is either in zone Z or P. Then, as the object
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proceeds towards its target, the danger level of
Type 11 targets starts decrease since their 60i(t)

reaches either zone N or LN. The danger level of
Type 1 targets either continues to increase (if
dg(t) is in the P zone) or starts decrease (if

dg (t) is in the LP zone). The danger level of the
real target is always increasing since its d, (t) is
alwavs in zone Z or P.

These different theoretical evolutions are
summed up in Figure 20.

II.A.1.b.3. Simulation Results

Target estimation algorithm II has been
implemented and simulations have been
performed under the same conditions as those
presented for algorithm L

Figure 21 shows the danger level evolutions
obtained through simulation for an 7, (t,)=45°.
The results obtained can be compared with those
presented in Figure 20. The only difference
between the two sets of results is that during a
short time interval, the danger level of Type II
targets is higher than that of real target. That is
due to the fact that in simulations,
noise-corrupted data are used whereas the
theoretical evolutions are established from
noiseless information. Therefore, during this
time interval, the noise- corrupted d4 (t) of some

Type II targets are in the Z area whereas the
3¢ (1) of the real target is in the P area.

Langer_Level,;

The &n;it) :
The 831U cnteianthic LB
[} /

s all the targets, :area
are eithes in the -
7 orthe I area

i

i he Bey(1)
o of Typell targets
enter in LN

arca

The 80

of Tvpe I targets
are in the N

| “arca

Type [l targets

Figure 20. Estimated Evolutions of
Danger_Level (t) for Noiseless cSO )

for Algorithm II
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Figures 22 and 23 give respectively the target
estimation distance and the error ratio as a
function of 77, (1)

Danger_level;

Table IV summarizes the averages and the variances
of both estimation distances and error ratios
obtained with this second estimation algorithm.

Table TV Performance of the second target

ﬁ?g_ﬂﬁ‘ ; : estimstion algorithm based on the values of &, (1)
1 . '
432.70 ™ Real target
230.02 "i ,K\‘—- i el Result Type Average Variance
P S NG~
R RN Target 7700 m 1.810" m?
-169.03 + — Type Hl estimation
i ‘\\\‘\ — largets distance for
37172 T N 7,(t,)
— | j , time g{lrv ng 5
980 308 622 935 1248 1562 1875 inseconds etween
and 90°.
Figure 2.1. Slm‘ulated d'amger level e?fo‘lu.txons Talfget 10500 m 1.4 106 m2
obtained with algorithm II. The initial estimation
conditions are as described in the distance for
simulation scenario with 7, (t,) =45 3 é%‘fg}g
Average of the estimation distances: betweeél 0
for n between 0 and 907 7700 m
for 1 between O and 607 : 10500 m and 60"
Variance of the estimation dances: Error ratio 49% 0.068
Estimation distance in meters for 1) between 0 and 90° : 1.8 107 m> for 7? ([0)
Lt s 004 for 1 between 0 und 607 - 1.4 107 m* val‘yl}lg
between O
!ﬁ\ximum estimation distance: 12300 m and 900
. E Error ratio | 38% 0.0124
s 0B forn_(t.)
L varyihg"”
\ between 0
\ _ﬁ and 60°.
- Best
Figure 22. Estimation distance of the real target eslindtion 12300 m
; . distance
as a function of 77, {t,) for algorithm II. The

initial conditions are those described
in the simulation scenario.

Average of the crror ratios:
for 1) between U and 907 : 49%
Error ratio (/1i#h) for 1} between 0 and 607 38%
Variance of the error ratio:
for 1) between 0 and 907 : 0.068
for 1 between 0 and 607 0 0.0712

1

e

Figure 23. Target estimation error ratio as a
function of 7, (t,) for algorithm II. The initial
conditions are those described in the
simulation scenario.
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11 A.1.b.4. Results Analysis

The previous results immediately show the
advantage of separating the two roles of the
positive area. The error ratio has been reduced by
more than halfin the non-critical zone and almost
by halfif ,(t,) is chosen between 0 and 90°. The
estimation distance has also been improved even
if the difference is not as important as the one
obtained for the error ratio.

The decrease of the error ratio is very important
in case of the target estimation algorithm. It
proves that the estimation error at the beginning
of the simulation has been largely reduced. The
resulting algorithm is therefore more reliable.

The two target estimation algorithms which have
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been presented are based on noise-corrupted
values of d4(t). In order to check if the

performance can be improved if smoothed data
are used, another algorithm is now studied.

