SSQL, A Set Based Logic Query Language for A
Distributed Software Repository

Giancario Succi

LI/DISA DIST

Universita di Trento Universita di Genova
Via Zeni 8, Via Opera Pia 13,
1-38068 Rovereto (TN) I-16145 Genova
ITALY ITALY

Abstract: Nowadays, information plays a fundamental role
inside every kind of activity: its ever-growing importance
does not regard only computer science but also concerns a
huge number of everyday activities. Information is useful
only if it is structured and manageable: this is perhaps the
main goal of al! the information systems.

This paper describes an original alternative to the same old
graphical forms used to query a repository: a set based logic
query language. The query technique proposed is based on a
declarative language that emphasises the set as main data
type. In particular, sets are a natural and intuitive model for
structured data collections.

The query language produced, called SubSet Query
Language (SSQL), expands the functionalities of the
starting language and introduces the capability to access an
external repository. A class of new built-in predicates has
been added to the starting language and the compilation and
the execution environment have been adapted to the new
functionalities introduced.

The SSQL paradigm has been integrated inside a distributed
software artefact library and use statistics are being
gathered. An initial evaluation of the SSQL paradigm,
based on the experience so far acquired, shows that, in the
phase of an initial effort to experience the methodology,
great efficiency and flexibility can be obtained.
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1. Introduction

One of the most interesting applications of
computer science concerns the information
systems: typical examples are business
management information systems, information
systems for register of birth, marriages and
deaths and booking information systems.

In all of these applications there is a need for
collecting and organising, possibly in an
automatic way, a huge quantity of data, storing
this information on appropriate memory
supports.

Information, intended as the collection of data
needed to carry out a specific activity, plays a
fundamental role inside every kind of activity:
its ever-growing importance does not regard
only computer science but also concerns a huge
number of everyday activities.

In particuiar, information is the chief concept
around which an information system is built. An
information system can be defined as a set of
automatic tools, procedures, human resources,
information flows and organisational rules and
regulations aimed to manage a collection of
information that an organisation or a company
needs in order to pursue its aims. In particular,
for the purpese of this paper, the interesting
parts of the information system are those
concerning computer science, i.e. automated
tools and procedures to manage the information.
Two are the main characteristics of these
systems:

o the information and how it is structured and
stored.

e the functions and processes that work on the
information in order to manage the data or
to produce new data from the existing
information.

Concentrating on the second aspect just
outlined, among the functions that should be
available in an information system, the
following are to be considered:
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o classify and store new information

¢ modify or delete the information already
stored

e search and retrieve the information in the
system.

Regarding the first functionality introduced, it
has long been studied and a lot of solutions and
proposals are available in the literature. The
second one is quite a design and implementation
problem. The third functionality represents the
context within which the work presented in this
paper is placed. One of the main aspects of an
information system is constituted by the search
and retrieve functionalities given to the user of
the system: if it is important to classify and
structure the information inside the repository,
as it is at once important to be able to efficiently
search and retrieve the desired information.

The query mechanism is usually based on a
graphic interface: a graphic form is presented to
the user and he/ she has to cover some field,
specify the characteristics and the bonds of the
information which he/she would like to find in
the repository. The result of this kind of query,
most frequently, is a list, with fixed fields, of all
the information present in the repository that
satisfles the user specified characteristics and
binds. Searches are performed following a
limited set of patterns and using a standard set
of initial information. Notwithstanding such
methodologies is, most of but not all the time,
simple and intuitive; they restrict the user to
follow a specific search pattern, given a specific
set of starting information. One of the biggest
drawback of these graphical interfaces is the
lack of flexibiiity, and this turns into a lack of
efficiency.

A possible alternative, being impossible to
realise all the forms that a user could need for
his/her searches, could be to produce a fully
programmable interface: quite as a programming
language (SQL is a well -known example of
such query languages). But the user should learn
and experience such language in order to state a
query. This prerequisite cannot be imposed on
the user.

An interesting solution could be the use of a
declarative language in order to state the
queries: declarative languages are especially
simple and irtuitive and do not require special
knowledge about computer science and
programming  paradigms. Moreover, a
declarative language offers full computational
capabilities.

Among the declarative languages developed, a
language that shows as main data structure, the

set could be a good choice: structured data
collection is indeed naturally modelled by sets.
The interface depicted allows a great degree of
flexibility and efficiency, together with a full
elaboration capability, without renouncing to the
necessary simplicity and intuitiveness needed to
deal with any kind of user.

This paper is organised as follows: Section 2
briefly outlines the characteristics of the
declarative language used to implement the
query technique just depicted, Section 3
describes in detail the main characteristics of the
SSQL methodology and Section 4 presents
some experiences with the SSQL paradigm,
together with future work.

2. An Overview of SL

The distinctive idea underlying declarative
programming is to let programmer work at a
high level of abstraction, expressing what
his/her program must do rather than how it will
do it [5,6,15].

This is the reason why declarative languages
present many advantages against the imperative
ones:

e various kinds of static analyses are
intrinsically simpler

e the program is easier to understand and its
correctness, when possible, can be more
simply verified

e the programs are more concise and
readable, which makes declarative
languages suited to fast prototyping

s parallelism is implicit, and the compiler can
recognise it without great difficulty.

Furthermore, given the high level of abstraction
of declarative languages, in principle a logic
program can be ported on any kind of
architecture, since it is up to the compiler
transform it into an executable that can run fast
and reliably on the desired machine.

Actually, the differences between the
computational  paradigms of  declarative
languages and the ones peculiar of the existing
architecture models make  an isomorphic
compilation impossible: attempts to build
machines dedicated to the execution of
declarative languages did not have a great
success.

At present, declarative languages execute mostly
on standard architecture models, being these
either sequential or parailel, using an executor,
usually known as Abstract Machine, modelling

24 Studies in Informatics and Control, Vol. 5, No. I, March 1996



the needed structure: this is, for example, the
standard implementation technique for Prolog,
which uses the WAM (Warren Abstract
Machine) as an intermediary between the
compiler and the real machine.

