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Abstract; Decoupling techniques based on state variable
concepts are appreciated by the control system theorists but
up to now their application to practicai cases is still under
try. The point is that, the entries of the state, input and
cutput matrices of the state space representation are
regarded as exactly known numerical values while
practicing engineers have to cope with varying parameters
and more generaily, with unavoidable uncertainties.
Recently, in order to overcome these disadvantages of the
space state theory, Reinschke proposed a graph-theoretic
approach to the decoupling problem. The necessary and
sufficient conditions for decoupling are directly interpreted
in terms of properties of the digraph associated with the
state space equations. Moreover using digraphs gives a
good insight into the structural nature of the decoupling
property, showing how the feedback coefficients offset the
original coupling between the terminal variables of the
plant. Unfortunately to apply the Reinschke design method
it is necessary that the digraph associated with the plant
equations presents a particular structure. This condition is
severe and seldom satisfied in practice.

The aim of this paper is to overcome the limitations of the
Reinschke approach. The main idea is to transform the plant
equations into a properly chosen canonical form before
associating the digraph with them. Any system which can
be decoupled by state feedback controller can be reduced in
such a ranonical form which belongs to the class for which
it is possible to apply the Reinschke design method.

The paper shows an application of the proposed approach to
the synthesis of the controller of a synchronous machine
supplying an infinite busbar. The example illustrates the
effectiveness and easiness of the method.
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1. Introduction

The decoupling design methods of multivariable
control systems have made remarkable progress
in both theory and practice since the 6oies.
Among these methods the following  are
considered to be successful and effective:

(a) the diagonal matrix  approach
developed by Tsien (1954), Mesarovic (1960),
Schwarz (1967) and many others.

(b) The relative gain method introduced by
Shinskey (1979), McAvoy (1979) and others.

(¢) The characteristic locus method
introduced by MacFarlane and Belletrutti
(1973).

(d) The state variable method proposed by
Falb and Wolowich (1967), Whonam and Morse
(1971), Morse and Whonam (1971) and many
others.

Usually the process control engineers do prefer
the first two approaches since they are relatively
simple to apply . Certainly inverse Nyquist
array and the characteristic locus methods are
actually effective but they need familiarity with
advanced theory concepts and require a lot of
computation work. As for decoupling techniques
based on state variable concepts, they are
appreciated by the control system theorists but
up to now their application to practical cases is
still under try. The point is that, the entries of
the state, input and output matrices of the state
space representation are regarded as exactly
known numerical values while practicing
engineers have to cope with varying parameters
and more generally with unavoidable
uncertainties. Recently, in order to overcome
these disadvantages of the space state theory,
Andrei (1985) and Reinschke (1988) proposed a
graph-theoretic approach to the decoupling
problem. The necessary and sufficient
conditions for decoupling are directly
interpreted in terms of properties of the digraph
associated with the state space equations. Thus
the decoupling property of state feedback
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controllers holds, independently of the
numerical values of the entries of the matrices
involved in the systern model. Such entries may
be considered free parameters providing degiee-
of -freedom to be used in subsequent design
steps. Moreover using digraphs gives a good
insight into the structural nature of the
decoupling property, showing how the feedback
coefficients offset the original coupling between
the terminal variables of the plant. Unfortunately
to apply the Reinschke design method it is
necessary that the digraph associated with the
plant equations presents a particular structure.
This condition is severe and seldom satisfied in
practice. Mainly the applications of the method
reported in the technical literature refer to
distillation columns which are modelled by
sparse system equations. In this case the
correspending digraphs present a particular
structure meeting the requirements necessary for
applying the Reinschke decoupling method.

The aim of this paper is to overcome the
limitations of Reinschke’s approach. The main
idea is to transform the plant equations into a
properly chosen canonical form before
associating the digraph with them. Any system
which can be decoupled by state feedback
controller can be reduced in such a canonical
form. Moreover the digraph associated with
system equations writien in this canonical form
belongs io the ciass for which it is possible to
apply the Reinschke design method. It must also
be mentioned that the main idea may be
regarded as analogous to the Mesarovic
concepts in the diagonal matrix approach to
decoupling. Namely, following Mesarovic’s
ideas, better decoupling effects would be
reached if a particular structure {the V canonical
form) were adopted for transfer function matrix
descriving the plant. The method is applied to
design a controller for synchronous generator
coninected to infinite power busbar. Starting with
a linearized system model, the graph theoretic
approach zilows us to derive a state feedback
control so that each synchronous generator
output depends on its corresponding input only.