I1L.A.2 Algorithm III: An Algorithm Based on
Smoothed Data

II.A.2.a. General Description

The main advantage of using smoothed data is the
possibility of taking into account the first
derivative of d, (t). This implies that the use of

dynamic fuzzy sets is no longer necessary: the
separation of the two roles of the positive area is
obtained by a combined analysis of d, (t) and

50i(t). The general description of this new target

estimation algorithm is therefore modified. It is
given in Figure 24,

In order to smooth the noise-corrupted data, a
least-squares approximation algorithm is used
[7]- In fact, a total of three different least-squares
algorithms are used. Two of them are respectively
used to smooth the values of ri(t) and #,(t)
necessary to compute 85 (t). The third one is then

used to smooth these last values.

Based on an experimental study, the first two
least-squares algorithms are chosen to fit a third
degree polynomial function. The third one is
designed to fit a fourth degree polynomial
function.

Moreover, this experimental study shows that
best results are obtained if two different methods
are used to compute the smoothed values. For
r;(1) and #,(t), the smooth values are always
defined locally, using N; measures of r,(1) and
n(t)respectively. On the other hand, the
complete history of the values is kept to compute
8¢ (1) starting with N, measures.

Therefore, for r,(t) and 7,(t), the smooth value is
always defined as the middle point of N, data.
Only the first N, /2 values and the last N, /2 values
are defined with the same polynomial function
(respectively the first onc and the last one).

On the other hand, the first N,/2 smooth values
of d4(t) are computed from the polynomial
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function estimated from the first N,
noise-corrupted data. Then, each new entry
estimates a new smooth value of 84 (1).

'

Noise-corrupted

8, (1)

Least-squares
approximation algorithm

smoothed 50 (L)

Rules of inference

Defuzzification

Aleveli(v)

smoothed 60 (1)

JIOIIU0D AZZ0

| Updating of Danger_Levely(t) ]

Figure 24. New general description of the target
estimation algorithm using the smoothed data

of 8, (1) and aoi(t)

The number of points to start with (N; and N,) is
however hard to define. Numbers too large delay
the target estimation algorithm too much.
Numbers too smail do not sufficiently smooth the
data. In order to get the optimal value, an
auto-adaptive fuzzy algorithm [12] could be
studied in order to automatically derive the best
fuzzy sets for each parameter of the controller.

However, in this paper the fuzzy sets have been
defined manually. The smooth data are obtained
by taking N; and N, equal to 26. This number
seems quite appropriate since the simulations
performed show that it highly smoothes the
noise-corrupted data without generating too
important delays (a total of 2 seconds if the
sampling period is chosen equal to 50 ms). Table
V gives the variance and the average of the errors
compared to the non noise- corrupted data.
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Table V Average and variance of the error due to
the least- squares algorithms for N=N, =N,=26
points

Average of the
errors compared i
Variable to non V:al::aencz:f
noise-corrupted =
data
r 0.26 m 1.05 m®
7, 8410%rad  |4.310% rad®
8o, 61103rad | 1.910 rad?
% 127107
ddm /dt 8810 rad )
i rad

= D055 10 Wil el w
85 (D

Figure 25. Fuzzy sets associated with J, (t) for
i

the third estimation algorithm based on the
smoothed values of &, (t) and 50 (t). The value

«ini» is equal to 3, (1=0)

u

VLNGV LNGV NGV NL lPSV LPSV

The fuzzification and defuzzification processes
are realized as previously. The inference rules are
created to identify the different function types

using the smoothed values of 3 (t) and 3 (1).

Since the target estimation algorithm is now
working on smoothed data, the use of two fuzzy
sets in the negative area is no longer necessary.
Therefore, only the fuzzy set previously labelled
Large Negative (LN) is used.

In the positive area, the Positive (P) fuzzy set
introduced by the second algorithm is kept. Its
purpose is only to ease the inference of a correct
variation of the danger level in this area.

1IA.2.b. The Implemented Algorithm

Figure 25 and 26 show respectively the fuzzy sets
derived by simulation for d, (1) and 3, (t). As

previously,the numerical values for the
boundaries are obtained experimentally.
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007 0045 -0.03 Olo.oos :
0.01 3o, (0

Figure 26. Fuzzy sets associated with 3, (1) for

the third target estimation algorithm based on
the smoothed values of § Oi(t) and 50i(t)'

The fuzzy sets associated with d, () are labelled

Very Large NeGatiVe (VLNGC), Large
NeGatiVe (LNGV), NeGatiVe (NGV), NuL1l
(NL), PoSitiVe (PSV) and Large PoSitiVe
(LPSV).

