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Abstract: A fuzzy control synthesis is proposed along with
the theory of sliding motion. Fuzzy control can be seen as
saturated control, but also as variable structure control with
a continuity in a boundary layer around the state space
surface where the membership function of the predicate u is
ZERO is different from zero. A guideline for the lookup
table design is thus provided. Given certain conditions on
membership functions, some stability resuits can be found
and the performance-robustness trade-off can also be

analyzed.
1. Introduction

Fuzzy control is sometimes seen as a
combination of heuristics and/or the probability
theory. One has to keep in mind that fuzzy
control is deterministic and that the resulting
control u can be looked upon as a non-linear
function of wvariables representing the
environment [2] often limited to successive
derivatives of the state (the state space equation
will then be under the canonical form). One way
to determining the stability conditions and the
“goed” parameters for fuzzy control could be to
approximate u with spline functions of the state
x. However, this approach is not really easy and
it cannot provide methods to design the rules
lookup table. The space of the rules, that is to
say the lookup table, is a neglected one: very
often, a lookup table is not given in the same
orientation as the state space plane. The state
space is then divided into cells corresponding
each to a mesh between the input variables
predicates. Tt is interesting to see that, in this
space, the cell containing the point x=0, that is
to say all variables have the predicate ZERO,
has a control u that is ZERQ (when the variables
behave "well", the action on the system is zero).
Furthermore, the lookup table is generally
partitioned into three categories: one part where
control is positive (it can be Small Positive,
Positive Big, etc.), one pait where it is negative,
and one part where it is zero. A frontier exists
between the positive and negative controls;
within this frontier, the predicate for u is often
ZERO.

Fuzzy control lookup table thus reproduces
some sort of a variable structure control with
continuous approximation in a boundary layer. It

is then quite interesting to develop this aspect by
linking this lookup table space with the state
space (often the phase plane; what is interesting
is ithat Utkin notices that choosing Variable
structure surface in the phase plane yields better
performance [4] , and to use results of smoothed
sliding motion to give some idea of fuzzy
control stability and performance, and,
moreover, t6 propose a design method for fuzzy
control.

Some results for sliding motion with smoothing
algorithms will first be recalled. In a second
part, fuzzy control is analyzed. In the last part,
discussion over stability and performance is
undertaken, using resuits of parts 1 and 2 .

General notations:

x is the state of the system (see eq. (1)).

X is often chosen as being a phase variable, with:

e e is the setpoint-output error, e or de is its
derivative.

e s is generally defined as a sliding surface.

e uis the control.

e u, is the “positive” control, defined as a
singleton output predicate in the Fuzzy
control case or as the “positive” control in
variable structure case.

¢ u_ is the same as above for “negative”
control.

e 1, is the “u is zero” control.

sk is the gain of the sliding controller.

2. Variable Structure Systems

2.1 Structure

Let a system be under the form :

k= f(x, 1)+ bu(x,t) +d(t) )
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The simplest way to have a well-configured
system for VSS is to write it under the canonical
form.

Variable structure contrel of system (1) is
defined by the following equation:

{u=u:(x) ifxeD]

u=u;(x) ifxeD; , 2)

+ o
D/ is defined by (¥ >0 and Di is
defined by 5 (¥) <0 the control values % and

Ui being discontinuous along the surface

si(x)

where

When continuous switching between u, and u.
occurs around the switching surface s(x), the
system slides along the surface and remains
insensitive to a certain class of perturbations [4].

2.2 Existence, Stability and Design of
Sliding Control

There exists a stable sliding motion if the
condition

5,(x)5,(x) <0 3)

is fulfilled or in case of a varying surface s(t), if
there exists n such as:

5, ()8 (x) < =1, (0] @

(see [4])

Generally, this surface wiil be taken as:
s(x)=CTx .

and the structure of the law is:

u=-kTx. (%)

Condition (3) often gives minorating conditions
on the value of k.

