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Abstract: This paper deals with the flow line con-
trol using the perturbation analysis approach. The per-
turbed system is analysed in order todetermine the per-
turbation propagation rules under the deterministic sirn-
ilarity assumption.

The second part focuses on carrying out a local search
based method, to obtain a new jobs' sequencing when
control deviation in real time becomes intolerable. This
adaptive procedure is based on a simulated annealing
method.

The last part concerns the robustness of scheduling poli-
cies. The expected delay due to disruptions is analysed
for some particular situations, and an application to the
exponentially distributed duration of the disruption is
considered for illustration.
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1 Introduction
1.1 Motivation

The complexity of manufacturing, traffic and
computer systems has given an increasing im-
portance to the investigation of discrete event
systems [9, 19].

This paper deals with short-term production
scheduling of the flow line cells which are par-
ticularly interesting in practice and have been
broadly discussed in the literature.

However, for almost all these purposes only the
cases where the intermediate buffer sizes are ei-
ther all infinite or all null have been considered,
although in industrial production the amount of
available buffer storage has an important influ-
ence on the performance of the system.

A new heuristic method will be presented in
order to determine a near optimal solution for
the flow shop problem with finite capacity stor-
age alming to minimize the maximum jobs late-
ness criterion. Nevertheless, in production en-

Studies in Informatics and Control, Vol.5, No.1, March 1996

vironment random events usually challenge any
static solution, without considering the dynamic
behaviour of the system, with the scheduling
initially drawn up rapidly becoming useless.
Therefore, to bring out a realistic solution we
are incited to analyse perturbation propagation
over the production line.

After all, the robustness of a scheduling policy
represents the expected delay associated with an
objective function due to disruptions. Although
such property is important for on-line control, it
is rarely considered in the literature on produc-
tion scheduling. Given the nature of discrete
event systems, only some particular cases are
analysed in order to give basic notions and re-
sults about the robustness property of schedul-
ing policies.

1.2 Notion of Perturbation Analysis

Perturbation Analysis (PA) is a recent technique
applied in the area of discrete event dynamic
systems; it has been developed for the gradi-
ent estimation of performance measures with
respect to some system control variables. PA
requires only knowledge of the nominal sample
path, therefore it is complementary to any ex-
isting simulation [20, 12, 13].

An interesting application of PA isin the on-line
monitoring of systems operations, since we can
calculate sensitivities of the performance mea-
sure with respect to the system parameters in
real time. This feature is reminiscent of “neigh-
bouring optimal control” ideas in control the-
ory where corrective action for a system can be
taken based on an observed or estimated pertur-
bation of a nominal trajectory [20, 4, 10, 11].
The change of a system control is called pertur-
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bation and the new trajectory is called perturbed
path.

The discrete system for production scheduling
purpose is represented by means of a Gantt
chart.

Our first objective is to carry out a provisional
solution for the flow shop scheduling problem
under static conditions and then to look for the
perturbation propagation rules in order to pre-
dict effects due to the operation times changing;
this will permit to reduce delays with respect to
jobs’ due dates.

The second objective consists in determining
a new production scheduling more suitable for
the perturbed system when some variables go
beyond their associated bounds, and also in
analysing the scheduling robustness.

The remainder of this paper is arranged as fol-
lows: in the next section, we present the flow
shop scheduling problem and give its general
mathematical formulation. A heuristic method
is proposed and illustrated on some applications.
In the third section, the perturbed system is
analysed in order to carry out the perturbation
propagation rules under the deterministic sim-
ilarity assumption. In the fourth part, a sim-
ulated annealing based method is proposed in
order to determine a new jobs sequencing tak-
ing into account the accumulated perturbations
and alming to minimize the maximum jobs late-
The last part focuses on the scheduling robust-
ness analysis for some particular situations he-
cause of the complexity of the discrete event sys-
tems due to their nature.

2 Problem Description

Let there be a set N of n jobs simuitaneously
available J; ¢ = 1,2,...,n to be processed on
m machines M; j=1,2,...,m in the same or-
der of processing, with processing times p(i, j).
We assume that each job has a due date de-
noted d(i). The set-up and shut down times are
sequence-independent and so they are included
In processing times.

There is a buffer B; of some known finite ca-
pacity designated by b; between machines M;
and Mj 415 = 1,2,...,m — 1. b; is interpreted
as the maximum number of jobs that can be in
the buffer at the same time. We allow the ma-

chine to be used for storage, therefore it will be
blocked until at least one job leaves its down-
stream buffer (Figure 1).