Section 2 introduces notation and precises the
problem formulation. Section 3 deals with the
main results of graph-theoretic approach to
decoupling problem. Section 4 establishes a
canonical form which is the key to apply
Reinschke’s method. Finally, Section 5 shows
an cxample and Section & draws the
conclusions.

2. Definitions and Problem
Statement

Consider a linear time invariant system
represented by the following equation:

D)= A x(t) + Bu(t) ¢))
y(© =C x(1) @

where x(t)eR", u(t)eR™ and y(t)cR™ are the
state, input and vutput vectors, respectively; the
matrices A={aij}, B={bij} arid C={°ij} have

proper dimensions and x(l)(t) denotes the first
derivative of x(t). For the sake of simplicity, the
state space model (1) and (2) will also be
referred as (A,B,C). Besides suppose we use the
following feedback law:

u(t) = G v(t) 3)
v(t) = F x(t) + w(t) 4)
where v(t), w(t) € R™, F is an (m x n) matrix

and G is a nonsingular (m x m) matrix. Vector
w(t) is the new input to the closed-loop system.

The decoupling problem lies in determining a
pair (G,F) so that, for each ie{l1,2,....m}, the
input w(t) affects the output y,(t) only, and has

no influence on the remaining output
components y}-(t) for j#i. In other words the

closed loop transfer matrix
Ge(5)=C(I-A-BGF'BG (5)

must be diagonal, with non identically vanishing
determinant.

The graph-theoretic approach to the decoupling
problem is based on the preliminary notion of
digraph associated with the system (A,B,C).

So let N be a set of vertices (or nodes) split into
three disjoint subsets U, X and Y defined as
follows. Labelling the vertices by the same
symbols used for the system variables, let us
associate a vertex with each input, state and
output variable. Hence we get
N=UwXuY (6)

where: U = {ul,uz,...,um} is the input node set,
X= {;-:l,xz,...,xn} is the state node set and Y =
{yl,yz,...,ym} is the output node set. Moreover
let

E=E,UEy UEy 7

be a set of directed edges between pairs of
vertices from N, where: E;y cin (U x X) is the

set of input edges: the edge (uj,xi) is in Eyj if
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and only if (iff for brevity) bij is non zero; Ey
in (X x X) is the state edge set: (xj,xi)eEx iff 3y
is non zero; Ey C in (XAY) is the output edge
set: (xj,yi)eEY iff Cij is non zero. The direction
of each edge is graphically indicated by an
arrowhead. The arrow heads for the second
vertex (terminai vertex) of the node pair (vi,vj)
describing the edge. The digraph

§(A,B,.C)=(N,E) ®

composed of the node set N and the edge set E,
is defined as the digraph associated with the
system (A,B,C). Analogously, with an obvious
meaning of the notation, the digraphs
#(A,BG,C) and ¢§(A+BGF,BG,C) can be
defined.

Remark 1

Although, according to (3) and (4), the inputs to
systems (A,BG,C) and (A+BGFBG,C) are
respectively v and w, the input vertex set for
3(A,BG,C) and for §(A+BGF,BG,C) will still
be denoted by U.

Now we introduce a few notions and properties
that we use in the sequel. Let v; and v be any
two vertices from N. If (vi,vj)eE, we say that v;
is adjacent to v and v is adjacent from v;.
Moreover if for the state vertex x; there exists an
input vertex (say uj) such that (uj,xi)eEU, we
say that x;
from v; to v is an alternating sequence of

is input-adjacent. A directed path

distinct vertices from N and distinct edges from
E, beginning with v; and ending with Vi such

that each edge in the sequence is directed from
the vertex preceding it to the vertex following it.
Besides, if the digraph contains a path from v, to

vj, then we say that Vi is reachable from Vi In
particular, if for a vertex v,eUUX there exists
an output vertex (say yj) such that y f is reachable
from v, we say that v, is output-reachable.

Introducing the injection matrix G according to

(3), changes g(A,B,C) into g(A,BG,C) only by
modifying the edge set E(;. Now let us prove the

following proposition.