The choice of sets as the basic structure of a
programming language comes from the general
conviction that they are a very powerful
programming tool, particularly suited for fast
prototyping, where it is useful to benefit high-
level data structure and operations.

Set theory can be used to represent problems in
various areas of application.

Moreover, sets are a natural model for
representing structured data collections, and in
particular collections of organised information
items.

Sets have been introduced in many
programming languages, yet only a few embody
them as primitive objects, providing some basic
operations as part of the language.

Other declarative languages, like Prolog [9,16],
have added to their capabilities that of handling
sets, but with not very satisfactory results: in
Prolog, for instance, sets are represented as lists,
imposing an arbitrary order to their elements, so
they are managed as ordinary terms and the
built-in predicates that support them are not
fairly efficient.

In the late 70ies a group of researchers at the
New York University designed a set based
language: SETL [22].

SETL allowed the programmer to define the set
type that better met the problem specifications,
thus adopting an automatic strategy to single out
the best representation.

It has demonstrated how sets can be expressive
and how many applications using them may be
thought of.

This work is based on a declarative language,
called SL (Set Language): SL is designed

around sets, handling them in a clear and simple
way and offering the basic operations on them
as part of the language [18].

SL can be viewed as a superset of SEL (Subset
Equational Language), a logic-functional
language developed in 1987 by Jayaraman and
Plaisted [2,3,4,10].

SEL joined to equational programming, whose
paradigm was already consolidated, the idea of
introducing subset assertions devoted to
procedures that have sets as result.

SL adds to programming paradigms of SEL the
standard notations of set theory, allowing the
user to easily write programs dealing with sets.

SL is based on equational assertions and uses
the foilowing kinds of constructs to deal with
sets:

e the first construct of SL allows to build a set
with the typical set notation, as in:

cartesian product(5,2) = { (X,Y)
: X in S, Y in Z }.
f(S) = { h(X) : X in §; X < 3 }.

The former produces the Cartesian
product of two input sets, whereas the
latter returns a set of functors h/1 each
having as argument an element of the
given set S which respects the
condition to be lower than 3.

o assertions like the following are used to
build a set whose elements are a sequence
of integers, in case with a given step:

£{X,Y) = {X..Y}.
g(X,Y,2) = {X,2..p(Y)}.

In the latter Z is the second element of
the sequence: the step is therefore
given by Z-X.

¢ pattern matching can be applied on set
elements, as in the following assertion:
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Phase Purpose Input Output
precompilation | transiating source SL | SL code SEL code

code to SEL code

translating SEL code | SEL code SAL code

to SAL code
optimisation optimise SAL code SAL code optimised SAL code
codification translating SAL code | optimised SAL code | SAM numeric code

to SAM numeric

code

The SAM can be viewed as a sister of the SEL~

aFatherTeacher ({father (X, )| _}, WAM [7], from whom it inherits most of the

{teacher(X)|_}) = X.

This assertion identifies a person
having children and being a teacher.

e the operator union is used in assertions like:
f(X)=g(X)union h(X).

where f, g and h return a set as result.
The implementation of SL takes place in two
phases:

1. the development of a compiler targeted to
an abstract machine

2. the implementation of an abstract machine
on the real architecture.

The compilation and execution of SL programs

are analogous to those of Prolog: adopting an

abstract machine allows to get free from the

constraints of the real architecture on which the

program will be executed.

Portability of SL. programs is therefore due to
the implementation of the abstract machine: the
compiler transforms the source code into a
sequence of assembly instructions of the abstract
machine independently of the way how the
instruction set is implemented.

The compiler can thus devote its attention to
efficiency and reliability of the executable.

The SL absiraci machine is called SAM (Set
Abstract Machine) and its assembly language is
obviously called SAL (SAM Assembly
Language) [12,20].

The SAM belongs to the WAM family since its
general structure resembles quite a lot that of the
WAM [1,13].

However it does not require full unification
capabilities, therefore there is no need of the
trail.

implementation strategies, which are extended
by some new optimization techniques, table of
constants and the capability of handling
functors.

The process of compilation is articulated into
various phases: each of them aims to pass from a
higher to a lower level code, step-by-step
solving problems that arise while passing from
the declarative paradigms of SL to the
imperative ones of SAM [8,11,17]. Compilation
phases are summarised in the table above.

SL is designed for set theory and therefore it
lacks explicit control, as it is evident in the
following SL assertions:

makelUnion(Setl, Set2)=h(Setl)unio
n g{Setl, Set2).

prime (Numbers)={X:X in Numbers;
empty (divisors (X, Numbers{X}))
divisors{¥,S)={Y:Y in S; Y <> 1
y (X/Y)YY == }

The first phase of compilation consists in
translating SL to SEL: a precompiler transforms
SL constructs into sequences of equational or
subset SEL assertions.

The SEL code for the above-mentioned SL
assertions is:

makeUnion(X, _) contains h(X).
makeUnion (X,Y) contains g(X,Y).
prime ({X|T})contains=
if(empty(divisors(X,T)))

then (X} else {}.

divisors (X, {Y|T}) contains if
({Y<>1) && ((X/Y)*Y==X))

then (Y} else {}.
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The second example shows a remarkable feature
of SL, viz. the multiple matching: since set
elements are not ordered, a matching of the kind
X in Numbers produces the matching of X with
all the elements of the argument set.

Therefore, the resulting set contains all the
elements of the given set, that satisfy the
condition empty(divisors(X,T)).

SEL code produced by the precompiler is then
processed by the compiling module, whose task
is to yield a SAL code, implicitly optimized in
order to be efficiently and reliably executed on
different kinds of architectures.

The focal point of the compilation is in the
translation of assertions dealing with sets.

There are two kinds of operation that an
assertion can perform on a set:

e mapping one set onto another;
e searching for particular elements of a set.

The execution of machine instructions devoted
to these operations is onerous in terms of
machine resources: henee it is important that
the use of such instructions should be optimized.