B Bm.-1
—— N’
<h < bt

Figure 1: Production Line with Limited
Buffer Capacities, of m Machines

The transport time from a machine (resp.
buffer) to its downstream buffer (resp. ma-
chine) 1s negligible. In the multistage flow shop
scheduling (m > 3), it appears that the assump-
tion of preservation of the job sequence on ma-
chines is made for convenience, e.g. to reduce
the number of feasible schedules from (n!)™ to
n!. Such assumption literally renders the prob-
lem unsolvable for any practical purposes. A
study by Heller (1960), has however revealed
evidence that the assumption may not only be
convenient, but also may often produce near op-
timal solutions [7].

The objective of the problem is therefore to de-
termine a jobs sequencing o fulfilling the above
constraints and minimizing the maximum jobs
lateness criterion.

o ic internrotad ac tha identity of the job se-
quenced at the 5** position, and the job lateness
equals its completion time (upon the last ma-
chine) minus its due date. Setting that S(¢,7)
(resp. T'(7,)) is the starting (resp. ending) time
of the job J; on the machine M;.

Since no interruption of processing on a machine
is allowed, S(o;,j) and T{ey, j) are connected
via

T(o:,j) = S(o:,5) +ploi,j) Vi, j

The classical computation formula for the ear-
liest start of J; on M; if no buffer storage con-
straint is taken into account is :

1), T{oi-1,5)} Vi,j

If limited buffer storage is taken into account,
then 1t 1s also necessary that job J;_; should
be able to leave M;, and this is guaranteed if
the job J;_p,_1 has left the buffer behind M;
[17, 18, 15).

S(ri,7) = max{T(o;,j —
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Therefore, for our purpose, the departure
times T™* are defined by :  Vi,j

T*(04,j) = max{T(oy, j), S(oi-p;-1,] + 1)}

and the starting times then hold :
S(0i,7) = maz{T(os,j — 1), T(0:-1,7),
S{oin-rsd 13} Y4

According to the previous considerations, a so-
lution o is determined by the following system :

minyex maxieN{T(0i-1,j) — d(o:)}
s.C.

S(U‘-,j) = ma:c{T(a;,j - 1),T(O‘g_1,j),
S(eis,-1, i+ 1)} Vig o
T*(0i,3) = S(oi,3) + ploi, j) Vi)

The connection of this model with the flow
line manufacturing systems enables to gradually
approximate the bounds of starting times and
therefore to produce a near optimal solution for
the problem.

3 Heuristic Method for the Flow
Shop Scheduling Problem

In order to simplify the previous modelling, vari-
ables T* can be removed and the previous sys-
tem turns to be:

mingey maxien{5(i-1,7) + p(oi-1,7)

—d(o;)}s.c.

S(o:,j) = maz{S(oi,j — 1)+ ples, i — 1),
S [ses1e) LB
S(oi-p;—1,4+ 1)} Vi j (1)

The problem consists in determining a sequence
o and starting times S{o ,.) for all the jobs on
one machine, such that the maximum lateness
is minimized.

Suppose that an optimal sequence is available
and denoted by o*.

Then the corresponding maximum lateness is
determined via :

L. =max{S(s7,m) + p(o],m) — ()} (2
Now, let us set d*(o7, j) the latest ending time
of the job J; on machine M;, with respect to the
maximum lateness L* _.in other words :

max

S(e7,j) < d*(a].7) — p(o7, 5) (3)
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We denote this upper bound F(a},j).
F(o7,4) = d"(07,5) = p(07, )

It is important in this formula to point out that
the upper bound depends only on parameters
associated with the jobs sequenced after J;, be-
cause d*(o;,j) depends on d(o;) (related to the
last machine M,,) and the intermediate ma-
chines 1Mj+1, v wy Mm«-lv

This remark is important as it will enable us to
gradually determine the sequence starting from
its last job.

3.1 Flow Line Models

In this section, we present some general issues
in the analysis of production lines with limited
capacity storage.

Manufacturing flow line systems consist of ma-
terial, work areas, and storage areas. Each job
visits each work and storage exactly once in a
fixed sequence.

Material flows from work area to storage area to
work area. Storage areas can hold only a finite
amount of material. Since the buffers have finite
capacity, blocking may occur. Different types of
blocking mechanisms are of interest : blocking
after service (BAS) occurs if, at the instant of
completion of a part on machine M;, the down-
stream buffer is full. During this time the ma-
chine is prevented from working and is said to
be blocked. When a space becomes available in
the downstream buffer, the part is immediately
transferred and the machine can start process
another part, if any [5, 8].

Blocking before service (BBS) occurs if a ma-
chine can start process a part only if there is a
space available in the downstream buffer. Oth-
erwise it has to wait until a space gets available.
A machine M; is said to be blocked when buffer
B; is full.

For our purpose we only consider the BAS case
also called production blocking.

