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1. Introduction

The classical transportation problem (Hitchcock, 
1941) is one of the most studied linear programming 
problems in the specialized literature, for which 
practical computational algorithms that take 
advantage of the special structure of the problem 
have been developed, whether it is consistent 
(Dantizg, 1951) or inconsistent and Simplex-
type algorithms are no more applicable (Carp 
et al., 2015). The generalized transportation 
problem extends the linear transportation problem, 
assuming that the amounts of goods transported 
from the supply points to the destinations change 
during the transportation process. This problem 
was discussed by Balas & Ivanescu, 1964; Gupta, 
1978, and others.

Depending on the type of the cost function, a 
transportation problem can be classified into 
linear and nonlinear problem. Both the classical 
and the generalized transportation problems are 
linear, considering that the transportation cost 
is constant, regardless the shipped quantity. 
However, in many practical applications the cost 
per unit commodity shipped from a source to a 
destination is not fixed, depending by a series 
of factors like the costs of raw materials and 
transport. This would lead to a cost function 
either piecewise linear or separable concave. 

The Discounted Generalized Transportation 
problem (DGT) assumes that the transportation 
costs depend on the amount of transported goods 
(e.g., discounts offered for large quantities). The 
DGT problem was studied by several authors. 
Balachandran & Perry (1976) developed an 
algorithm based upon a branch-and-bound solution 
procedure. Goossens et al. (2007) studied several 

variants of DGT problem and proposed and tested 
three exact algorithms (min-cost flow-based branch-
and-bound, linear programming-based branch-and-
bound, and branch-and-cut) on randomly generated 
instances. Ojha et al. (2010) considered an extension 
of the DGT problem, where all unit discounts or 
incremental quantity discounts are offered, and 
the cost depends on the amount offered, source, 
destination and shipping. They developed a genetic 
algorithm and applied it on several numerical 
examples. Mubashiru (2014) introduced a Karush-
Kuhn-Tucker optimality algorithm to solve a 
transportation problem with volume discount, with 
a convex cost function meaning that the objective 
function is composed of the unit transportation 
cost and also of production cost related to each 
commodity. Acharya et al. (2013) proposed an 
algorithm based on the linear programming model 
of the generalized transportation problem that 
required introducing slack or artificial variables into 
the model. Several algorithms are introduced by 
Arpita & Bikash (2014) to solve the DGT problem 
by a two-vehicle cost varying transportation model. 
The transportation cost depends on the amount of 
transport quantity, which, in turn, depends on the 
capacity of the transport vehicles.

Discounted fixed cost transportation problem 
can be considered as a version of DGT problem, 
with two types of costs: a fixed charge which is 
independent of the shipping amount, and a variable 
cost which is assessed based on the amount of 
shipped goods. Yousefi et al. (2017) considered 
this problem, with discount assumptions on 
both fixed and variable costs, and developed a 
genetic algorithm based on spanning tree-based 
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representation and priority-based representation. 
George et al. (2014) tackled the transportation 
problem with volume discount on distribution 
cost by using the Karush-Kuhn-Tucker (KKT) 
optimality condition. Ghaseemi Tari (2016) 
proposed a discrete nonlinear optimization model 
and developed a hybrid dynamic programming 
algorithm for finding the optimal solution.

This paper focuses on the development of an 
evolutionary optimization technique to solve the 
nonlinear DGT problem with the cost function 
taken as step function, stated as:
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where 

1,...,( )i i ns =  – supplies of some goods available at 
supply warehouses called sources, {1,..., }( )i i nS ∈

1,...,( )j j md =  – demands requested by receiving 
centers called destinations, {1,..., }( )j j mD ∈

{1,..., }, {1,..., }( )ij i n j mx ∈ ∈  – number of units  transported 
from source iS  to destination jD .

{1,..., }, {1,..., }( )ij i n j mc ∈ ∈  – the cost of moving one unit 
from source iS  to destination jD .

{1,..., }, {1,..., }( )ij i n j ma ∈ ∈  – positive constants rather 
than unity, called multipliers, showing the amount 
of good provided by source i

The equality constraints ensure that the product 
unit requirements will be satisfied at destinations, 
whereas the inequality ones express that the 
supply of product units available at each source 
must not be exceeded.