Moreover, identifying a set element imposes to
check the correctness of the search and to build
a code that permits to retract a wrong choice,
when the failure of a pattern matching depends
on the previous matching of another pattern.

Steps allowing to perform such a task make up
the SAL Code Implicit Optimization Algorithm.

Implicit SAL Code Optimization Algorithm
aims to produce a sequence of SAL instructions
that ensure correctness and completeness of the
result, ordering all the patterns to be matched in
a set, such that to minimize the possibility of
failure in matching and to reduce the search
space when retracting a wrong choice.

The SAL code produced by the compiler is the
input of an optimizing module, which applies on
it the following optimization strategies:

e ORA (Optimized Register Allocation): it
consists in trying to use the lowest number
of registers, aveiding unnecessary data
movements, and to re-use registers
whenever possible.

e RIE (Redundant Instructions Elimination):
it sometimes happens that one or more
instructions are correct but redundant and
can thus be eliminated.

e ET (Environment Trimming): it consists in
ordering the permanent variables on the

environment of the assertion as well as in
reflecting the ordering of their last
occurrence on the right side of an assertion.
Namely, the variable whose last occurrence
is the last of all will be the first on the
environment, and so on. This allows to
deallocate parts of the environment as they
are no longer used, saving dynamic space
allocation.

¢ LCO (Last Call Optimization): it is based
on the fact that permanent variables
allocated to an assertion should no longer
be needed after having prepared all the
arguments for the last assertion call on the
right side with the put instructions. Then,
the environment can be deallocated right
before the last assertion call.

The translation from SL to optimized executable
SAL is performed by a Prolog written compiler.

3. The Set Based Logic Query
Language SSQL

The overview of the SL language presented in
Section 2 has ailowed to outline its
potentialities, in particular concerning the
management of information that can be well
represented by sets.

The subset assertions of SL are a powerful
mechanism that permits to deal with repositories
containing structured information, for example
the electronic repository of a library. In this sort
of a database there are classified all (or at least
many) of the books that can be found in the
library. Each book is catalogued using a set of
information, such as author, title, editor and so
on, and an unambiguous identifier (for example
the Dewey code) that characterises univocally
every single book.

This electronic card, or information unit to be
referred later on, and more generally the
electronic repository of a library, provide only
one possible example of structured repositories
where the methodology presented in this paper
can be successfully applied.

Usually the searches into these repositories are
made by appropriate systems: these systems
present to the user an interface based on a form
that has to be filled by the user. These forms are
fixed and allow settled searches, based on one
piece of (or, sometimes, more) information that
the desired element must have (what is called a
bond). Often the result of these queries is rather
unsatisfactory and not focused, and it can be
improved by only repeating and detailing the
query.
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In this context there dawned the idea of
realising a query methodology that should be
flexible, simple and intuitive, and allow the user
to perform searches in a more precise way.

The idea is to build a flexible and efficient
interface between a user and a database using a
declarative  language as the underlying
methodology.

The decision of using SL in the development of
SSQL is due to the sophisticated and intuitive
management of sets that it performs: the
information contained in the repository can be
well represented by a set made up of structured
elements, that represent the information units
stored in the database.

The power provided by this methodology is
manifold:

e simplicity of the language: SL is
particularly intuitive and simple to use and
it does not require much effort to learn it.
Queries can be built immediately following
simple models that are given.

e search flexibility: the possibilities offered
by SSQL are theoretically countless. It is
possible to formulate queries based on data
that are really owned by the user, without
built-in ties on their structure.

e search efficiency: results of the searches are
particularly targeted and satisfactory, thanks
to the possibility to customise the queries,
carefully specifying the bonds.

situations where it could be useful to adopt a
declarative query language as SSQL is.

Using the SL language in order to query a
repository means to expand the language itself
with a class of new suitable predicates. SL does
not provide access to an external data type: the
new capability that has to be introduced is the
possibility of managing a particular data
structure, or in other words, of accessing an
external database.

The first step that has to be taken is to create
inside SL a paradigm that allows to access an
external database, opportunely identified,
yielding the acquisition and the elaboration of
data contained into the archive feasible.

Besides, among the paradigms provided by SL.
a class of specific assertions has to be inserted
aimed to evaluate the information associated
with each single unit contained in the repository.
This aspect heavily affects the efficiency and
performance of the whole system: in order to
search the contents of a database, it is possible
to query for each single piece of information,
but this is really time-expensive, or it is possible
to store part of the repository in the environment
memory space, but this choice is too much
space-consuming. The solution that has been
used is half-way these two alternatives: an
unambiguous identifier is used as the primary
key to retrieve an information unit in temporary
structures inside the random access memory,
while following the operations concerning the
same information unit that take place inside the

copy/2

copy({1,2,3,4,5}).

> {1,2,3,4,5}

Figure 1. Representation of the Assertion Copy/2

e full elaboration possibility: SSQL is based
on the SL language and aliows to elaborate
the data gathered via queries. It has not to
be forgotten that SL is a declarative
programming language, complete and
effective, particuiarly concemning problems
where complex structures must be managed
using sets as models for computations.

The library context where we have fitted up
SSQL is only one of the possible infinite

memory.

This cache mechanism improves the efficiency
of the class of predicates that realise the
evaluation of data contained inside the
information unit cached in the memory and,
together with the predicate that identifies an
external database, constitutes the core of the
SSQL language.

All these predicates have to be translated, during
the compilation phase, into an appropriate
sequence of imperative instructions that, when
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executed by the abstract machine, will realise
the access to the external repository.

The extension of the SL language with all the
new functionalities just presented for the
management of an external repository has been
named SSQL, an acronym for SubSet Query
Language, a language to query a database using
set and subset constructs.

Following there are described in detail the
extensions and the new predicates introduced
into the SL language, and the changes made on
the compilation process and, in the end, the
work done to adapt the abstract machine to the
new functionalities provided.