2.3 Approximated Switching Conirol

Approximated switching control bhas been
described for the first time by Siotine [6], who
would basically replace  the relay by a
saturation. Asymptotic stability is lost in place
of a Globally Uniformally Ultimate Bounded
Stability [1], that is to say that invariance is lost

but within a reasonable level perturbation the
control is robust.

We recall without demonstration some results
obtained for a class of non-linear systems such
that:

x™ = f(x)+bu 6)

As an example, taken from [Slotine], let us

d (n-1)
5= (— + ?L] X
define a switching surface dt , a

boundary layer depending on x and t such that

Isl <@ 404 let in that boundary layer the control
u be u=-ksat(s/®), the structure of the control
remaining as in Eq (5) outside the boundary
layer, and k being chosen as to fulfil condition
(3). It is shown that this control is
asymptotically stable, and (here a particular s is
chosen, but the result can be generalized), that,
in the boundary layer,

§= —k(k,®)~—
Q. @)

It is then shown that this means trade-off

between the tracking precision and the boundary

layer width, and we can choose the boundary
k

Vo
layer width to be @ | slotine ([5] and [6])
shows then that this trade-off can be seen as:

(boundary layer width). (tracking precision) =
parameter uncertainty along the trajectory and
can be applied to many control problems such as
robot control [6]. The main interest of the
algorithm is the basic design, that prevents the
so-called chattering, which is induced by high-
frequency perturbations that affect the state, and
is a drawback of pure sliding motion. Chattering
consists in high-frequency oscillations affecting
the behaviour of the sliding trajectory, and ,
ihereafter, the state x. As placing a first-order
just after the relay leads to difficult theoretical
problems, many smoothing methods have been
proposed.

The method used for fuzzy control synthesis
tends to be of the form used in [13] and [14]:

S
Is| +8

u=-k
(8)

where 8§ is a constant positive number that in
fact represents the bandwidth, and k is a
constant gain, The higher 8, the more robust the
system is, but also the less performing. & cannot
be chosen toe littie [14].
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If condition (3) is fulfilled, the system is shown
to be Globally Uniformally Ultimate Bounded
Stable [1].

3. An Analysis of Fuzzy Control

3.1 The Rule Space

3.1.1 Lookup Table

Fuzzy control with Mamdani model yields that
control u can be achieved by rules:

[F x, is A} AND x; is A,.... THEN u is B.

A, A,,... and B are linguistic predicates, and a
membership function for each predicate is
attached to the values of the corresponding
variables, e.g. pa(x) for x is A.

The operators of inference and composition are
the so-called T.norms [15]. Usually, the
operators "min" or “multiply" or other
monotonous T.norms are employed that is to say

p(x is A ANDy is B)=p(x is A).u(y is B).

Control u is obtained by defuzzification, for
example:

z 1t

U=
ZM" , where the u, and p; values are
attached to rule R;.

An input variable is thus divided into a certain
number of predicates along the universe of
discourse. It is then possible to draw a lookup
table between variables, representing that for
instance if x is ZERO and y is BIG then control
uis ZERO [2], [3].

Our fuzzy control examples will use the above
formula, that is to say that the output predicates
will be reduced to singletons. In practice, this
kind of a formula is very common, and our
results can be extended to more sophisticated
output membership functions, the basic idea
being the core of the paper.

3.1.2 Fuzzy and VS Controls

Notations:

It will be supposed first in our study that there
are 3 output predicates u., u_ and u,, the latter
corresponding to predicate ZERO and having
the value zero so that precision can be achieved
towards the point x=0, without loss of
generality.

The predicates for e and de are Negative, Zero
and Positive, the corresponding membership
functions are noted e, e, and e, for e and de,,
de, and de,, for de.

Figure 1 shows a 2 inputs 1 output lookup table
with 2 membership functions. The system is

defined as in (1), with x;=¢ and x,=e . One can
see easily that there will be a variable structure
control around the surface e=0, that is to say u=
u, if >0 and u= u._if e<0.