To simplify the defuzzification process, the output
values are defined as crisp (non-fuzzy) numbers.
Their labels are Very Large NegatiVe (VLNV),
Large NegatiVe (LNV), NegatiVe (NV), ZeRo
(ZR), PositiVe (PV), and Very Large PositiVe
(VLPV). The value associated with each number is
respectively: -3, -2, -1,0, 1and 3.

The decision table which defines the inference
rules is given as Table V1. Each entry defines a
rule. The two inputs are combined with the
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minimum operator and ihe different rules with
the maximum operator.

Table VI Decision iabie for the third
recognition algorithm based on smoocthed
values of 30,(t) and 3¢ ,(t)

So(\ | N Z P LP
\do,(1)
VLNGV § VLNV NV PV PV
LNGV VLNV ZR PV PV
NGV VLNV PV PV 7ZR
NL VLNV VLPV ZR NV
PSV VLNV NV NV LNV
LPSV VLNV LNV LNV VLNV

The theoretical evolutions of the danger level of
each kind of a target can be derived from the
previous Table. They are quite similar to those
presented for the second estimation algorithm.
The main difference is a delay at the beginning of
the simulation, a delay due to the least squares
algorithms. Figure 27 presents these evolutions
derived from non noise-corrupted data.

Dunger_fevel;

'/’r t
A d é I‘.p‘ 1 tary Real target
The 6¢,(1) their D\n/"r !
o all the targets ).L“\"i in the LP
e either in the Trew with i positive
T.PorT Parea _—"" sagation
with a nggs : \ =9
/Mn)aliéun N \\
; lype llw sy \\ \\\
nave their & yit \ AN
it \ b‘l
e " ime
1 it \ilhll.m\}ll /.l ) o
orinthe LN | lype Bargats
Sy e ith | have theihg
initia- m.u_?.lh Y i N (B8 o et
H & b Y4l ' . AR i iy
Fization e ! inthe LN aku ype [ targ
‘ very gegative | \
varfation

Type Htargets

Figure 27. Estimated evolutions of
Danger_Level, (1) for noiseless 3, (t)
and 3, (1): algorithm 11T

I1.A.2.c. Simulation Results
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Danger_faeve

Figure 28 shows the evolutions of the danger levels
obtained by simulation. These results are consistent
with those presented in Figure 27. Moreover, by
comparing them to those obtained from the two
previous algorithms, it can be noticed that the
evolutions of the danger levels are more regular
with this new algorithm. This advantage is due to
the fact that the new model of the target estimation
algorithm is based on smoothed data and aliows the
use of the first derivative of dg,(1).

553
353 ; — —
) ; Real target
iy g - ==t
L-——_"" - \ Type Il
58— ‘-..\‘;\ h"‘§47 targets
264 : ‘\Q y s —_—
i targets
470} i \\\ b
{ | |
576 ! I Time in
0.40 3.08 6.23 9.38 12.46 1561 1875 seconds

Figure 28. Simulated danger level evolutions ob-
tained with aigorithm III. The initial conditions
are as described in the simulation scenario with

n,(ty) = 45°,

Figures 29 and 30 give respectively the target
estimation distance and the error ratio as a
function of 51(tp).

Table VII summarizes the results obtained with
this third target estimation algorithm. The
simulation conditions are identical to those
presented previously.

Average of the estimation distances:
for 1j between O and 01 9200 m
for 1f between (and 60 1 10700 'm

Variance of the estimation ddntr\
{for 1 hetween O and 90 : 4.2 10 m
for 1 between O and 60 © 4.3 10° m?

Estitnation distancv in meters
90 o

P+LL4

|
{
Maximum estimation distance: 11400

S z
N 300
;»\"’)\‘ =
EN
\
N - ) I A}
' \ /)
T ’I ‘

—tt -

~£A ISP NN
Figure 29, Estimation distance of the real tar-
get as a function of 7,(t,) for algorithm IIL.
The initial conditions are those described in the
simulation scenario.
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Average of the error ratios:
for i between (@ and 507 : 18%
for 1 between 0 and 607 : 124

Error ratiol/100}
4

Variance of the error ratio:
for 1) between 0 and 907 : 0.009

| for 1y between 0 and 60 ¢ 0.004 |

beomg [ -

JE \ | 4
A T o T

Figure 30. Target estimation error ratio as a
function of #,(t,) for aigorithm IIL The initial
conditions are those described in the simula-
tion scenario.