Proposition 1

A state vertex x; is input-adjacent in the digraph
g(A,BG,C) iff it is input-adjacent in g(A,B,C).
Proof

Let us assume X; be input-adjacent in g(A,B,C):
this implies that the i-th row of B is non zero.
Since matrix G is nonsingular, the same
conclusion holds true for the i-th row of BG,
proving sufficiency. The same pattern can be
used to show necessity.

If the state feedback (4) is used, the digraph
§(A+BGF,BG,C) is obtained from g§(A,BG,C)
by modifying only the subset Ey. In particular,
if (xj,xi) is an element in the state edge set of

§(A,BG,C) it is interesting to know under what
conditions (Xj=xi) does not belong to the state

edge set of g(A+BGF,BG,C). Indeed the
analysis of these conditions suggests the way in
which the feedback can eliminate the couplings
between the variables of the plant (A,B,C).
Hence we introduce the following:

Proposition 2

Let (xj,xi) be an edge from Ey in the digraph
g(A,B,C). Such an edge can be removed by
static state feedback iff its terminal node (i.e. x;)
is input-adjacent in g(A,B,C).

Proof

Since (xj,xi) isin Ey, it holds:

aijat() €}

Therefore, in order to make zero the (i,j)-th
entry of the closed loop state matrix (i.e.
(A+BGF)ij), it must hold

(BGF);#0 (10)

Condition (10) implies that both of the i-th rows
of BG and B are non zero, ie. x; is input-

adjacent. On the other hand, if x; is input-

adjacent, the i-th row of BG is non zero and it is
always possible to choose the j-th column of F
so that

(BGF);=-a; (11)e

According to the previous proposition, the edges
of g(A,B,C) whose terminal nodes are input-
adjacent are named "eliminable edges". We
remark that while a proper choice of the
feedback matrix F always allows us to remove a
single eliminable edge, the same is not true in
general if we have to remove more than one
eliminable edge simultaneously.
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3. Graph-theoretic Approach
To Deccupling By State
Feedback

To develop the graph-theoretic approach to the
decoupling, let us introduce some vertex
subsets. Let V, be the maximal subset of state

vertices of g(A,B,C) reaching the output vertex
y; with paths including no eliminable edge. Such

a subset can be determined by the simple
algorithm given in the Appendix.

Now let Sy; indicate the subset of V; containing
all the input-adjacent vertices from V, and put:

V=V UV, UV UV (12)
and
Sy=Sv;USy,...U8y;....8y (13)

while W denotes the complementary subset of V
with respect to X:

W=X-V (14)

To avoid trivialities let us assume that the
system (A,B,C) is output controllable. From the
digraph point of view this implies that no subset
Sv; (i=1,2,...,m) is empty. In fact, output
controllability implies the generic condition of
structural output comntrollabiiity. As proved by
Franksen ef al (1979), such a condition requires
that every output vertex of g(A,B,C) is reachable
from at least one input vertex.

The graph-theoretic approach to the deccupling
problem consists in finding a pair (G,F} in such
a way that the closed-loop system digraph
§{A+BGF,BG,C) enjoys the following propearty:
for each ie{l,2,...,m} the output vertex y; is

reachable from the input vertex u,, while no
vertex Y; (for any j=i) is reachable from u;.
Reinschke (1988) showed that a necessary

condition for such a problem having a solution
was given by the following theorem.

Theorem 1

For decoupling by static state feedback it is
necessary that the state vertex subsets V,

(i=1,2,...,m) are disjoint.
As an immediate consequence of Theorem I the
non empty subsets Sy, are disjoint too and

cardinality of szm (15}

Now let Bgy, be the submatrix of B composed
of the rows corresponding to the state vertices

from S.;. A sufficient condition for the graph
approach decoupling problem has a solution is
given by the following result (Reinschke, 1988):
Theorem 2

Provided that the necessary condition of
Theorem 1 is met, then the condition

rank(Bg,;) = cardinality of Sy, (i6)

is sufficient for decoupling by static state
feedback.