3.1. The Syntax of SSQL

SL provides various data structures, among
which there are sets, lists and strings, but it does
not supply adequate constructs to manage
information coming from an external data

whose meaning is: build a new set using the
elements contained in an archives identified by
the keyword repository, re-writing the term copy
(repository) in {Y: Y in repository} as shown in
Figure 2. The set built with this assertion, and
stored as a regular structure by SL, contains
only the unambiguous identifier of each
information element present in the repository:
this unambiguous identifier can be viewed as an
alphanumerical string that plays the role of a
primary key in the database.

The assertion , just shown, specifies among the
arguments the keyword repository, but this
syntax is not efficient and upgraded. The choice
has been to use an implicit notation, requiring
that the keyword is specified only inside the
body of the assertion, thus correctly identifying
the source of information.

A step further, it has to provide the capability of
testing the data joined to each single information
unit contained in the repository. It could
happen,on minimising the database access, to
store all the data present in the repository in the

information system

Figure 2. Representation of the Access to An External Repository

| set of identifiers
| {Y: Y in repository}

SSQL environment

structure.

It is necessary to expand the characteristics of
the language with this new functionality:
particularly, it has been decided to modify the
instruction that SL uses in order to build a set.

Starting from the equational assertion:

copy({X) = {Y: Y in X}.

which simply creates a new set made up of the
elements of the set X passed as argument (see
Figure 1), the idea is to extend this assertion in
order to build a set with the elements contained
in an external data structure.

SL could be provided with an assertion like the
following one:

copv(repository)= {Y : Y
in repository}

random access memory, then using the standard
predicates of SL to evaluate and elaborate the
information. This solution is plainly unfeasible
because of the obvious memory space that
would be required. The solution adopted was to
store in the SL environment only the identifiers
of the information unit, retrieving and caching
each information unit only when expressly
needed during the elaboration, then discarding
all the data no more useful. SL has been
provided with a series of built-in assertions that
allow to test a specified attribute of an
information unit marked out by the identifier
passed as argument to the assertion.

An example would explain this technique: the
search, inside a library, of a book written by
‘Asimov' can be done calling the assertion:

searchWithAuthor (Author) =
{Book: Boouk in repository;
author (Book)= =Author}.
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through the query:

searchWithButheor({ 'Asimov' ).

The main operations underlying the execution of
this assertion are intuitive ones (once more
demonstrating the simplicity of the SSQL
paradigm): the identifiers of each catalogued
book are taken from the repository and for each
book the relative information is evaluated in
order to test if the author of the book is
'Asimov'.

The SL language has been enriched with special
assertions that receive as input argument the
unambiguous identifier of an information unit
and, after retrieving the desired data from the
database, return a specific attribute, so that it is
possible to compare its value with a given value.

These new assertions can be divided into two
classes:

e specific assertions: these assertions fefer to
a precise attribute of the information unit
that has to be evaluated. The syntax of these
assertions is:

value = preciseAttributeName (identifier)
where value is the value of the precise
attribute managed by the assertion and
associated with the information unit
characterised by the identifier. The
keyword preciseAtiributeName
characterises the specific attribute that
must be evaluated and depends on the
structure of the information unit stored
in the repository. In the library
environment, the attribute that has been
implemented is:

author, locatiorn, type, title,
date, editor

If the information unit checked by one
of these assertions has not the attribute
specified by the assertion, the result is
an empty set.

o generic assertion: this kind of assertion
allows to specify as input arguments the
name of the attribute that has to be
evaluated, together with the identifier of an
information unit, and returns the vaiue of
the attribute. The syntax is:

value=test (identifier,attributeName)
where value is the value of the attribute

attributeName  associated with  the
information unit characterised by the

identifier. This assertion is
characterised by the keyword test. In
this construct the user must specify the
name of the attribute to test: this
permits high flexibility but also could
cause various errors i the name of the
attribute or the kind of data associated
with it .

The extensions to the SL language that have
been made, together with the new assertions ,
allow to manage an external repository from
inside the SL environment. One more thing
lacks: how is the external database identified
and Jocated? For this purpose a precise
instruction has been provided which associates
with the keyword repository an identifier
locating the desired database. The syntax of this
instruction is the following:

createExternallink =
(repository, identifier).

The actions underlying this instruction are to
link the keyword repository to the specified
identifier, storing this identifier into a suitable
memory location. The identifier will be
retrieved and used in the construction of the data
structure that will act as a reference to the
external repository.

An example can summarise this introduction to
the new functionalities provided by SSQL. The
search for the location of a book of 'Asimov'
titled 'The Foundation', in particular an edition
that has some pictures, can be performed using
the assertion:
searchWithAuthorTitlePictures (Author
, Title) = {[Boock, Location]: Book
in repository; Location is
location (Book) ; author (Book) = =
Author, title (Book) = = Title,
test (Book, hasPictures)= = 'yes').

‘he query:

searchWithBRuthorTitlePictures
( 'Asimov', 'The Foundation').

will result in a set containing couples of
elements: the first is the identifiers of the book,
while the second gives the location where the
book can be found. If there is no one bock that
satisfies the query, a set containing a couple
with empty elements will be returned.

3.2. The Compilation of SSQL
Programs

The compilation process of an SSQL assertion is
carried out in three steps:
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1. precompilation: the aim of this phase is to
translate the SSQL construct, based on the
construction of a set with a classic
mathematical notation, into an assertion that
is comprehensible to the compiler. This task
is accomplished by an apposite module, the
precompiler, which takes as input the SSQL
code and verifies the correctness of its
syntax, also performing a first semantic
check.

2. compilation: after the precompilation step,
the assertions are passed to the compiler
module, which executes the translation from
the logical query language SSQL to the
imperative language SAL

3. linking: this phase allows for linking more
object SAL modules together into an
executable module and for linking this
module with the object code obtained from
the query, thus obtaining the executable
query module.

Each one of these phases is detailed in the next

paragraphs.

3.2.1. The Precompilation Phase

The function of this phase is to check the syntax
of SSQL programs and then to re-write them
using equational and subset assertions.