Table VII Performance of the third target
estimation algorithm based on the smoothed
values of 6Oj(t) and 501(0

Resuli Type Average Variance

2

Target estimation 9200 m 42106 m

distance for

n,(t,) varying
bétwogen 0 and 90°

Target estimation 10700 m 4310°m®
disignce fory 1('.%)
varying between

and 60°

Error ratio for 18% 0.009

7,(t,) varying
bétween 0 and 90°

Error ratio for 12% 0.004

77,(t,) varying
between 0 and 60°

Best estimation 11400 m

distance

II.A.2.d. Results Analysis

Previous results have shown the advantage of
using smoothed data. A more precise control of
Alevel ; is obtained. It implies better and more
stable estimation distances and lower error ratios.
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The only problem seems to be the best estimation
distance which is the worst obtained so far.
Simulation analysis shows that this is mainly due
to the delays implied by the least-squares
algorithms which are certainly not optimized.

However, the rcliability of this new algorithm
(enhanced by low error ratios) makes it a good
choice for this first working phase of the general
targe! estimation algorithm.

The following description concerns the second
phase of the target estimation algorithm when all
the components of estimation vector v;(t) are
taken into account.

11.B. Second Phase: Algorithms Working on v(t)

It seems necessary to remind the reader of this
second phase as working on all the parameters of
estimation vector v(t). It starts when the Kalman
filter is initialized.

I1L.B.1. General Description

The fuzzy estimation algorithm is derived to
compute a fast and accurate estimation of the real
target of manoeuvring object O. It uses the
different parameters of vector v,(t) as well as their
first derivative.

I[.B.2 The Implemented Algorithm
As far as 5Oi(t) and 50i(t) are concerned, the

smoothed values computed by the least- squares
algorithms previously presented are used.
Therefore, the fuzzy sets associated with these
two variables are those presented in Figures 25
and 26.

Only one fuzzy set is defined for ge__,; . (1). Its
1
role is to ensure that g, . .4 (t) is inside the
1

interval of acceptable i, defined by Equation (4).
It takes into account the possible error induced
by the Kalman filter. It is called ACCP which
stands for ACCePtable values of u. It is
represented in Figure 31.

Since a constant evolution Of Hestimated(t)
characterizes the real target of object O, fuzzy sets
have been derived to analyze ﬁesljmatcdi(t). These

sets are called MUNEG, MUNLL and MUPQS
which identily respectively negative, null and
positive variations of Mestimated(t). Their
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boundaries are defined b an experimental analysis
Of fiestimated (t) - They are given in Figure 32.

ACCP

Figure 31. Fuzzy set associated with
# cslimatedi(t)'

Letter findicates the membership function of
fuzzy set ACCP to avoid confusion.

f

MUNLL "1 MUPOS

MUNEG

-0.01 -0.005 ¥ 0.005 0.01

Hestimated,

Figure 32. Fuzzy set associated with
* ] . .
M timat edi(l). Letter f indicates the membership

function of fuzzy set ACCP to avoid confusion.

Because of the imperfections of the Kalman filter
used (see paragraph LE), Type I targets are the
only ones that can really be identified by analyzing
Aci(t). They can be recognized by a strictly
negative Ac;(t). Moreover, since these values are
computed with the Kalman filter, a precise noise
analysis is not necessary. Hence, only one fuzzy
set is defined for Aci(t). This set is called DCNEG
which stands for negative values of Ac(t). It is
represented in Figure 33.

In order to precisely control the evolution of each
danger level, seven output (crisp) sets have been
defined. Their labels are Very Large NegatiVe
(VLNV), Large NegatiVe (LNV), NegatiVe
(NV), ZeRo (ZR), PositiVe (PV), Large
PositiVe (LPV) and Very Large PositiVe
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6 7 pestimated;

—J-

(VLPV). The value associated with each of them
is respectively: -3,-2,-1,0,1,2 and 3.
+ H

DCNEG

z 0
Figure 33. Fuzzy set associated with Ac,(t).
This set identifies Type I targets.

The fuzzy algorithm is defined by the following
rules. For each rule, the inputs are combined
either with the minimum operator (and) or the
maximum operator (or). The different rules are
combined with the maximum operator.