Let us assume that Theorems } and 2 hold true.
In this case the computation of the resolving
pair (G,F) is straightforward, as we show next
before concluding this section. To begin with,
we first restrict ourselves to matrix G. Relations
(15) and (16) imply

rank(Bsy/) 2 m (17)

but, since Bgy; has m columns, only the equality

sign must be considered in (17). Therefore we
infer the following equations hold true:

rank(Bgy,) = m (18)
cardinality of Sy; =1 fori=1,2,....m (19)

and Bgy, must be a full rank square matrix of
order m.

With (18) and (19) as background, let us re-
arrange the state components according to the
following state vertices sequence: V,, V,,
. .,Vm, W, by considering in each subset Vi the
veriex from Sy, at first and, then, nodes from
V;-Sy; (i=1,2,...,m). Moreover let us perform
the corresponding row/column permutation on
the state space equations (1) and (2). Abusing of
the notation, the resulting matrices will be
denoted by the same symbols as used for the
original ones. It is clear that rearranging the
state components does not affect at all the
digraph associated with the system. On the
contrary Eq. (3) introduces an input, v, and new
input vertices. However, according to Remark 1
the input vertex set and its members will further
be indicated by U and u;, respectively.

We are now in a position to determine G by
imposing that in §(A,BG,C) there be only one
state vertex adjacent to u; i.e. the only vertex in

Sv; (i=1.2,...,m). To this end it is necessary that
the matrix

Bgy*=Bgy G (20)

be diagonal and non singular.
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Before continuing, few remarks will provide the
keys to understanding the structure of (A,B,C).
Partitioning B* according to the partition of set
X gives:

B*, 0
0 B* 0
B*= @1
0 0 By
B*y, B*y B*y,

where B*y; and B*w; (i=1,2,...,m) are
card(V;)- and card(W)-column  vectors,
respectively. In particular each column B*y; has
the following form:
b* sy
B*, = 0 (22)

i

0
with b*SV # 0. The structures of (21) and (22)
i

are easily explained by considering the
following facts:
e all the vertices from V,-Sy,; are not input-

adjacent in g(A,B,C) by construction. They
remain not input-adjacent in §(A,BG,C) by
Proposition 1;

» the m x m submatrix Bgy/* is diagonal.

Figure 1 shows the digraph g(A,BG,C).

Now it is to show how to determine the matrix
F. Using the same partition as before for matrix
A yields:

AV’;VI . AVIV‘" AV[W

P 55
AVmI/l “ee AVMVM AVMW ( )
AW VI .. AW Vm AW

Blocks AV,-V," AV;W’ vai
respectively, the following dimensions: card(V;)
X carcl(Vj), card(V,) x card(W), card(W) x
card(V,) and card(W) x card(W). Moreover the

structures of AVi v, (with i%j) and AV,— v are as

and AWW have,

follows:

4s,
Ayy, ={ L } (24)

As
Ay =[ Svd ”’] (25)

where AsviVj and ASviW are row vectors of
proper sizes. Equations (24) and (25) are
obtained by remarking that if (xj,xk) is an edge
of §(A,BG,C) with xjeVi, X €V} and i=h, then
it must result: x, €Sy, . Indeed, by definition of
Vi ¥ 18 joined to x; by a path containing no
eliminable edge. Since V;nV,={0} by Theorem

1, the edge must be eliminable. As if this were
not true X would belong to V. This makes us

conclude that x, must be input -adjacent, i.e.
X, €Sv},. The same conclusion is also drawn if
X €V and xjeW. In fact in this case
(xj,xk)eEX requires X, €Sy,

The feedback matrix F can be partitioned as
follows:

Fl[/l v F}Vm F]W
F=| ... ... .. . (26)
F,

my; FmV FmW

"m

where Fj \ and F; w (i=1,2,...m; j=1,2,...,m)
are row vectors with card(V;) and card(W)

components, respectively. In order to obtain a
decoupled system, F must be determined in such
a way that each edge of g(A, BG, C) starting
from any vertex in Vj or W and terminating in
any vertex from Sy, (for ij=1,2,....,m and i#j)
should vanish in the new digraph
g(A+BGF,BG,C). In other words, the edges of
g(A,BG,C) to be removed are those

corresponding to the entries of submatrices

ASV‘»VJ'_ and ASviW' This can immediately be
accomplished by putting:

* ey, i
Asvivj+b S, Fiv,=0

ij=1,2,...,mand i%j (27a)

and

Sy. W

As,w' s, Fiw=0
i=1,2,...,m (27b)

The digraph for the closed-loop system is
shown in Figure 2.