Starting from the syntax check of a SSQL
assertion, in particular of the body of that
assertion, the model checked by the precompiler
follows the pattern:

= {predicate: associations;
definitions; conditions}.

The analysis of the predicate aims to check
whether it observes the SL grammar. All the
variables found during the scanning process are
included in an appropriate list.

Then the precompiler tests the presence of the
symbol : and the following associations are
evaluated. Each association is checked against
the model:

variable in argument

Two actions are carried out:

e the variable that has been found is searched
in the list produced during the previous step
and if not present on the list, it is included
in a different list of variables that have to be
verified during the scan of the definitions.

e the argument found is compared with the
arguments specified as parameters in the
head of the assertion and, if not among
them, a syntax error occurs. At this step the
precompiler is instructed to identify the
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keyword repository when it is found as
argument: when the keyword repository is
found, the precompiler enters a particular
state, purposely designed to handle the
SSQL assertions.

Next step aims to evaluate the definitions: if in
the previous step the keyword has not been
found and the precompiler is not in the right
state to manage a SSQL construct, an error
occurs. A definition follows the pattern:

variable is expression

Each variable is checked using the list created
during the associations analysis: if a variable
used inside a built-in SSQL predicate, such as
author or location, joins  the keyword
repository, then the process goes on with the
substitution of the unbound variable inside the
predicate with the expression specified in the
definition. Otherwise, an error occurs.

On ending the analysis of the assertion's body,
the precompiler verifies if there are conditions,
i.e. if there are predicates that have to be
satisfled with the terms identified by the
specified associations. Here are two examples of
feasible conditions :

o X > -1, X <1, ¥

0 1.
B Y), g(X) = }.

Y

where X and Y are unbound variables used in
the predicate, f/2 is a functor and g/2 is an
assertion, while other symbols have the usual
meaning. The specific predicates of SSQL are
recognised by the precompiler and if the
keyword repository in the previous steps has
not been found , an error occurs, otherwise their
syntax is verified.

After completing these steps, when the SSQL
assertion gets correct, the assertion is re-written
with an equational and subset assertion:

e a new equational assertion is created with
the head of the SSQL source assertion and
as body of a call to an assertion with name
extSetMaker  n (where n is a numerical
parameter). This new assertion aims to
explicitly pass the input arguments and to
identify the pattern of each argument

e anew subset assertion is created with name
extSetMaker n and whose arguments
render explicit the paitern of the elements
that must be bound to the unbound wvariable
which was found during the analysis of the
predicate (replaced by the appropriate
definitions when necessary). The body of
the new assertion will have the structure:
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contains if ( conditions )
then { predicate } else {}.

The variable associated with the external data
that must be elaborated is replaced by the
keyword ExtElemld and its resolution will be
remitted to the compiler.

An example can help understand  the
precompilation process. Given the SSQL
assertion:

searchWithTitle(Title) = {
[Book, Author, Location]: Book
in repository; Author is author
(Book) , Locaticn is location
(Book); title(Becok) = = Title ).

after the precompilation the following two
assertions will be produced:

searchWithTitle (Title)=
extSetMaker 0(Title) .

extSetMaker 0 (Title) contains
if { title(ExtElemId) = = Title)
then {[Book, author (ExtElemId)},
location {(ExtElemId)}]} else {}.

3.2.2. The Compiiation Phase

After the precompilation phase, equational and
subset assertions have to be elaborated by the
compiler, that translates them from the
declarative language into the imperative
language of the abstract machine.

This section presents the details concerning the
compilation cf the assertions which allow the
access to external data, showing, in particular,
the imperative instructions thereby which a
SSQL assertion is translated.

The compilation process starts with syntactic
analysis, lexical analysis and semantic analysis.
These analyses follow the usual principles used
to compile a generic SL assertion, but also
introduce a characteristic aspect: the scanning of
a subset assertion that includes access to the
external repository would produce an error
(according to the usual SL patterns) by
identifying the literal 'ExtElemld’ as an unbound
variable.

The scanning patterns of the compiler must be
extended by introducing appropriate schemes
for the compilation of SSQL assertions.

The compilation of an equational assertion made
when access to external data is requested is
fully compatible with a standard SL equational
problem, and its translation is performed

without problems by means of the SL compiler
diagrams.

On the other hand, for a subset assertion
produced when access to external data is
requested, the SL compiler has to be extended
by a set of rules that allow to produce the
appropriate imperative instructions.

The first step that the compiler must take is to
correctly identify these particular subset
assertions: this step is rightly performed by the
SL compiler, that makes the assertions join the
usual subset construct:

try sub_and n

proceed sub

Next step is the usual analysis of the arguments
in the head of the assertion, but a particular
operation has to be run: a reference to the
external data structure used must be generated.
A subset assertion produced by the
precompilation of a SSQL assertion, has a name
that begins with extSetMaker _ and when,
during the compilation, this string is identified
then a reference to the external data structure
has to be built. The reference is built using a set
of rules that:

e create a reference to the external data and
store the reference into the memory
structure of the abstract machine.

e store in a register the pointer to the structure
just created.

The reference to the external data contains two
pieces of information:

o an identifier that allows the abstract
machine to identify the external data
structure at running time.

e a pointer to the specific information unit
contained in the repository, that must be
accessed.

The reference structure created is depicted in
Error! Reference source not found.: the label
EXT DATA characterises the structure as a
reference to external data. The identifier of the
repository that follows the label is the second
parameter of the assertion createExternalLink.
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Figure 3. Reference Structure to an External Repository

The SAL instruction used to create the reference
to an external data structure is external link Zi,
which does all the operations just described and
puts in the register Zi a pointer to the structure
created.

When the head of the subset assertion has been
analysed, the compilation goes on examining the
body of the assertion.

Generally, the operations that have to be done
are the identification and the elaboration of a
specific element inside the external data
structure and its copying , if necessary only
after one or more conditions specified in the
query have been positively verified, in an
appropriate set. These operations must be
accomplished for each element of the external
data structure, resulting in the creation of a set
of identifiers to be stored in the memory
structure of the abstract machine.