€ will also be noted de.

s=0
- €
€ B P
U
P v
N £ Us

Figure 1. Fuzzy Control of 2 Variables:
Switching Surface

Let now see example in Figure 2 (consider the
separation between u, and u_)
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N U UL Uz

trajectory in the rule plane

Figure 2. Fuzzy Control with Rule Plane
Trajectory

Figure 2 shows a case where the set-point is a
unit step and e constantly decreases towards
zero.

1t is intuitive to see that in the rule space, there
exists some sort of variable structure control
with a boundary layer in the middle. The
problem is that the real space ( the state space)
is not exactly the same. There can even be a
discontinuity as in Figure 3. We can thus guess
that there may exist a surface for switching
contrel. We will suppose that membership
functions for "NEGATIVE" predicates and
"POSITIVE" predicates are disjoint, which is
uppermost important. We can see that, outside
the area in the state space plane where we may
have control u, (e.g. when membership functions
for e Positive and de Negative exist and
membersnip functions for e and de to be zero is
zero), control is equal to u, and u,, thus realizing
some sort of constrained control. These
considerations are true for any inference method
and any defuzzification methods. v, and u. are
thus being chosen big enough to ensure
convergence. That is the reason why some other
predicates in output can be chosen, e.g. u, and
u,, meaning Smal! Positive and Positive, that
can achieve convergence and softer dynamics
when approaching the surface, thus achieving
some sort of "dual mode", or "multi mode".
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Our goal is to show that lookup table and
membership functions design can provide a
switching surface.

Let us choose another example:

wxd N|z]r

P [uU+ | U+ BU-

7 U+ | Uz | U-

N |u+ By- | U-
oeme  SHiding surface

with discontinuity

Figure 3. Switching Surface with

Discontinuities

Figure 3 intends to show that in some cases,
there is no boundary layer in the rule space
(represented by uz) between the two control
predicates u+ and u- so that there is a
discontinuity in the rule plane.

3.2 Designing a Switching Surface

Let us have a look at Figure 4:

o< Nl z ] P

P U- | Uz | U+
7z y-| Uz { U+
N jU-| Uz | U+

Figure 4. Classical Example of Fuzzy Control

The above figure shows some sort of
“manichean” example of fuzzy control, being
not very “soft”. Indeed, it is a good “basic”
example (the derivative term is not taken into
account}.

We introduce new variables; yt, (resp. P ang i)
is the SUM of the membership functions of the
lookup table cells which correspond to the
predicate u is U+ (resp. U_and U,), which means
that u is Positive (resp. Negative or Zero). We
recall that the predicates for ¢ and de are
Negative, Zero and Positive, the corresponding
membership functions being e,, ¢, and e, for e
and de,, de, and de,, for de. For example, in our
case, the membership function . is the sum of
the membership functions of the cells “e is
positive and de is positive”, “e is positive and de
is zero”,"e is positive and de is negative”, which
leads to: M+~ (epde, +e,de, +e,de, )_ We
thus have:



. Py +H 0, + U

Pt i, +U : 9)
if u,=0 then
- Palds + B0
B, +H, R (10)

We recall that p >0.

The surface for which u=0 is thus:

Mo, + Bt (11)
We will note A, the surface where u is ZERO.

Here, u=0 yields (from the definition of p, and
. and from the lookup table):

(epde, +e,de, +e,de.Ju, =

—(e,de, +e,de, +e,de_ Ju_,

(12)
so u=0 < EPH T e (13)
so that we define ° 2> cpt = ~€all- , which is

called "switching surface".

If the positive and negative predicates are zero
around zero, there will be a dead zone. Else, in
the most common case, if they are just zeroing
for e=0, then, the surface will be e=0. On one
side, control u is positive, on the other side, it is
negative (of course, w. and u. have opposite
sign). This explains why "positive" and
"negative" membership functions should have a
void intersection. If the membership functions
are linear, the surface is linear.