To illustrate the efficiency of the proposed 
evolutionary optimization algorithm, we applied 
the model on the numerical example presented in 
(Acharya et al., 2013) and the results of these two 
methods are compared. We aimed to calibrate the 
genetic algorithm we developed, i.e., to find the best 
fitting set of evolutionary parameters that favors 
finding the best transportation cost for a benchmark 
instance of the DGT problem that has been solved 
optimally (Acharya et al., 2013). Afterwards, the 
calibrated GA may be applied on other instances of 
DGT problem to get a high-quality solution.

Scientific approach of transport planning has 
contributed a lot to an efficient real-time transport 
management, reducing delivery cost and times. Use 
of information systems with user friendly interfaces 
(Suduc et al., 2009) gives transport decision 
makers the possibility to handle more data, apply 
complex modelling functions and visualize a set of 
solutions, each one having its own advantages and 
disadvantages. Currently, there are supply chain 
networks (Pop et al., 2017; Cosma et al., 2020), 
decision support systems (DSS) or platforms 
(Candea & Filip, 2016) that transport planners may 
use to make decisions in very limited timeframes 
regarding the transported goods, both in terms of 
quantity and distribution on warehouses and the 
price obtained for the entire transport service. 
Consequently, it can be considered that multicriteria 
linear problems are to be solved, whose restrictions 
are given by the shape and volume of the 
warehouses and the objective functions are about to 
maximize the quantity of goods, to minimize costs 
and to maximize profit. The method presented in 
this paper can be easily integrated into a DSS-based 
solution of a multicriteria linear problem in order 
to refine the distribution of maximum quantity of 
goods on the warehouses so as to obtain the best 
(low) cost using discount facilities.

Following this introduction, the proposed 
methodology for solving the DGT problem is 
presented in Section 2. In Section 3, the analysis of 
the results of the proposed approach is provided. 
Finally, the conclusions are discussed in Section 4.

2. Methodology and Data

2.1 Evolutionary Approach of the 
DGT Problem

The DGT problem is reformulated in order to suit 
the genetic algorithm requirements. In this respect, 
first the unknowns are renumbered as 



	 31

ICI Bucharest © Copyright 2012-2021. All rights reserved

Using Genetic Algorithms to Solve Discounted Generalized Transportation Problem

___ ____ _____
, 1, , 1, , 1,ij lx y i n j m l mn→ = = =                     (2)

Let now mnc∈  be the cost vector of the above 
problem, 1 2,B B  be the ,m mn n mn× ×  matrices 
corresponding to the m equalities and the n 
inequalities from (1), respectively. Furthermore, 
let ,m nd s∈ ∈   be the demands and supplies 
vectors, respectively. Then, the problem (1) can 
be written as 
min ,c y                                                            (3)
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2.2 Genetic Algorithms

Genetic Algorithms (GAs) are evolutionary 
algorithms inspired from the natural process of 
selection which leads to the survival of the fittest 
individuals. Using GAs to solve a problem means 
exploring different regions of the solution space and 
refining the collected information. A function called 
“fitness” guides the search in the solution space and 
measures the closeness to the optimal solution. A 
solution is represented by a chromosome.

GAs maintain a population of potential solutions 
that evolves across generations by selecting the 
fittest individuals according to their level of 
fitness and altering them by means of crossover 
and mutation to form new solutions (Sivanandam 
& Deepa, 2008).

Developing a GA means determining the encoding 
scheme of solutions, the fitness function, and the 
genetic operators.

In the present model, a chromosome is a feasible 
set of mn real parameters l ijy x= , which are 
referred to as genes and represent the amount 
of commodities transported from source iS  
to destination jD . In order to have feasible 
chromosomes and preserve the stochastic 
characteristics of the genetic algorithm, only the 

equality constraints from (3) are imposed for each 
individual, by applying a procedure, called FCP 
(Feasible Chromosome Procedure), that randomly 
generates appropriate numbers. To exemplify the 
FCP procedure, let’s suppose that one wants to find 
real numbers 1 2 3, ,x x x  such that 1 2 3S x x x= + + .  
Firstly, let a and b be two numbers randomly 
chosen in [0, ]S . Then, order them such that 
0 a b S≤ ≤ ≤  and set 1 2 3, ,x a x b a x S b= = − = − .

The fitness function evaluates the performance of 
the chromosomes and represents an objective value. 
The goal is to minimize the total cost of transporting 
items from sources to destinations, so the objective 
function is ( ) ,f y c y= . The cost dependencies 
from (3) are imposed according to each individual 
whose objective function is calculated.