R L If Pegimed (U 18 not ACCP then Alevel (1) is VLNV

R 2: I fegimed (1) is ACCP and (il gmeq {1)/dt is MUPOS
or dllgimea i /dt is MUNEG) then Alevel(1) is VLNV

R3 I Pesmea (1) is ACCP and djtqimeq i(1)/dt is MUNLL and
(Aci(0) is DCNEG or do,(1) is LN) then Alevel,(1) is LNV

R4 I logtimed (1) i ACCP and ditgmeq (1)/dt is MUNLL and
Acy(t) 1s not DCNEG and &o,(t) is Z and ddo,(0)/dt is VLNGYV
then Aleveli(i}is LR

RS I Pogimea; (1) 18 ACCP and ditggimeq i(1)/dt is MUNLL and
Ac;(ty is not DCNEG and do,(t) is Z and déo,()/dt is LNGV
then Alevel (1) is PV

RO If fegimea V) is ACCP and dllqyeq (/L is MUNLL and
Aci(u) is not DCNEG and 8o,(t) is Z and ddo,(t)/dt is NGV
then dlevel(1) is LPY

R 7 I fesimeailt) 18 ACCP and dilgymeq (/AL is MUNLL and
Ac,(t) is nut DCNEG and $o,(t) is Z and ddo,(1)/dt is NL
then Alevel(t)is VLPV

R B I Bogimed i) 18 ACCP and di,gimeq i (0/dt is MUNLL and
Agity is not DCNEG and do;(1) is Z and ddoy(L/dt is PSY
then Alevelft)is ZR

RO Hegimea itt) 18 ACCP and dpgimea ;()/dt is MUNLIL, and
Agi(t) is not DCNEG and 80y(1) is Z and ddo,(1)/dt is LPSY
then Alevel (1) is NV

RO g imed i1 15 ACCP and dj,gipmeq (t/dt is MUNLI, and

Suy(1) is not Z and Soi(1) is not LN and Ac; is not DCNEG
then Alevel(1}is ZR
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In the previous rule based algorithm, R1 allows
the danger level of a given target to rapidly
decrease if the estimated value of the
proportional navigation coefficient is not in the
correct interval. R2 checks the constant criterion
Of U ogimateq (1)- R3 ensures that both d, (t) and

Ac;(t) of a given target T; characterize neither a
Type I target (if Acy(t) is DCNEG) nor a Type II
target (if 3 (t) is LN).

Rules R4 through R9limit the maximum increase
of any danger level according to the number of
criteria corresponding to the real target. R7
represents the real target.

R10is a kind of a watch dog. It implies a constant
danger level if the evolutions of different
parameters cannot identify a target type (Type I,
IT or real target).

The previous rules and the decision table
presented for algorithm IIT makes it possible to
derive the theoretical evolutions of this new
target estimation algorithm. The different
evolutions of the danger levels can be separated
into three different zones.

The first one (labelled ZONE I) is defined from
initial time (t = 0) to t = 2 seconds. It corresponds
to a constant value of each danger level since the
least -squares algorithms used inalgorithm IITare
not initialized.

ZONE 1l is defined between time t=2sand t =
5.05. It corresponds to the time when only
algorithm II1is active, the Kalman filter being not
yet initialized.

ZONE 1II is defined for t>5.05. The Kalman
filter is completely initialized. The algorithm is
the one using rules R1 through R10. It
corresponds to a very decreasing evolution of the
danger level associated with non target points.

These three zones are represented in Figure 34.
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Danger_level;
' Real target
: Algorithm [II:
the kalman
filter is not
initialized

Algorithm based on
rules R1 to R10: the
Kalman filter is
initialized. All the
parameters arc used.

- - 25.05 > Time
2 \ in seconds
Z Qﬂlilé ZONE I ZONE 11T ype Largets

Type Il targets

constant:
level: §
initializa$
tion }

Figure 34, Estimated evolutions of
Danger_Level ,(t) for noiseless input
data: algorithm IV

II.B.3 Simulation Results

Figure 35 shows the evolution obtained by
simulation. In this figure, it is possible to identify
the three zones presented above. However, the
boundary between Zone II and Zone 1II is a
discontinuous one. This is due to the fact that
when the Kalman filter is initialized, the danger
levels are recomputed from the first estimation
provided by the filter [4], that is from time t =2.5
s (50th sample). The algorithm using all the
parameters being more accurate, the danger
levels are lower for non target points implying a
discontinuity in the Figure.