The instruction used to translate the body of the
assertion is the map construct.

Error! Reference source not found.
summarises these operations.

Disregarding possible condition or elaboration
that has to be executed on the elements, the
acquisition of the identifier of the elements
stored in the repository is made in the following
steps:

1. the instruction map over Za Zi Zm end,
where Za contains the pointer of the
reference created with the instruction

external link Za, reads the identifier of the
external data structure and the value of the
identifier of a specific element inside the
repository (that has been set to zero with the
instruction external link) contained in the
reference pointed by Za, and accesses the
repository by retrieving the identifier of the
first element. This identifier is stored in a
temporary memory location and the address
of the memory location is put in the second
field of the register Zm, while in the first
field of Zm there is stored the label
EXT_ELEM.

the instruction insert Zo Zm is used to
verify the label in the first field of the
register Zm: if it corresponds to
EXT ELEM then the identifier stored in the
temporary memory location is moved on a
new location inside the constants table, the
address contained in the second field of Zm
is adjusted and the element pointed by Zm
is inserted into the set identified by Zo.

the instruction end map over Zi Zm starts
access to the external data structure by
retrieving the identifier of the next element.
If all the elements have been retrieved then
the execution jumps to the instruction
following the end map_over, otherwise the
identifier of the new element is stored in the
temporary memory location and the value
of the second field of Zm and of the pointer
to the current element in the reference
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structure is adjusted. The execution then
returns wosep2.

The presence of possible conditions in the initial
query determines, during compilation, the
insertion of a conditional structure that branches
the execution flow depending on the result of
the conditions.

Within the structure just described, that is used
to translate the body of a subset assertion, a new
structure is inserted, following the model:

technique is also used when a built-in operator is
compiled, such as, for example, the sum
operator (+/3) or the equality operator (==/3).
Before executing the instruction operation, the
arguments have to be loaded in the argument
register Ai and the register that will contain the
result of the operations has to be prepared.

The so far described compilation process is
recapitulated in the next applicative example.
Given the SSQL assertion:

arguments analysis

external_link

ondition
verified ?

end _map_over

Figure 4. Instructicns Used in Grder To Access and Elaborate External Data

prepare the parameters that have
to be passed to
the built-in predicate

operation
operatorName/argument sNumber

prepare the parameters that have
to be passed to

the equality check
operation ==/3

fjunp Zi label
insert Za ZI
label: end fjump Zi

This structure also shows the technique adopted
in order to compile a SSQL built-in predicate:
the instruction operation  operatorName
/argumentsNumber allows to give directions to
the abstract machine for executing a built-in
function (without an explicit declaration of this
function inside the SSQL source code). This

searchWithBAuthorEditor (Author,
Editor) =

{Book: Book in repository;
author (Book)==Author,

editor (Book)==Editor}.

after the precompilation there will be produced
the two assertions:

searchWwithAuthorEditor (Author,
Editor) =
extSetMaker 0 (Author, Editor).

extSetMaker__ 0 (Author,
contains if

(author (ExtElemId)==RAuthor) &&
editor (ExtElemId)==Editor) then
{ExtElemId}

else {}.

Editor)

The SAL code produced after the compilation of
these two assertions will be:

searchWithAuthorEditor_3_0:
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[1] try eq else -1

[2] get variable X3 Al

[3] get variable X2 A2

[4] get variable X1 A3

[5] put_value X3 Al

[6] put_value X2 AZ

[7] put value X1 A3

[8] execute extSetMaker  0/3
extSetMaker 3 0:

[9] try sub_and -1

{10] allocate ©

[11] external link X8

[12] get variable Y6 Al

[13] get variable Y5 AZ

[14] get variable Y4 A3

(15] map over X8 Y3 Y2 S_END O
S START 0: .

[16] put value Y2 Al

[17] put variable Y1 AZ

[18] operation author/2

[19] put value Y1 Al

[20] put value Y& AZ
[21] put variable X6 A3
[22] operation = =/3

[23] put value Y2 Al
[24] put variable X7 AZ
[25] operation editcxr/2
[26] put value X7 Al
] put value Y5 A2
[28] put variable X5 A3
] operation ==/3
[30] put value X6 Al
[31] put _value X5 AZ
[32] put variable X4 A3
{33] operation &&/3
[34] fjump X4 J 0
[35] insert Y4 Y2 J O:
[36] end fjump X4
[37] end map over Y3 Yo

S_START_ 0

S _END 0
[38] deallocate
[39] proceed sub

Lines [1] - {8] contain the SAL code associated
with the equational assertion
searchWithAuthorEditor/3 and they do not
require an explicit explanation. The SAL code
associated with the assertion extSetMaker 0
begins on line [9]. Line [11] builds the reference
structure to the external repository, using the
identifier given by a previous instruction
createExternalLink and copying the address of
this structure in register X8. Line [15] begins to
scan the external repository: the instruction
map _over retrieves the identifier of the first
element contained in the repository, storing it in
a temporary location and copying the address of
this temporary location in register Y2. Line [18]
calls the built-in function author/2: the result of
this function, i.e. the author of the element given

as input argument, is compared on line [22] with
the value specified in the query and the result is
saved in register X6. Line [25] retrieves the
editor of the external element and compares it
with the editor specified in the query and the
result is copied in register X5. Line [33]
computes the logical AND between X6 and X5:
if the result is true, i.e. the author and the editor
of the current element correspond to the values
specified in the query, then execution proceeds
with the insertion of the identifier of the current
element in the result set (line [35]), otherwise
execution jumps to line [36]. Line [37] retrieves
from the external repository the identifier of the
next element, storing its address in register Y2 .
If the current element is the last one then
execution proceeds to line [38], otherwise
execution jumps to line [16] and the current
element is elaborated.