Since the chromosomes initially do not satisfy 
the inequality constraints 

____
2( ) , 1,ig y s B y i n= − = , 

penalty functions must be added to the objective 
function. 

( ),
( )
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(4)

A dynamic penalty function described by Joines & 
Houck (1994), which changes as the GA proceeds, 
is used to model the present penalty function. 
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where , ,Cα β  are parameters of the method, and k 
is the number of the current generation considered. 
The parameters of the method were empirically 
tuned, the best results being obtained with C = 1, 

1α =  and 1β = .

GAs have proved highly robust methods of 
finding good solutions to difficult optimization 
problems due to the choice of well-designed 
genetic operators and optimal parameters. Genetic 
operators are applied to individuals to obtain 
genetic diversity and generate a new population. 
There are three operators: selection, crossover, 
and mutation.
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According to the “survival of the fittest” concept, 
the selection operator implements a probabilistic 
selection of individuals and those with higher 
fitness values will have a better chance to survive 
and will form the mating pool. Here, the tournament 
selection is used (Yadav & Sohal, 2017). 

The crossover operator guides the search process 
to the good solutions. Individuals are selected with 
a user-definable probability, called “crossover 
rate”, from the mating pool and produce one 
or two offspring, which will replace one or two 
individuals from the current population. Due to the 
nature of the present problem, the whole arithmetic 
crossover was chosen for implementation (Furqan 
et al., 2017), thus ensuring that the equality 
constraints from (3) are met by the offspring. 
Then, a weak parent replacement (Sivanandam & 
Deepa, 2008) is applied.

Mutation is the genetic operator that prevents 
the algorithm falling into a local optimum. By 
mutation, some offspring resulted from crossover 
are chosen with a user-definable probability called 
“mutation rate”, and one or more of their genes are 
altered. In this paper, a case of random resetting 
mutation is designed in order not to violate the 
equality constraints from (3). Firstly, a gene is 
randomly selected, and then all the genes that 
violate the corresponding equality constraint from 
(3) are set to values from the set of permissible 
values using the FCP procedure.

The accuracy of the results returned by a 
genetic algorithm depends on the parameters it 
uses, which are problem-specific, and there is 
no best global value for them. There are four 
configuration parameters that must be considered: 
stop condition, population size, crossover rate and 
mutation rate.

There may be various stopping conditions in 
Genetic Algorithms (Sivanandam & Deepa, 2008). 
In this paper, the evolution is stopped when most 
of the population (e.g., 97%) has the same fitness 
value or a user-specified maximum number of 
generations is reached.

A very large population size would mean a 
better exploration of the search space, but also 
an increase in the runtime of the algorithm 
(Sivanandam & Deepa, 2008). If crossover and 
mutation rates are too high or too low, the search 
will pass over either good solutions, or over the 
entire regions of solution space, respectively. 

Most studies in the field of GAs recommend a 
population size between 20 and 100 individuals, 
a crossover rate over 60% and a mutation rate of 
at most 10%. In this paper, to set the appropriate 
parameters, multiple tests were configured and 
run, each test being repeated 5 times and the 
results being averaged to increase their precision.

2.3 The proposed GA for Solving the 
DGT Problem

The implemented genetic algorithm is presented 
in the following.

Input: The destination demands (d), the source 
supplies (s) and the unit cost (c) dependencies of 
the amount of commodity transported

Output: The best solution (y), the associated 
cost vector (c), and the best (minimum) cost of 
transportation ( , )c y .

Begin

1.	 Generate a random population of individuals, 
which are represented as real values arrays of 
length mn and satisfy the equality constraints 
from (3)

2.	 Compute the fitness function 
a)	 Select some chromosomes for the 

crossover operation (the number of 
selected individuals is defined by the 
crossover rate)

a)	 Apply the crossover operator described 
in 2.2 to generate new offspring 

a)	 Copy the remaining chromosomes 
(that were not recombined) to the next 
generation

3.	 Select a few chromosomes for mutation (the 
number of selected individuals is defined by 
the mutation rate)

4.	 If the maximum number of generations is 
reached then stop, else go to step 2

End

3. Results and Discussion

The present GA is implemented using MATLAB 
R2015a. To validate the proposed approach of 
the DGT problem, it was tested over the instance 
discussed in (Acharya et al., 2013). The problem 
is given in Table 1.
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In the first instance, multiple settings of the GA 
parameters were tested.