It must be remarked that the state components
corresponding to vertices in W are made not
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output reachable by the feedback law: hence
these components are unobservable in the
system (A+BGF BG,C). Another noteworthy
fact is that Eq. (27a+b) imposes ne constraint on
submatrices Fjy.: therefore these can be

determined in order to satisfy further conditions,
such as pole allocation.

4. Mazain Results

We point out that in order to apply the
Reinschke design method, it is necessary that the
digraph associated with the plant equations
presents a particular structure. This conditicn is
sever and seldom satisfied in practice. On the
contrary, the Falb and Wolovich (1967)
algebraic approach has a large applicability. The
following theorem gives the necessary and
sufficient condition for the existence of sclving
pair (F,G).

Theorem 3

Let d]._ dz. d_n be m integers (decoupling
indices} given by

d = min {jic A/ B#0,j=0,I, a1}  (28)
or

d=n-1 if CAIB=0 forallj (29

1
with ¢ being the i-th row of C. There exists a

pair (F,G) solving the decoupling problem if
and only if the fellowing (m x m) matrix is non
singular:

(30)

The main result illustrated in this section will
show that every time E is non singular it is
possible to apply  the decoupling graph-
theoretic approach to a new state representation
of the system (A.B,C)), equivalent to ihe
original (A,B,C). So let us state the following
tiieorem.

Theorem 4

If the system represented by (A,B,C) enjoys the
necessary and sufficient condition of Theorem
3, then there exists a representation (A,B,C
equivalent w0 (A,B,C) such that g(A,B,C)

satisfies the conditions stated by Theorems 1
and 2.

Proving Theorem 4 requires to introduce some
notations and to state two lemmata.

Let us first group all the rows of E characterized
by a decoupling index equal to zero. Let the

resulting submatrix, indicated as \CB, be
composed of m; rows. Obviously IC is a well
defined (mlx n) submatrix of C. Analogously,
grouping together all the rows of E with unit
decoupling index, the submatrices 2CAB and
2¢ are defined. Let m, denote the number of
rows of each one of these blocks. Going on with
this procedure, the m.-TOWs submatrices 'CA"'B
and 'C (for i=12,..p) are defined, with
dimensions (mixm) and (mixn), respectively.

The integer p<n is such that p-1 is the
maximum decoupling index. Moreover it holds:

P
Smo=m 31)
i=1

Now let us define the following matrices:.
r ] C |
G o
2CA
342
H=| e (32)
'CA
‘cA?

I'CAI-—I

Lo La
Ic ]
ic4

rCAl-l ( )

s L
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Figure 1. The Op2n Loop System Digraph §(A,BG,C).
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Hy= (34)

Putting
Y4
u=Yy im, (35)
1=1

the dimensions of H, H] and H, are

2
respectively puxn, m x n and (p-m) xn.

Lemma |

If matrix E given by (30) is non singular, then
the following equation holds true:

rank(H) = rank(Hz) +m (36)

Proof
By the construction of matrices H2 and E we

infer:

H,B=0 G7)
or, equivalently,
Im(H, ")c Ker(B') (38)

where Im(-) and Ker(+) respectively stand for
"the image of' and "the kernel of". The
superscript T indicates transpose. Since the
condition

H B=E (39)

holds eventually but for a row permutation, it
follows:

rank(H, B) =m (40)

Considering the dimensions of [-l1 and B, it is

easy to realize that (39) gives

im(H, ") ~ (Ker(8") = (0 (1)

By construction, matrices H, H1 and Hz are in

the following relation:

Im@ED) =Im@H, ")+ m@E,")  “2)
therefore equations (38) and (41) give

ImH") =Im(H,) & In(H,")  (43)

and
Rank(H) = Rank(Hl) + Rank(Hz) (44)

But equation (40) implies

Rank(Hl) =m (45)
proving the lemma. °
Remark 1

Denoting by (Hl)_ the i-th row of Hl’ a
1
consequence of (43) and (45) is the following:

Im(HT) = Im[(Hl)l]T @ Im[(Hl)z]T @ .0

Im[(Hl)m]T ® Im(H,") (46)