Developing (9), from the lookup table, control u
is now:

Byt + e+ o +ibyp e +r£’pepu+ +d—’z"’p“+

u

Byt +b ey v, v e, vk e vedk, te k), veycky
, and, factorising:

(epus +epu_Ydep +dep, +de;)

U=
(dey, +dep, +de; Nep +ey) +e;de; + +eydey, + e dey

Supposing that u.=-u_, and that €, and e, are
disjoint (i.e. if e,#0 then e,=0 and vice versa )
we now have one cf the two terms e, and e,
being zero, such that:

(epu+) (dey, + dep +de,)

- (dey, +dep, +de; Nep) + e;de; + +e dep, + e dey,

ife,=0 or

~(enuy Ndep, +dep, +de;)

u=
(dey +dep, +de;)ep)+e de; ++edep, +e dey
if ¢,=0.

egu.,

) T e, +e,de, + ’
We can write: L B,where € is

proportional to e, or e, that is to say, s being
defined in (13):

su

u=
Is|+e,de, +p ’ (14)

s being defined above. This is the final result for
the table defined in Figure 4.

We can then see the parallel with section 1
coming. If membership functions are piecewise
linear, then fuzzy control is under a form very
close to (10).

Indeed, when looking at the shape of the
mapping u, one can notice a behaviour very
close to a linear variable structure control.

The example in Figure 4 is rather trivial and we
take another more sophisticated one.

Let us now consider example in Figure 2. We
have a diagonal of predicates ZERO, so that the
control can be seen as switching around a
surface for which u=0 , in the area e is ZERO
and de is ZERO {we will note this surface by s):
s=0:

(epdep +ezdep +e.l,7dez)u+ =—(e,de, +e,de, +e,de, Ju_
the equation of the surface s can be written as:

(e, de, +ede, +ede)—(ede +ede +ede)u =s

According to Figure 2, control u can be written
as:

~ ety vety veyply ok, +edy ek u |
(e ety rest, +%+%+%)+(eﬁtﬂ+e,¢p)+(%)’

that can be rewritten as:

(eprbp ety +er) ety testby ek, Iy
o +enfn) He s +eitn) He by o b ) He by Vet ) Hesk;)

We find s for the numerator and at the
denominator, an addition of 3 terms:
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(e,de, + ede,),(e.de.)and isl_

So we have:
su,
U=
Is]+ e de, +e,de, +e,de,

Suppose that for example e>0 and de<0, we can
rewrite the equation of the curface in that
quadrant:

(eyde ), =—(e de, Ju_.

The switching surface s is defined as

5= ((e,a’ez)ﬂ- (ezden))x*.

We introduce the new definition of s;. with
de<0 we yield de,=0, and with e>0 we yield
e,=0, so that, replacing the equations in the
above formula,

Su

. bsl+ e de +e de,

If de>0 and e<0, the surface will be different
and the same sort of equation as before can be
found. For e>0 and de>0, or e<0 and de <0, the
same kind of result applies.

We find the same structure again as that in (14)
with the difference that the surface is a bit more
sophisticated.

Suppose we have linear functions: if we take the
expression of s, we can see that the membership
functions are:

! 1
e, =—e-ﬁ)r0<e<k£p.de2 :1-—!»'5_16—!
& lkdal
1 . P de
for0<|de| < kg, ord de <Q means de, =1+——,
dez

the same applying for e, and de,,.

Replacing the expressions of the membership
functions in the expression of s, we yield:

de e e . de
a +k—“);c"' =—(1 -k—) P
dez  Mep dep  Tden . and further
e de 1
—_ 4 + ede{- - }=0
kep kden kdzzkep kezkdt

This surface is non-linear. Yet, this surface is
surprisingly linear-like and even linear with
well-chosen  parameters. Indeed,  these
parameters depend only on the membership
functions of the positive or negative functions.
The "gain" depends only on the value of u, and

10 Studies in Informatics and Control, Vol. §, No. 1, March 1996

u.. Further, the smoothing process depends to a

great extent on the ZERO membership
functions.