To choose the proper population size, the 
stop condition was set to 300 generations, the 
crossover rate to 0.75, and the mutation rate to 
0.01. The population size is chosen as the value 
against which population growth no longer brings 
significant changes to fitness. The best value of 
the total cost for which the inequality constraints 
from (3) are also met was 1 214 150.79, obtained 

with a population size of 60 individuals (marked 
in Table 2).

For the stop condition, the population size was set 
to the value previously estimated, the crossover 
rate to 0.75 and the mutation rate to 0.01. Then, 
the number of generations after which the fitness 
does not improve and the inequality constraints 
from (3) are satisfied had to be found. It resulted 
that the best fitting number of generations was 600 
(marked in Table 3).

Table 2. The effect of population size over the GA results

Pop. Size No. 
Gen.

Crossover 
Rate

Mutation 
Rate Cost Time (s)

Supply

s1 s2 s3
10 300 0.75 0.01 1218466.90 0.44 199.48 403.92 255.25
20 300 0.75 0.01 1217570.15 0.71 198.45 397.46 275.23
30 300 0.75 0.01 1215113.71 0.99 199.96 402.06 255.08
40 300 0.75 0.01 1215839.23 1.26 199.80 404.15 250.88
50 300 0.75 0.01 1216164.35 1.51 199.92 412.07 235.32
60 300 0.75 0.01 1214150.79 1.80 199.96 406.08 248.42
70 300 0.75 0.01 1214588.45 2.10 199.98 406.34 245.73
80 300 0.75 0.01 1214975.66 2.46 199.80 400.72 260.39
90 300 0.75 0.01 1214485.56 2.61 199.93 402.86 258.51
100 300 0.75 0.01 1214615.24 3.06 199.75 402.91 253.67

Table 3. The effect of number of generations over the GA results

Pop.
Size

No.
Gen.

Crossover
Rate

Mutation 
Rate Cost Time (s)

Supply

s1 s2 s3
60 100 0.75 0.01 1215947.35 0.71 200.26 404.12 253.48
60 200 0.75 0.01 1216280.05 1.23 199.99 399.66 263.35
60 300 0.75 0.01 1215636.20 1.90 200.00 410.93 232.64
60 400 0.75 0.01 1214217.10 2.41 199.96 402.93 251.65
60 500 0.75 0.01 1214305.22 3.00 199.99 399.56 262.14
60 600 0.75 0.01 1213743.29 3.59 199.95 400.22 258.33
60 700 0.75 0.01 1213828.79 4.19 199.99 402.55 254.83
60 800 0.75 0.01 1213938.43 5.13 199.97 405.75 248.01
60 900 0.75 0.01 1214047.37 5.57 200.00 404.60 249.77
60 1000 0.75 0.01 1214100.51 6.01 200.00 404.75 247.79

Table 1. The DGT problem (Acharya et al., 2013)

  D1 D2 D3 D4 Supply (s)

S1

c11

11 0.35a =
c12

12 0.5a =
c13

13 0.35a =
c14

14 0.5a = 200

S2

c21

21 0.9a =
c22

22 0.84a =
c23

23 0.3a =
c24

24 0.4a = 500

S3

c31

31 0.8a =
c32

32 0.4a =
c33

33 0.74a =
c34

34 0.9a = 400

Demand (d) 200 400 500 1000
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Next, the optimal crossover rate was chosen as the 
value which gives the best fitness. The tests were 
run using the parameters previously determined 
and the mutation rate was set to 0.01. Table 4 
shows that a proper crossover rate is 0.70. This 
value reassures that the search will explore much 
of the solutions space.

For the last parameter, the evolution of GA results 
for different values of the mutation rate was 
analyzed (Table 5). The other parameters were set 
to values established in previous tests. The best 
mutation rate was considered to be 0.02. For this 
value, the average transportation cost has the best 
evolution along the iterations, being reduced from 
1 220 450 to 1 216 516.

Table 6 shows the parameters used to implement 
the proposed genetic algorithm (columns 1-4),  

the execution time (column 5) and the 
resulted supplies values (columns 9, 10 and 
11). Columns 6 and 7, titled Cost (Min) and 
Cost (Mean) provide the lowest and the 
average transportation cost out of 5 runs in the 
execution, respectively. Column 8 shows the 
standard deviation of the complete population, 
whose values (approximately 0.07% of the 
mean transportation cost) show that GA can find 
solutions which are very close to each other in 
its various runs. 