Danger_level,  Least squares initialization Discontinuity due to the new
b algorithm (all the parameters are
/ taken into account)
373.51 T [
/ | 4 T S~ Real tageet
sal large
156.50 J PN r’f b X

1\

sl
o S ——
-285.01 xS ~J

\ \ W Type I ungets

/

502.02 i S

Type Hitargets ﬂ i’\\\‘é*
-7119.03 T I [ ™~
94353 . : l '

Time
0.00 3.07 6.20 9.32 12.45 15.87 18.70  in seconds

Figure 35. Simulated danger level evolutions ob-
tained with algorithm IV. The initial conditions
are as described in the simulation scenario with

7,(ty) = 45°.
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Figure 36 and 37 pivc rospectively the target Avernge of the ervor rafios;
: . : - Srrox rutio (/108) g 30° - 19%
estimation distance aud ihe crror ratio as a RSV for  betioen 0 and 50 199
& vr 1 between 0 and 60° 1 [5%
function of %, (t;). [~ 60
/ \ Variance of the error ratio:
Table VIII summarizes the results obtained with 02585 / for 1) between 0 and 90° - 0.004
" . s 4 . oy . / for 1} between 0 and 60° ¢ 0.003
this fourth target estimaticn aigorithm. The V] ./ N -
simulation conditions are identical to those di7d’ ‘,;/\\ 10 S;
presented before. *“;ﬁ. };{ e
| ~
II.B.4 Result Analysis ! \
S . \
By comparing these new results with i1hose \
|

obtained with algorithim III (see Table VII}, itcan
be noticed that the general performance of
algorithm IV is close to that of aigorithm I1I. This
can easily be explained by the fact that the
estimation distances and the error ratios are
established in most cases at the beginning of the
simulations when algorithm IV is in fact
equivalent to algorithm IIL

(=)

Figure 37. Target estimation error ratio as a
function of 77, (1) for algorithm IV.
The initial conditions are those
described in the simulation scenario.

The real advantages of the new algorithm (in

terms of estimation distances and error ratios) are Table VIII Performance of the fourth target
mainly visible when the estimation cannot be estimation algorithm based on all the estimation
made at the beginning of simulation: in what has parameters

been called the critical zone.

In order to verify the previous statement, Result Type Average Variance
simulations have been performed for algorithms T i .

Il and IV around the initial value of 7 derived in ol o Lam
paragraph ILA.1.a.5, that is nipj1ia1 = 807 4. These 77,(t,) varying

results are presented in Figure 38 and Table IX. gggween 0 and

Their analysis shows that the use of an algorithm
based on all -t-he estimation parameters has Target estimation 10800 m 1.6 10° m?
reduced the critical zone. distance for

77.(1,) varying
between 0 and 60°

Au-:”ragi- of the extinztion distarces: é
tor 1 between D and 9070 9600 m i )
for 1 between 0 and 407 : 13500 m i Error ratio for 19% 0.004
o . 7]‘(10) varying
Fstimation distance in meters Variance of :hf estimation danges.:_l ! bétween O and
Wy for 1y hetween G and 90° @ 5.1 qu m* ! 90°
! Lff 0o form hetwsen 0 and 60° 0 1.6 107 m~ |
L3O t
= Maximum eslimation distznce: 11400 m| Frror ratio for 15% 0.003
— ]
= 7,(t,) varying
Ny B between 0 and
s 60°
\ I Best estimation 11400 m
! C distance

Figure 36. Estimation distance of the real target
as a function of 7, (t,) for algorithm IV,
The initial conditions are those
described in the simulation scenario.
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Figure 38. Estimation Distance in the Critical
Zone for Algorithms I1I and IV

Table IX Performance of the third and fourth
target estimation algorithms in the critical zone

Result Type | Algorithm III | Algorithm IV
Average |Variance | Average |Variance

Target estimation | 7700 m [7.10°m?| 8400 m | 6.4 10°
distance for 77,(1,) m’
varying between
60 and 90°
Error raiio for 22% G.009 23% 0.003
77,(t,) varying
between 60 and
90°

III. Conclusion

This paper has presented the different steps
followed to create a target estimation algorithm
based on a fuzzy algorithm. The use of such a
model has made it possible to analyze each
estimation parameter separately. The fusion of
these different analyses is then easily made
through a rule based system.
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The estimation is computed by using a danger
levelvariable associated with each possible target.
The fuzzy algorithm infers a variation of thesc
danger levels, presenting a dynamic evolution of
the estimation.

A precise control of the danger level variables has
been obtained by combining all the information
avaiiable ata given time. Thus, the final algorithm
is divided into two phases according to the
parameters already available.

The result of this study can be defined as a
powerful and reliable estimation algerithm.
Moreover, the use of fuzzy logic has proved to be
an interesting and original way to deal with the
preblem of target estimation.
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