Lemma 2

If matrix E given by (30) is non singular, then it
holds

Rank(H,) = i -m @7

Proof

Proceeding by contradiction, suppose the (p - m)
rows of l-l2 be linearly dependent. Hence there

exists a non-zero (}1-m)-row vector

z=[z, z ] (48)

1% Zym

such that
z H2 =0 (49)

Now let us consider all the submatrices 'C Al of
H2 (I <i<pandj<i- 1) containing at least
one row weighted by a non zero entry of z in the
product (49). Among these submatrices, let

i"C Al be one characterized by the minimum
value of the index difference (i-j). So,
multiplying on the right by A" 7"} both sides of
(49), gives
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Figure 2. The Closed Loop System Digraph g(A+BGF,BG,C).
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i*j*-]

“H, A =0 (50)

Taking into account the meaning of indices i*
and j*, it is easy io realize that the rows of I-I2

iy _ .

U weighted by non zero entries of z, are

also rows of I-I1 or of H2. Therefore, equation

(50) implies that at least one row of the
i* %1 .

submatrix "'C A" (i.e. a row of Hl) can be

expressed as a linear combination of the
remaining (m-1) rows of H1 and of the rows of

Hz' But this contradicts (46), completing the

proof. e

Remark 2

From the previous lemmata it follows that, if E
is non singular, then the rank of matrix H is

Rank(H) = u ol

Obviously, being H a (1 x n)-matrix, it holds:
p<n (52)

FProof of Theorem 4

Let T be a non-singular {n x n)-matrix, given by

) (53)
.- H]
i -“LM

4

where ™ is a fui! rank [{n-p)xa]-matrix,
chosen such that each one of its rows is
independent of the u rows of H. Now consider
the transformation

x=Tx (54)

and partition x as follows:

=

(ST T T P
1 9 [I¥]
- o

u
* sy

(33)

|
I

with:

K= icAlx  i=12,.p;

§=0,1,...,i-1 (56)
and

X~ M x (57)

Consequently, each subvector EiJ (G=0,1,...,i-1)
has m, components, while Xy has (n-u) entries.

It is to be remarked that m components of the
state vector x coincide with the system outputs;
in fact, we get

_51,0 11 ]C“
X209 ‘e
X390 |=|*C|x=y (58)
[ Xpo] LC]

where y is just the output vector y, but for an
entry permutation. Let y be partitioned as
follows

Y
Y,
= (9
LP
with
y,='Cx i=1,2,...p (60)

Let Xim denote the j-th time derivative of Y;
Performing the first time derivative of (60) for
i=2,...,p, gives:

y='cax+CBu i=2..p(61)

By the definition of matrix E, for i=2,...,p, it
holds
icB=0 (62)

therefore, considering (56), it follows:

Xi(]): iCAX:Ei i=2,...p; (63)

1
Computing the second derivative of Y, and using

the same arguments as above, we infer:

Mi{2) = igaZy= X, i=3,..p; (64)

Moreover, continuing on this way, the following
general equation is obtained:

v ='calx=x

1

i=1,2,...,p; j=0,1,...,i-1 (65)
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Relations (65) also give
(-

-1,J TS+l
i=1,2,...,p; j=0,1,...,i-2 (66)

Under the transformation (54), the original state
mode] modifies to

(]) =Ax+Bu (67)
y=Cx (68)

with:
A=TAT! (69)
B=TB (70)
c=ct’! (1)

Now let x be partitioned as follows

X
x>
x=| x, (72)
Xp
X
[0 | 0
0 0 I
A =
11
0 0 0
* L 3 *
1 { i
m m m

columns columns columns

i m, columns

where X, denotes the following (i mi)—subvector:
X0

X1

x = i=1,2,....p (73)

I_Ef,f—! ]

If matrices A, B and C are partitioned according
to the state vector partition (72), we get

p
“) Z X, +Apxy+Bu
i=1,2,....p (74)
and
p
y=2.C:x, % (75)
i=]

where any symbol has an obvious meaning. Now
let us perform a second level partition of A AA.