Table 7 presents the best solution and the 
associated cost vector estimated with the 
proposed approach of the DGT problem, whereas 
Table 8 shows the results from (Acharya et al., 
2013). Both approaches determine the same 
transportation cost (1 213 514.5) and layout of 
solution, while respecting both the destination 

Table 4. The effect of crossover rate over the GA results

Pop. 
Size

No. 
Gen.

Crossover
 Rate

Mutation 
Rate Cost Time (s)

Supply

s1 s2 s3

60 600 0.50 0.01 1214843.87 3.60 200.00 409.52 236.80

60 600 0.55 0.01 1214578.34 3.52 199.96 403.66 253.80

60 600 0.60 0.01 1214369.16 3.58 199.96 406.92 246.01

60 600 0.65 0.01 1214299.12 3.56 199.91 404.56 255.06

60 600 0.70 0.01 1213889.68 3.57 199.98 405.55 245.97

60 600 0.75 0.01 1213982.54 3.64 199.90 407.16 243.63

60 600 0.80 0.01 1213987.91 3.69 200.00 417.86 213.44

60 600 0.85 0.01 1214642.25 3.68 198.64 401.03 261.10

60 600 0.90 0.01 1214764.61 3.71 199.96 409.64 238.45

60 600 0.95 0.01 1214248.91 3.78 199.97 413.99 225.12

Table 5. The effect of mutation rate over the GA results

Mut. 
Rate 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Gen.

100 1219489 1220450 1223788 1225937 1229528 1232356 1234116 1240458 1240202 1243496

200 1218606 1220208 1221948 1225411 1228641 1226185 1230468 1239524 1239649 1241204

300 1216731 1219085 1221784 1225899 1228474 1228638 1230916 1238720 1239198 1237954

400 1216900 1216608 1221724 1222513 1225542 1228188 1228186 1233572 1238661 1237406

500 1216795 1216516 1221515 1221518 1225975 1228458 1228057 1235559 1233150 1235612

Table 6. The results and parameters settings of the proposed GA

Pop. 
Size

No. 
Gen.

Cross.
 Rate

Mut. 
Rate

Time 
(s)

Cost 
(Min) Cost (Mean) St. 

Dev.

Supply

s1 s2 s3

60 600 0.70 0.02 3.93 1 213 514.5 1 214 074.4 878.8 200 400 262.8
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and supply constraints (the first supply is slightly 
exceeded in both cases).

We consider that the set of parameters determined 
by multiple tests is the most adequate one to get 
the best (lowest) transportation cost, thus, the 
proposed Genetic Algorithm may be used to solve 
other instances of the DGT problem.

Further on, for evaluating the efficiency of the 
proposed algorithm with the tuned parameter set, 
it was applied to some test problems.

Firstly, several unbalanced test problems of 
six sizes are randomly generated and solved:  
(n,m) = (10,10), (10, 20), (20,40), (40,40), (40,60) 
and (60, 60). Each test problem is executed 5 
times. The multipliers are chosen from [0.1,0.9], 
and the supply and demand from the interval 
[100,500], uniformly distributed. To generate the 

transportation cost, two uniform density functions, 
1c  and 2c , each with the range of [10–20], are 

generated. To consider the real- world cases, the 
costs are decreased as the units transported are 
increased. The discount mechanism is illustrated 
by (9)

1 2 1

1 2 1 2

1 2

2( ), 0

,

,

ij ij ij

ij ij ij ij

ij ij

c c if x C

c c c if C x C

c if C x

 + ≤ ≤

= + < ≤


<                          

(9)

where 1 25C =  and 2 50C = .
The solution determined for each test problem 
fully respected both the destination and the 
supply constraints. Table 9 shows the average 
transportation cost and the running time. Columns 
3 and 5 display the standard deviation of the cost 
and of the execution time.

Table 7. Best solution and the associated cost vector for GA approach

  D1 D2 D3 D4 Supply (s)

S1

11 203c =

11 0.35a =

11 71.5x =

12 401c =

12 0.5a =

13

13

13

398
0.35
500

c
a
x

=

=

=

14

14

751
0.5

c
a

=
=

200.02

S2
21

21

502
0.9

c
a

=
=

22

22

604
0.84

c
a

=
=

23

23

602
0.3

c
a

=

=

24

24

24

749
0.4
1000

c
a
x

=
=
=

400

S3

31

31

31

400
0.8
128.5

c
a
x

=

=

=

32

32

32

499
0.4
400

c
a
x

=

=

=

33

33

602
0.74

c
a

=

=
34

34

901
0.9

c
a

=

=
262.8

Demand (d) 200 400 500 1000

Table 8. Optimal solution and the associated cost vector (Acharya et al., 2013)