3.2.3. The Linking Phase

The compilation process described in the
previous section represents the core of the
translation from the SSQL logic language to the
SAL imperative language. In the object code the
function calls uses an address table that links
each identifier and arity to the address of a
sequence of instructions which performs the
desired function.

In order to obtain an executable module from
an object module, the references contained in
the table must be replaced by the appropriate
addresses in the source code.

The SSQL environment allows the user to create
and use more than one source program
simultaneously, splitting the source SSQL
assertion into different modules that the system
compiles in separate object modules. When an
executable module must be produced using
more than one object module, the operation just
outlined is not feasible as presented: the
function's tables and the constant's tables of each
object module, including the object module
obtained by compiling the query, must be
brought together.

These operations are performed by a module
calied linker. The linking process can be divided
into three steps:

e analysis of the constant's tables and of the
function's tables. The constant's tables are
combined into a single table and a warning
message is produced if the same constant is
differently defined in two different tables

o production of the executable module, using
the object code obtained through linking the
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object module produced by the compilation
process

e production of the executable module
associated  with the query, using the
information gathered at first step.

The output of the linking process is made up of
two executable modules, one of which is
obtained from the SSQL programs, and the other
is associated with the SSQL query. These two
modules are then passed to the abstract machine
for execution.

3.3. The Execution of SSQL
Programs

The abstract machine that e. ecutes the SAL
code obtained through the con vilation of the
SSQL programs is called SAM, a1 acronym for
SL Abstract Machine. The structure ~f the SAM
follows the same pattern as the WAM's [7], but
its functionalities have been expanded in order
to manage the new SSQL constructs: this section
aims at explaining some particular aspects of
the SAM connected with the execution of SSQL
assertions.

The execution of a SSQL query begins with the
loading of the SAL code associated with the
SSQL query and the programs: the loading
phase and the preparation of the constants table,
entrusted to appropriate sei-up procedures, aim
to copy the SAL code and other needed data
into the memory structures of the SAM, thus
preparing the environment for the execution.

The elaboration of the SAL source code is
performed by an apposite module, called
executor, which uses the information stored in
the memory structures of the SAM, and executes
the SAL source instructions, managing partial
and final results. The execution of the SAL
source code is done by the executor, which
reads each SAL instruction and accomplishes
all the basic operations required.

The core of the execution process can be
condensed with a complex selection operation.
From the code area there is extracted the SAL
instruction, together with its arguments, of
which address corresponds to that stored in the
PC register. The instruction is compared with a
set of mutually exclusive patterns (all of the
allowed SAL constructs) and, when the right
matching is found, the corresponding basic
operations are performed. Then the next SAL
instruction, pointed by the PC register, is
extracted and the process goes on. The basic
operations associated with each SAL construct
depend on the data type contained or pointed by
the arguments of the instruction considered a

detailed description of the SAL instructions set
and the associated basic operations can be found
in [14,18].

In order to recognise and properly execute a
SSQL assertion, the SAL instructions set and the
basic operations associated with the same SAL
instructions have to be modified.

The external link instruction, being a new SAL
instruction introduced with the SSQL paradigm,
requires the modification of the SAM with the
introduction of a new instruction type. The basic
operations that must be performed when the
instruction external_link Za is encountered are
the following:

1. in the first empty location of the heap,
pointed by the HP register, here is created
the reference structure to the external
repository and in the first field of the
structure the EXT DATA label is stored

2. the address of the identifier associated with
the external repository of the SSQL
instruction createExternalLink is saved in
the first field of the reference structure just
created

3. the first field of the next location in the
reference structure is set to zero, indicating
that no previous access to the repository has
been made

4. the address of the structure created with the
previous operations is stored in the register
Za.

These operations create the reference structure

to the external repository that will be searched

during the execution of the SSQL query.

The instruction

createExternallink =
(repository, identifier).

is resolved during the compilation phase and
does not require any modification of the SAM.
During the compilation of the SSQL programs,
when this instruction is found, the identifier
associated with the external repository is stored
in an appropriate memory location. The
identifier is then transferred to the SAM the
same way as the constants contained in the
constants table are.

The abstract machine aiready has the right
patterns to deal with the other SAL instruction
used to manage the information coming from the
repository, i.e. the map and insert constructs, but
it is not able to properly deal with the new
external data types. The basic operations that are
executed when these instructions  are
encountered musi be adapted and specified in
order to deal with the new external data types.
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Beginning with the instruction map_over Za Zi
Zm end, when it is encountered the first
operation that must be performed is to verify the
label contained in the first field of the register
Za. If the label corresponds to EXT_DATA then
the execution flow is directed to the specific
instructions sequence that deals with an external
data type, otherwise the standard procedure is
accomplished.

The operations performed in the case that the
label corresponds to EXT_DATA are:

1. the external repository retrieve procedure is
called with input arguments by the identifier
of the repository, retrieved from the
reference structure addressed by the register
Za, and the pointer to the current element
inside the repository, obtaining the
identifier of the next element contained in
the repository

2. if the value retrieved at step 1, ie. the
identifier of an element contained in the
repository, is zero then the execution goes
on with the instruction associated with the
label end. Otherwise, if the identifier is not
zero, it is saved in a temporary memory
location at the beginning of the constants
table and its address is copied in the second
field of the register Zm, while the
EXT _ELEM label is written in the first
field of the register Zm

3. the address of the identifier associated with
the element retrieved, is saved in the
reference structure, so that the pointer
should be updated to the current element

4, the current state of the elaboration is passed
to the instruction end map over copying
the value of the register Za in the register
Zi.

The instruction end _map _over Zi Zm stari is

treated the same way as the map_over is, and

the operations that must be done are:

1. the external repository retrieve procedure is
called by input arguments the identifier of
the repository, retrieved from the reference
structure addressed by the register Zi, and
the pointer to the current element inside the
repository, resulting in the identifier of the
next element contained in the repository

2. if the value retrieved in the previous step is
zero then the current element was the last
element contained in the repository and the
execution goes on with the instruction
following the end map over. Otherwise, if
the identifier is not zero, it is saved in a
temporary memory location at the
beginning of the constants' table and its
address is copied in the second field of the
register Zm

3. the address of the identifier, associated with
the element retrieved, is saved in the
reference structure, so that the pointer
should be updated to the current element,
and then the execution flow jumps to the
instruction addressed at the label start.