(i#)), A ap B B , according to (73). Equations (66)

give the followmg structures for these matrices:

0 “m, rows
0 €m, rows
i m, rows (76)
I <, TOWS
*
=, rows

m.

i
columns
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0 « (i-1) m, Tows (77

< m; TOWS
.
I
columns
_ 0 «(i-1) m. rows
M " i (78)
“m, Tows
T
n-p
columns
B, - 0 « (i-1) m; rOWs (79)
E‘i,i-l <—mi rows
m
columns

Any symbol * in the previous matrices indicates
a generic submatrix. Taking (70) into account ,
we get

B -'CA"'B (80)

-1

Moreover, by (60) it follows

Cy 8 (81)
Qz{éw 4 0

i T T

m m m

columns columns columns

i m, columns

Let us observe that equations (60) are equivalent
10

Y=o L2 P (82)

1
therefore, submatrices Q_l exhibit the following

structure

0 }em TOWS (83)

m.
1

columns

where, according to (60), gi 0 has (m—mi) zero
rows, while the remaining m, rOws make up an

unit matrix. Equations (76)-(83) allow to draw
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the digraph §(A,B,C) as shown in Figure 3. In
particular such a Figure displays all the edges
directed to and from vertices associated with
subvector X, (ie{1,2,...,p}). Any edge incident
with a vertex set signifies an aggregate of edges
each one incident with a single vertex in the set.
The structure exhibited by Figure 3 points out
that the digraph g(A,B,C) enjoys the condition
required by Theorem 1.

In order to prove that the state model (A, B, ©)
also satisfies the hypothesis of Theorem 2, let us
consider the matrix Bsy;, which, minding Figure

3, is given by

(oo |t
)

[
[=]

e 84
E,SV E"J‘k] ( )

[Zp.p-1 ]

By (80), Bsy, can be written as follows:

g8}
2CAB

PCAP'B

ie. Bgy coincides with E, but for a row
permutation. Therefore it can be inferred that:

rank(Bgy,) =m = cardinality of Sy, (86)

completing the proof. °

We call the systems in the representation (A, B,
C) shown by Egs. (74)-(75) in a "decoupling
canonical form". If a system can be transformed
into a similar canonical form, it is possible to
apply the graph-theoretic approach and to derive
the pair (G,F) solving linear equations (27a,b).

5. Example

In order to test the proposed method, let us
consider the system consisting of a round rotor
synchronous machine supplying an infinite
busbar through a transformer and a transmission
line (Figure 4). To derive the open-loop system
representation, a third order model based on

Park's equations is adopted for the machine
(Schackshaft, 1963). The machine is assumed
to be equipped by an exciter and a speed
governing  system.  The  state  space
representation of the systems, resulting from the
cascade connection of the synchronous machine
and the speed and voltage regulating systems is
given by the following equations:

x(D®=Ax(t)+Bu(t) (87)
y(t)=Cx(t) (88)
where x=[A8 A® AV, AE¢y AP AV, Ag]T, the
input vector u =[AVp AmR]T and the output

vector y =[AV, AS]T. The matrices A, Band C
are the following:

[ o 1 0 o 0 0 0
3891 0601 26158 0 @82 0 0
0063 0038 0730 0060 O 0 O
4=| o 0 0 20 0 1000 0 |(8%a)
0 0 0 0 -0 0 1
0 0 0 0 0 -0 0
L o 0 0 o 0o 0 -10
[0 0]
0 0
0 0
001 0000
B=| 0 0l|C= (89b)
1 000O0O0O0
0 0
400 0
L0 &)

Figure 5 points out that the digraph g(A, B, C)
does not satisfy the conditions stated by
Theorem 1. Moreover, the system (A, B, C)
enjoys the necessary and sufficient condition of
Theorem 3 with the decoupling indices d;=2

and d,=3. The graph-theoretic decoupling

technique is used in Carnimeo et al (1992) to
synthesise the controller. Moreover, we utilize
the non singular transformation matrix T to
carry the system (A, B, C) in its decoupling
canonical form:

e ]
3cA
BCAZ
T=H=| ‘c, |= (90a)
i
4CA2
‘ca |

L
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U (m vertices)

fromx,M
}
from X ., .
a -1
- % ;1 (m; vertices)
o o o e 0
23 P
e xu_z (m; VM)
ln_l
wal

Figure 3. The Digraph 8(A,BG,C) of the System (A,B,C) Equivalent to §(A,BG,C).
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[ o

1
0

0

0
1

1

0068 08 0730
3160 0117 -9638

0
0

8381 0601 266158
| 74741 593584 37256 15409 —67L745

-1200

0

0058

0
0
0

0 0

0 0
2401 578A

0 0

0 0

62832 0

0

0
0

0
0
0
0

a2 832

(90b)

Under the transformation x = T x , vector X is
partitioned as follows:

1=
Il

X390
X31
X33
X40
X4

X42

X43 ]

oD

Since m;=m,=1, each subvector in right hand

size of equation (91) is just a scalar; i.e.