  D1 D2 D3 D4 Slack Supply (s)

S1

11 203c =

11 0.35a =

11 71.5x =  

12 401c =

12 0.5a =

13

13

13

398
0.35
500

c
a
x

=

=

=

14 751c =

14 0.5a =

15 0c =

15 1a =
200.02

S2
21

21

502
0.9

c
a

=
=

22

22

604
0.84

c
a

=
=

23

23

602
0.3

c
a

=

=

24

24

24

749
0.4
1000

c
a
x

=
=
=

25

25

25

0
1
100

c
a
x

=

=

=
400

S3

31

31

31

400
0.8
128.5

c
a
x

=

=

=

32

32

32

499
0.4
400

c
a
x

=

=

=

33

33

602
0.74

c
a

=

=
34

34

901
0.9

c
a

=

=

35

35

35

0
1
137.2

c
a
x

=

=

=
262.8

Demand (d) 200 400 500 1000
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Table 9. Computational results of the random  
DGT problems

Problem 
size (n,m)

Cost 
(Mean)

St.Dev 
(Cost)

Time 
(Mean)

St.Dev. 
(Time)

(10,10) 59 034 2382 10.97 0.16

(10,20) 127 560 4849.9 25.20 0.98

(20,40) 438 240 5011.3 98.54 3.21

(40,40) 642 271 2458 187.69 10.35

(40,60) 914 040 6870.2 487.2 8.16

(60,60) 1 045 100 5741.5 947.3 18.5

From the results of this computational test, it can 
be concluded that the submitted algorithm can 
obtain robust solutions which are very close to 
each other in its various runs (standard deviation 
is less than 10% of the mean transportation cost).

For further evaluating the efficiency of the 
proposed GA, a balanced test DGT problem 
(Table 10) was randomly generated and solved 
by the proposed GA. The discount mechanism 
is illustrated by (10). Then, the test problem was 
also solved by using the North West (NW) corner 
method for determining initial basic feasible 
solution, and then setting up the unit transportation 
cost, which varies in each iteration, based on 
the amount of the transported goods (NW-DGT 
algorithm). The results of this computational 
experiment are presented in Tables 11, 12 and 13. 
Referring to these tables, it can be noticed that the 
solution of the present GA is 1.03% better than the 
one computed with NW-DGT method.

Table 10. An example of the DGT problem

D1 D2 D3 D4 D5 D6 Supply (s)

S1

11c  
11 1a =  

12 2c =

12 1a =
13 4c =

13 1a =
14 3c =

14 1a =
15 5c =

15 1a =
16 4c =

16 1a =
25

S2

21 4c =

21 1a =
22c

22 1a =
23 2c =

23 1a =
24 6c =

24 1a =
25 8c =

25 1a =
26 7c =

26 1a =
45

S3

31 3c =

31 1a =
32 5c =

32 1a =
33 7c =

33 1a =
34 11c =

34 1a =
35 4c =

35 1a =
36 5c =

36 1a =
36

S4

41 4c =

41 1a =
42 10c =

42 1a =
43 8c =

43 1a =
44 3c =

44 1a =
45 4c =

45 1a =
46c

46 1a =
44

Demand (d) 21 12 33 44 10 30

Table 11. Best solution of the DGT test problem, computed with GA

D1 D2 D3 D4 D5 D6 Supply (s)

S1

11 4c =  
11 1a =  

12 2c =

12 1a =
13 4c =

13 1a =

14 3c =

14 1a =

14 25x =

15 5c =

15 1a =
16 4c =

16 1a =
25

S2

21 4c =

21 1a =

22 2c =

22 1a =

22 10.5x =

23 2c =

23 1a =

23 30.5x =

24 6c =

24 1a =

24 2x =

25 8c =

25 1a =

26 7c =

26 1a =

26 2x =

45

S3

31 3c =

31 1a =

31 21x =

32 5c =

32 1a =

32 1.5x =

33 7c =

33 1a =

33 2.5x =

34 11c =

34 1a =

35 4c =

35 1a =

35 10x =

36 5c =

36 1a =

36 1x =

36

S4

41 4c =

41 1a =
42 10c =

42 1a =
43 8c =

43 1a =

44 3c =

44 1a =

44 17x =

45 4c =

45 1a =

46 2c =

46 1a =

46 27x =

44

Demand (d) 21 12 33 44 10 30
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11
11