We have now a general structure like:

e s=0 is the surface where u=0. It can be
taken often as linear.

e the control structure u can then generally be
su,

TN S
given the form |4+ piu,) , provided
that u, and u_are symmetric and that "non-
U is ZERO" membership (that is to say the
area in the rule plane where u is given a
predicate that differs from ZERO)
functions are disjoint, which we can also
express by:

U= u,,sat[*-s—}

and having s<f(s) while staying in the domain u

is ZERQ, that is to say Isl < ¢, we can state that
f has the general form of:

f(s)=Id +ede, (16)

More generally, f(s) =14+ p(Au)+ B> where p
is a residual term. The previous term is a
function of the membership functions for u to be
ZERO.

4. Design of A Fuzzy Controller.
Analysis of Stability and
Performance

4.1 Stability Proofs

If in the space of rules, there exists a separating
surface and on one side u is positive and on the
other side u is negative, with membership
functions being disjoint for all variables, then

there exist a surface where u=0. If u+ =-u-, then
su,

e — e
u can be given the form 9 +p(u;) +B for
the area where u is ZERO, where s is the
surface, u(u,) is the predicate foru is ZERO, B
is a residual term. Qutside the area u=-
u,sgn(s).

Proof: If u has the membership function ZERO
Bty +pou

control u is written as My +H, tH_

(suppose defuzzification is centroid). There
exists a surface where u is zero. The form above



is also immediate. For other defuzzification
algorithms, the same kind of result is expected.

Suppose from above that fuzzy control can be
su,

[4+p(u,)

s is a function of the membership functions.
uw(u,) is also a function of the membership
functions belonging to the predicate u is ZERO.
Then the condition of stability is s§<0, [5]
outside the boundary layer. Inside the boundary
layer, the system is stable, if the condition above
is fulfilled (provided that in a boundary layer
around zero, u(w,) is sufficiently high). Stability
conditions depend only on u, and the
importance of the u is ZERO domain.

given the form

We can try to give some stability conditions. If s

is found to be linear, then we have s , and we
can see this control the same as in (10), with a
varying boundary layer.

We will now look for majorating and minorating
conditions on the boundary layer so as to render
our system dynamic.

4.2 Pole Assignment

From Slotine, a first way to assign fuzzy control
dynamics is to choose membership functions so
that a number ! such as:

Id +H(u2):7\'_

should exist.
Then control u can be written as:
su,
A a7

Then, from [5], it is possible to represent
membership functions as a first order dynamics

u,

u=

so that the time constant is T = » and that the
trade-off performance-robustness can be chosen.
Thus control value u, plays an important role
and is some sort of "gain" for the fuzzy
controiler.

If A cannot be found, then it is important that
"u is NON-ZERO" (i.e. the cell in the rule plane
where a predicate different from u is ZERO - u
is u, - is given to u) and "u is ZERO"
membership functions are not disjoint in the
state space so as the denominator of u has a
minimum that is non zero. We can then realize

why membership functions should have a
"good" crossing rate.

If we find 2 numbers ¥ and ¢ such that W<A<o
, then we can assume that:

n W _b
T = <T= <T2 =

A v (18)

The dynamics will then be between the
dynamics of 2 first order systems with time
constants 1; and 1,. These 2 constants depend of
course on the membership functions of e and de.

Another way to assign pole dynamics is to
consider the system as being :

poSue
14+ 1) and then , the value p(y) is

considered as tuning the bandwidth of the
system.

4.3 Dual Mode

Suppose now that some more predicates are
taken, say without loss of generality u,, and u_..

The same conditions for stability apply as
above. Outside u is ZERO, control will be:

s Bogly, tH U AU U T U U
u++ +]”L._L +p’-—— +p‘— . (19)

Qutside the zone u is w, or u is u. , the control
will be u=u,, or u_.

Membership functions should be taken such that
the value of u decreases to taking some value
when u is ZERO, if possible only depending on
u, or u_ so that the value of the control
decreases for example from u,, to u.. This
realizes some sort of "dual mode", with a high
gain depending on u,., and a low gain
depending on u,.