..£4'3 -

X30
X3
X33
X4
X471

X4

X
X,
X3
X4
X5

Xe

%7 ]

92)

The transformation modifies the original triple
(A, B, C) to the following triple (A,B,C):

p {433 ﬁu}: ©3)
Ay Ay
0 1 o o o 0 0
0 0 1 o 0 0 0
-730 -1051 -71 }63 34 3 0
=0 o 0o p 1 0 0
0 0 0 P o0 1 0
0 0 0 o o 0 1
26616-5323 266 [-8389 -1747 -198 -21

) .
0 0
23158 0
§=[B‘1|= R (94)
B, | 0 0
0 0
0 0
| 0 1571
c-[c, q]{l 00 000 0} ©5)
= e 0G0 1000

Considering the digraph a(A, B, C) shown in
Figure 6, the following vertex subset can be
derived:

Vi={x) X5 X5} Vo={%y X5 Xg, X5}

SV2 ={§7}

We can verify that conditions required by
Theorems 1 and 2 hold true. Hence, solving the
corresponding equations (27a,b), matrix F can
be obtained:

Syvi= {13}

0 0 0 0027 -0015 -0001 O
F= (96)
— 1659442 33888 1694 O 0 0 0

Finally, matrix F = F T is given by:

_jom -002 @@ 0 -0 0 0001 ©7)
T|-M88 106 D2BT 00 408 98097 0

6. Conclusions

This paper proposes a method for overcoming
the limitations of the graph-theoretic approach
to the decoupling problem, introduced by
Reinschke. We prove that any system which can
be decoupled by state feedback controller, can
be reduced in a canonical form, with a
representative digraph that enjoys the required
properties. So, a state feedback control law can
easily be derived to decoupling the transformed
system. A numerical example applies the
approach to a system consisting of a round rotor
synchronous machine. The example shows that
the method is effective and simple in its
application.
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D

i

Figure 4. One-Line Diagram of the Studied System.

Y1 Y2

Figure 5. The Open Loop Digraph g(A,B,C).
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é Y1 Y2

Figure 6. The Digraph §(A,B,C) of the Transformed System (A,B,C).
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Appendices

Al. Algorithm to determine V; subsets

Step 1: Set k=1 and determine Vi(k) as the set
of state vertices adjacent to vertex y;.

Step 2: Determine Vi(kﬂ) as the set containing
Vi(k) and all the state nodes adjacent to some
non input-adjacent vertices from Vi(k).

step3: If V& D=v.® put v=v®) and

STOP; otherwise put k=k+1 and go back to Step
2.

A2. List of symbols and system data

\A generator terminal voltage, p.u.

Vy, infinite busbar voltage, p.u.

) rotor angle with respect to infinite
busbar, rad

fo rated frequency = 60 Hz

o rotor speed, rad/sec

inertia constant, s

P mechanical power, p.u.
Eq generator field voltage, p.u.

X reactance, p.u.

X total reactance between generator
terminals and infinite busbar, p.u.

P,Q  active and reactive power at generator
terminals, p.u.

D damping coefficient, p.u. MWs/rad

s open circuit time constant, s

4 steam-valve position, p.u.

66 Studies in Informatics and Control, Vol.5, No.1, March 1996



Tg governor time constant, s

Tch steam chest time constant, s

Te, Ty exciter/regulator time constant, s

The system data are listed in the following (in
p-u. unless other units are indicated):

P=0.6 ; Q=0.3; Y=l

xd=l.6 i x'd=0.32 : xq=1.55 1 X =155

H=3s;D=0.011 p.u. MWs/rad ;
T'do =5s ; X = 0.163 ;

Kg=50; Tg=0.05s ; Egy . = 4.6, Egyr = -4.6;
Ki=8; T;=0.02s;

FHP=1 ;Tch=0.ls;

Kg=2.5; T5=0.1.

All p.u. values have been referred to a 100
MVA base.
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