11

4, 0 14
3, 14

if x
c

if x
≤ ≤

=  <  
22

22
22

5, 0 7
3, 7

if x
c

if x
≤ ≤

=  <

 
46

46
46

5, 0 20
2, 20

if x
c

if x
≤ ≤

=  <                                   

(10)

Table 13. Comparison of the proposed genetic 
algorithm with NW-DGT method

Algorithm Cost 
(Min)

Cost 
(Mean) St. Dev. Time (s)

GA 431.5 442.47 29.8428 4.03
NW-DGT 436.0 - - -

To evaluate the efficiency of the present GA in 
comparison with other existing algorithms, TP1 
and TP2 are selected from the specialized literature 
(Arpita & Bikash, 2014). Two of the Two-vehicle 
CVTP test problems presented were settled on: 
example 1, solved with Algorithm TP1, and example 
2, solved with Algorithm TP2. The proposed GA 
was set with the control parameters from Table 6, 
and, for each test problem, the standard deviation, 
the lowest and average transportation cost were 
extracted, all out of 5 runs in the execution. Tables 
14 and 15 show the results of the proposed GA 
and those obtained by Arpita & Bikash (2014). One 
can see that the cost estimated by GA is smaller, 
whilst all the destinations demands are satisfied and 
sources stocks are not exceeded.

Table 14. Comparison of the proposed Genetic 
Algorithm with TP1 (Arpita & Bikash, 2014)

  TP1 GA

Solution

12
13
21
22
33

8
7
10
2
3

x
x
x
x
x

=
=
=
=
=

11
13
21
22
33

8
7
2
10
3

x
x
x
x
x

=
=
=
=
=

Demand 1 2 310, 10, 10d d d= = =  
Supply 1 2 325, 12, 3s s s= = =

Cost (Min) 35 34
Cost (Mean) - 37.04

St.Dev. - 3.21

Table 15. Comparison of the proposed Genetic 
Algorithm with TP2 (Arpita & Bikash, 2014)

  TP2 GA

Solution

11
13
22
23
33

23
2
15
2
8

x
x
x
x
x

=
=
=
=
=

11
12
21
23
32

18
7
5
12
8

x
x
x
x
x

=
=
=
=
=

Demand 1 2 323, 15, 12d d d= = =

Supply 1 2 325, 17, 8s s s= = =

Cost (Min) 51 40
Cost (Mean) - 45.38

St.Dev. - 4.23

Table 12. Best solution of the DGT test problem, computed with NW-DGT method

D1 D2 D3 D4 D5 D6 Supply (s)

S1

11 4c =  
11 1a =  

12 2c =

12 1a =

12 12x =

13 4c =

13 1a =

14 3c =

14 1a =

14 13x =

15 5c =

15 1a =
16 4c =

16 1a =
25

S2

21 4c =

21 1a =
22 2c =

22 1a =

23 2c =

23 1a =

23 33x =

24 6c =

24 1a =

24 12x =

25 8c =

25 1a =
26 7c =

26 1a =
45

S3

31 3c =

31 1a =

31 21x =

32 5c =

32 1a =
33 7c =

33 1a =
34 11c =

34 1a =

35 4c =

35 1a =

35 10x =

36 5c =

36 1a =

36 5x =

36

S4

41 4c =

41 1a =
42 10c =

42 1a =
43 8c =

43 1a =

44 3c =

44 1a =

44 19x =

45 4c =

45 1a =

46 2c =

46 1a =

46 25x =

44

Demand (d) 21 12 33 44 10 30
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4. Conclusion

This article presents a new algorithm for finding 
the optimal transportation cost for the Discounted 
Generalized Transportation problem. The validity 
of the proposed algorithm is given, by comparing 
the solution of this evolutionary approach with 
the optimal solution obtained by Acharya et al. 

(2013), while respecting all constraints. Other 
numerical experiments show that the proposed 
GA is an efficient algorithm for the DGT problem. 
Therefore, the proposed GA may be used to get 
a high-quality solution of other instances of the 
DGT problem (non-linear transportation problem 
with costs which depend on the quantity of the 
goods shipped).

REFERENCES

Acharya, D., Basu, M. & Das, A. (2013). Discounted 
Generalized Transportation Problem, International 
Journal of Scientific and Research Publications, 3(7), 
1-6.