More, there exists a method to ensure
convergence:

suppose that above control in (19) is chosen so
as to ensure asymptotic convergence and some
"performance” (if assimiiated to a first order, for
example). The u is ZERO and u is u,, (and u.)
domains are chosen te be disjoint. In the u is
ZERO domain, the expression of the control is
(10). We can determine from [12] that the
domain u is ZERO is an invariant domain for the
system (1). The domain of invariance for control
structure (1) is Ay = A,,. We can now state from

[71, [8] and [9] that the resulting control :
u is (19) outside A, and

Studies in informatics and Control, Vol. 5, No. 1, March 1996 11



u is (10) inside A, ,

will be a stable one, and w:ll have the dynamics
of (10) in A,.

The controller will be globally uniform ultimate
bounded stable and the desired dynamics can be
chosen in A, any "far" state will cross the
surface Ay, that is positive invariant and
globally uniformly ultimate bounded stable.

The rules can be adjusted so as to slow down or
accelerate the dynamics in some part of the state
space.

5. Example

Let us take the following model:

x| =Xxp
X3 = X3

x3 = —].2x2 —-x1+u

Y= (20)

and s=c I X where c=[1 10 0] and X=[x] x2 x3].

We then define the variable structure control

<

v =20

ls|+ 0.01

Let us note e=y“-y, where y© is the set-point.

This control stiucture is compared with fuzzy
control defined with 5 membership functions for
x and dx/dt, i.e. Positive (P), Small Positive
(SP), Zero (Z), Negative (N) and Small
Negative (SN). The same quantization is applied
for control u, ++, +, 0, -, - -. The rules for the
value of u are listed in the following Table :

e N SN Z Sp P
de/dt

p + + S I
SP - 0 + + ++

P2 Studies in Informatics and Control, Vol. 5, No. 1, March 1996

SN, |== = : 0 |+

N - -- - - -

Figure 5. Fuzzy Lookup Table

The results are given below.

120 T Unit step response

100 T —

0,80 +

060 +

040 T+ .

o™ T time

0,00 t }
0,01 0,26 0,51 0,76

- - - : fuzzy control

---— 1 V8§ control

Figure 6. Unit Step Response for Fuzzy and
vss Control

1,00 0,42 0,02 0,00 e
0,00 +— ——t——i
-1,00
-2,00
-3,00
-4,00
-3,00 < de/dt

1,00 0,38 0,00 0,00 0,01 0,0C
0,50 -|—

0,00 t |—t > t
-0,50 /

-1,00

-1,50

-2,00

-2,50
_/
-3,00 I de/dt

Figure 7. Comparison of State Space
Trajectories for vss and Fuzzy Control



One can thus conclude that the vss surface is not
linear when near the origin, because of the
continuous aspect of the implementation. Fuzzy
control trajectory is also not linear. Anyway,
both can be approximated by a linear curve
when not too near the origin. What seems
interesting here is that fuzzy control is a bit
smoother.

5. Conclusion

Some stability and performance conditions have
been presented for fuzzy control. The control
structure is represented as approximated
switching control. Stability conditions have been
based on the control output membership
function values. Switching surfaces being nearly
linear, it has been shown that the dynamics
around this surface can be represented as a first-
order, of which time-constant depends on the
equilibrium between the surface value and the
value of membership functions for the state
space where the predicate ZERO is assigned to
the control output.

It is therefore rather easy to develop a design for

fuzzy control

e first design the surface with appropriate
operators and input-output membership
functions;

e then in a second time, design the output
membership functions in order to ensure
stability;

e finally, design the input membership
functions to make pole-placement while
respecting robustness with regard to
parameter uncertainty.

This method, unlike many others, observes the
principles of fuzzy logic which is to avoid the
identification of an accurate model. Conditions
for stability and performance can be found for
coarse control, and fuzzy control tuning can be
refined thereafter.