The instruction insert Zo Zm is used to manage

the external data, in particular in order to insert

the identifier of an element in the results set.

The technique adopted to identify when

external data are used is to check if the label

contained in the first field of the register Zm
corresponds to EXT ELEM. When the label is

EXT ELEM then the sequence of operations

that has to be performed is the same as that

required for managing a standard SL data type.

The only exception is that the current element,
i.e. the identifier associated with an external
element, must be copied in the constants' table,
while updating the label in EXT_ELEM to LIT
and updating the address of the identifier.

The instructions used to prepare the arguments
before the call of a built-in operator, i.e. the put
instructions, do not raise problems. The required
operation is simply to copy a value in an
argument register and the abstract machine is
able to deal with reference to external elements.

The built-in SSQL assertions allow to deal with
the attributes associated with the elements
contained in the external repository. These
assertions are compiled using the SAL
instruction operation, which specifies the name
of the built-in operator used, followed by its
arity. During the execution, the abstract machine
must recognise these operators and call the
function  specified as  argument. The
identification of the required operator is
performed through comparing it with the set of
the built-in operator's patterns, selecting the
right one in a way similar to the identification of
a SAL instruction during the execution. The
built-in attributes are executed by a specialised
function, which performs all the computations
needed and also calls an external repository
retrieve procedure when necessary.

3.3.1. The Access To the External Repository

Access to the external repository is performed
through an  appropriate  interface  that
encapsulates the internal structure and the
information managing mechanisms of the
repository. The encapsulation technique adopted
allows to use different repositories if only
modifying the low level code associated with the
basic operations performed by the methods of
the interface, without modifications in the syntax
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of the methods themselves and in the SAM basic
operations that cali them.

Two main methods of access (o the external
repository have been built:

1. the method get next(DBId, elemid) returns
the identifier of the element, contained in
the repository, next to that specified by the
identifier elemld, where DBId is the
identifier associated with the exiernal
repository. If the value of the argument
elemld is zero, as for instance when a map
instruction is executed, then the identifier of
the first element contained in the repository
is returned

2. the method gei ext data(DBId, elemld,
attributeName) requires as arguments the
identifier associated with the external
repository, DBId, the identifier of the
current element, elemld, and the name of
the attribute that has to be retrieved,
attributeName. This method returns the
value of the attribute attributeName of the
element elemld contained in the repository
DBId, or, if the specified attribute is not
defined for the current element, a value
equal to zero.

4. Conclusions

This paper describes the implementation of a set
based logic query language, cailed SubSet
Query Language (SSQL), an interesting and
promising new iechnique to search for and
retrieve information in a generic repository.

Usually, searches inside a repository are
performed through fixed graphical forms that
must be filled in by the user: this methodology,
of course simple and friendly, sets some limits
to the typology of possible searches that can be
done, restricting thie user's queries to a finite set
of fixed forms.

The work presented in this article proposes a
search technique based on a logic language, that
combines simplicity and friendliness with search
flexibility and efficiency.

Queries are stated using the typical constructs of
a logic query, in particular a paradigm that
emphasises as main data type the set, expanded
in an appropriate way, so that to include the
predicates that allow that the information
contained in an external repository is accessed.

The intuitiveness and simpleness of the logic
paradigms, together with their characteristic that
only the logic structure of a problem must be
expressed, render logic languages as the most
suitable candidates in order to realise this new
query technique.

The implemeutation of this technique has been
based on the set based logic language Set
Language (SL), introducing a class of new
predicates that exiend the functionalities of the
language, allowing access to an external
repository. The SL environment, ie. the
compiler and the abstract machine, has been
modified in order to manage the new predicates
and the informatioi coming from the repository.

The SSQL logic query language tocl that has
been built, has been integrated into a distributed
software artefact library in order to gather use
statistics and information.

The verification on the field of the SSQL
methodology,  concerning an  objective
evaluation (i.e. the time needed to retwrn the
results of a query) and the efficiency of searches
(i.e. the satisfaction level of the user
expectations versus the effort spent to state the
query), is still incomplete and has not allowed to
outline a final evaluation.

The results that can be extrapolated from these
initial experience have emphasised some
particular aspects: the first approaches of the
user to this technique has shown some
difficulties, mainly due to the initial effort
needed to get familiar with SSGL. In particular,
while the use of a graphical form does not
request any mental effort, on the other hand
writing a SSQL query requires to ponder on and
to organise the problem that must be solved.
This initial effort is, at the beginning, a
drawback, but, when a little experience has been
acquired, it allows to obtain rewarding query
results, The initial effort is recompensed with
great search efficiency and search results that
fully meet the user expectations.

It must not be forgotten that SSQL is based on 3
set based declarative language with the same
computational properties as other imperative
language, for example C or Pascal, and allows to
elaborate the information cbtained through
searching the repository.

The integration of the SSQL paradigm into a
distributed software artefact library [21] has
generally shown, considering a rather limited
experience , positive results, regarding both the
efficiency of the searches and the impact of the
methodology on the user.

These initial positive results have led te taking
into consideration the possibility to improve
some aspects of the SSQL system, which can be
summarised as follows:

» the identification of the external repository
is  defined by the instructicn
createExternalLink : an  interesting
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expansion of this mechanism is the
possibility to identify and access different
external repository in the same SSQL
program

the results returned from a query that
accesses the repository, i.e. the identifiers
of the retrieved elements, are saved in the
constants' table inside the SSQL
environment: it would be interesting to re-
use the identifier returned by a query in
order to state a new query, so that to
improve the efficiency and the power of the
search mechanism

the possibility of tracking and recording the
work done could be a useful functionality of
the SSQL environment.
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