Arpita, P. & Bikash, C. D. (2014). 2-Vehicle Cost 
Varying Transportation Problem, Journal of Uncertain 
Systems, 8(1), 44-57. 

Balachandran, V. & Perry, A. (1976). Transportation 
type problems with quantity discounts, Naval 
Research Logistics Quarterly, 23(2), 195-209.

Balas, E. & Ivanescu, P. L. (1964). On the Generalized 
Transportation Problem, Management Science, 11(1), 
188-202.

Candea, C. & Filip, F. G. (2016) Towards Intelligent 
Collaborative Decision Support Platforms, Studies 
in Informatics and Control, 25(2), 143-152. DOI: 
10.24846/v25i2y201601 

Carp, D., Popa, C. & Serban, C. (2015). Modified 
Han algorithm for inconsistent linear inequalities, 
Carpathian Journal of Mathematics, 31(1), 45-52.

Cosma, O., Pop, P. C. & Danciulescu, D. (2020). 
A novel metaheuristic approach for a two-stage 
transportation problem with fixed costs associated 
to the routes, Computers and Operations Research, 
118(1), art. no. 104906.

Dantzig, G. B. (1951). Application of the Simplex 
Method to a Transportation problem. In Koopmans, 
T. C. (ed.), Activity Analysis of Production and 
Allocation, 359-373. New York-London. 

Furqan, Mhd., Hartono, H., Ongko, E. & Ikhsan, M. 
(2017). Performance of Arithmetic Crossover and 
Heuristic Crossover in Genetic Algorithm Based 
on Alpha Parameter, IOSR Journal of Computer 
Engineering, 19(5), 31-36.

George, A., Chukwudi, J. & Jude, O. (2014). 
Transportation Algorithm with Volume Discount 
on Distribution Cost (A Case Study of the Nigerian 
Bottling Company Plc Owerri Plant), American Journal 
of Applied Mathematics and Statistics, 2(5), 318-323.

Ghassemi Tari, F. (2016). A hybrid dynamic 
programming for solving fixed cost transportation with 
discounted mechanism. Journal of Optimization,1-9, 
8518921.

Goossens, D. R., Maas, A. J. T., Spieksman, F. C. 
R. & de Klundert, J. J. (2007). Exact algorithms for 
procurement problems under a total quantity discount 
structure, European Journal of Operational Research, 
178(2), 603-626.

Gupta, R. (1978). Solving the generalized 
transportation problem with constraints, Journal of 
Applied Mathematics and Mechanics, 58(10), 451-458.

Hitchcock, F. L. (1941) The distribution of a product 
from several resources to numerous localities, Journal 
of Mathematical Physics, 20(1), 224-230.

Joines, J. & Houck, C. (1994) On the Use of Non-
Stationary Penalty Functions to Solve Nonlinear 
Constrained Optimization Problems with GA’s. In 
Proceedings of first IEEE Conference on Evolutionary 
Computation (pp. 579-584).

Mubashiru, A. S. S. (2014). Transportation with 
volume discount: a case study of a logistic operator 
in Ghana, Journal of Transport Literature, 8(2), 7-37.

Ojha, A., Das, B., Mondal, S. & Maiti, M. (2010). 
A solid transportation problem for an item with 
fixed charge, vehicle cost and price discounted 
varying charge using genetic algorithm, Applied Soft 
Computing, 10(1), 100-110.

Pop, P. C., Sabo, C., Biesinger, B., Hu, B. & Raidl, 
G. (2017). Solving the two-stage fixed-charge 
transportation problem with a hybrid genetic algorithm, 
Carpathian Journal of Mathematics, 33(3), 365-371.

Sivanandam, S. N. & Deepa, S. N. (2008).  Introduction 
to Genetic Algorithms. Springer Berlin, Heidelberg.

Suduc, A. M., Bîzoi, M., Duță, L. & Gorghiu, G. 
(2009). Interface Architecture for a Web-Based Group 
Decision Support System, Studies in Informatics and 
Control, 18(3), 241-246.

Yadav, S. L. & Sohal, A. (2017). Comparative Study of 
Different Selection Techniques in Genetic Algorithm, 
International Journal of Engineering, Science and 
Mathematics, 6(3), 174-180.

Yousefi, K., Afshari, A. J. & Hajiaghaei-Keshteli, 
M. (2017). Genetic algorithm for fixed charge 
transportation problem with discount models. In 13th 
International Conference on Industrial Engineering, 
Iran (pp. 22-23).