This synthesis method wants to highlight some
of the well-known features of fuzzy control:

e it is robust, which is exactly the case for
sliding motion, and yet not invariant;

e it shows the need for a good design of
membership  function, especially for
crossing rate;

e it shows that, if the limit values of
membership functions are well-chosen and
the system is not “too bad” (without limit
cycles for example), there is a great chance
to have a closed-loop stable systein;

e it also shows the importance of the phase
plane (as in sliding motion);

e however, it shows the same conceptual
drawback as sliding motion with smoothing
algorithm: its structure of first-order filter
for the bang-bang control means that the
dynamics is addicted to be that of the low-
pass filter ( a high-pass filter in the
feedback loop leading to better results); that
is the reason for some of the criticisms to
the “lack of reactivity” of fuzzy logic (
indeed, fuzzy logic tends to be more
conservative in the equilibrium area, and
even more when the ZERO region is broad).
Our approach can provide a good start for a
performance-robustness approach which is
in fact the crux of the matter in control
theory.

Many research topics can be derived from that
point:

e more precise conditions for particular cases;

e study of sliding motion with non-linear
parameters;

e study of composite fuzzy-conventional
controls, i.e. fuzzy control where the input
variables are the successive derivatives of
the tracking error of a closed-loop system
(when a reference model is given).

REFERENCES

1. ESFANDIARI, F. and KHALIL, HK,
Stability Analysis of A Continuous
Implementation of Variable Structure
Control, IEEE TRANS. AUT. CONTROL,
T-AC 36, No.5, 1991, pp. 616-619.

2. JAMSHIDI, M. , VADIEE, N. and ROSS,
T.J. , Fuzzy Logic and Control,
PRENTICE-HALL, 1993.

3. LEE, C.-C.,, Fuzzy Logic in Control
Systems. Fuzzy Logic Controller Parts 1
and II , IEEE TRANS. SYSTEMS, MAN,
CYBERNETICS, Vol. 20 , 1990, pp. 404-
418 ,419-435.

4, UTKIN, V., Sliding Modes in
Optimisation and Control, SPRINGER-
VERLAG, 1992.

5. ASADA, H. and SLOTINE, J.J., Robot
Analysis and Control, WILEY, 1986.

6. SLOTINE, J.J. , Sliding Centrolier Design
for Non Linear Systems, INT.. J. OF
CONTROL, Vol. 40, No.2, pp. 421-434.

Studies in Informatics and Control, Yol. §, No. 1, March 1996 13



10.

11.

14

BURGAT, C. and TARBOURIECH, S,
Stabilit¢é et commande des systemes
linéaires avec saturatioms, dans les
systemes non linéaires, (2, stabilité-
stabilisation, MASSON, 1993,

VASSILAKI, M., HENNET, J.C.and
BITSORIS, G., Feedback Control of
Linear Discrete-time Systems Under
State and Control Constraints, INT J. OF
CONTROL, Vol. 47, No.6, 1988, pp. 1727-
1735.

CHIANG, H.D., HIRSCH, M.D. and WU,
F.F., Stability Regions of Non-linear
Autonomous Dynamical Systems, [EE
TRANS. AC, Vol. AC-33, No.l, 1988,
pp-16-27.

SLOTINE, JJ.,, Applied Non Linear
Control, PRENTICE-HALL, 1991.

YING, C., Practical Design of Fuzzy
Controllers, AUTOMATICA, 1994, pp.
1185-1195.

Studies in Informatics and Coniroi, Vol. 5§, No. 1, March 1996

12.

13.

14.

15.

AMBROSINO, G., CELENTANO, G. and
GAROFOLO, F., Variable Structure
Model Reference Adaptive Control
Systems, INT.J. CONTROL, Vol. 39,
No.6, 1984, pp. 1339-1349.

HUNG, 1.Y., GAO, W. and HUNG, J.C,
Variable Structure Control: A Survey,
IEEE T-INDUST.ELECTRONIC, Vol. 40,
No.1, 1993, pp. 2-23.

BRIERLEY, S.D and LONGCHAMP, R,
Application of Sliding Control To An
Air-to-air Interception Problem, IEEE
TRANS. AEROSPACE SYST, Vol. 26,
No.2, 1990, pp.306-325.

WEBER, S., A General Concept of Fuzzy
Connectives, Negation and Implications
Based on t-Norms and t-Conorms,
FUZZY SETS AND SYSTEMS, No.ll,
1983, pp.115-134.