Thus, when a machine is blocked, it is prevented
from working. A machine may also be prevented
from working because it has no material to work
on. This phenomenon is starvation. It corre-
sponds in the case of production blocking to the
situation where the upstream buffer is empty
(Figure 2).
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Figure 2: Mean Operation Time Ten-
dency Over a Production Line

In the context of flow shop scheduling, these two
phenomena involve gaps between ending time of
ajob and starting time of the next one even with
respect to no idle scheduling policy.

By means of the Gantt diagran, we would like
first to analyse the limit behaviour of the system
wherein all jobs are considered to be identical,
and considering the mean processing time asso-
ciated with a machine M; defined as:

n
ag i : 5 2
p(J):;Zp(z,J) i=42,...,m
i=1

A steady state is indeed equivalent tc the system
behaviour if all its buffers were null [1, 2].
Nevertheless, the effect of the intermediate ca-
pacity storage appears 'n the length of the tran-
sient state and the increasing fashion of the gaps
values before reaching the steady state (if there
are enough jobs).

However, within the transient state, it is more
difficult to determine analytically the gaps evo-
lution in time (Figure 3).

To achieve this, we used a simulation ap-
proach, and applying the initial flow shop for-
mula, jobs sequence is obviously useless here
(jobs are identical), the gaps are determined by
means of the obtained processing times. Finally,
we have at our disposal a set of m gaps functions
depending on the time, but it 1s more suitable
to define them with respect to the jobs ranks,

transient state

M; e T e N e O e SO e R e O e I e O e R e I e i
By

steady state
M2 [ I 1 | 1 T I T I T T S — |
B1 I_I l__]

Mityr—rroTT 1T o

transient state  steady stafe

Figure 3: Gaps Evolving in Transient and
Steady State

that 1s :

G(k, j) 2 e PP TR R 1 e [

3.2 Starting Time Bounds

In the rest we assume that, with respect to a
given machine, the variance of the job process-
ing times is limited by a constant upper bound
¢ (which will be discussed later).

Under this assumption, the lower bound of start-
ing times will be determined supposing that all
jobs not already scheduled must pass before it
(see Figure 4] :

=1 i—1
r(os,3) = > (1) + > _[p(ow, §) + G(k, j)]
=1 k=1
N e S 1B
i=12,...,m

plo1,3) G(1,2)

My oz s o R
B, = ——
Plo;,2)
M, ( 1 ]
By [:l] inventory level
My Moa,#) |
r(ei,3) t
Figure 4: Lower Bound for Starting

Times via the Gantt Chart

To determine an approximation of the latest
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ending times used in the upper bound F' intro-

duced at the beginning of this section, let us

turn back to the relationship (2) : if we set :
d*(o;,m) =d(o;) + L

max

the following equation holds :
T(oy,j) < d*(oi,m)

Thereafter, the initial problem turns into the
problem consisting of determining an admissi-
ble solution ¢* which respects all the new jobs
due dates d*(., m).

Regarding the rest of machines, the latest end-
ing times are approximated using the average
gaps G(.,.) as follows :

d‘(dilj) = min{d*(o‘i+1,j)—p(ag+1,j)—G'(i,j),
d* (i, m) =32l [p(oi, k) +G(i=1,k)]}
1=1,2,...n57=1,2,...,m—-1.
with
d*(ei,m) = d(o;) + L

maxr

T
But the variable L7, is not known yet. To over-
come this problem we use the dichotomy proce-
dure; firstly we consider the maximum lateness
« obtained during the simulation mentioned in
the last paragraph and we consider the interval
I=[a-|af,a+ ]

L} .. will ever be the mean value of this interval
( L},. = « here).

If the proposed algorithm (in the next section)
permits to carry out an admissible jobs sequenc-
ing ¢* then the next interval to test is / =
o = |al, a].

Otherwise, one considers I = [a, a + |a|] and so
on, until the interval length gets too small.
Once the value L7, _is fixed (for some iteration),
jobs are tested until finding one for which both
bounds are compatible to all machines, then it
is set at the end of the sequence o.

Afterwards, one seeks the previous job (in the
order n — 1) by determining both bounds of the
tested job which obviously differs from the al-
ready scheduled jobs. We check the remaining
jobs until finding one which fulfils the condition
for all machines. Therefore it will be scheduled
in the order n — 1 and so on.

We point out that this partial job sequencing is
not definitive, in fact, if the procedure is blocked
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at a certain step, previously ordered job will be
reviewed.

3.3 Proposed Algorithm

The proposed algorithm ought to involve an im-
portant computation time if the research of the
solution is not oriented.

In order to enhance this method, we suggest to
use an initial jobs sequencing based on the Mean
Slack Time (MST) priority rule :

m

AG@) =Y p(i,j) = d(i)

j=1

1 =015.25 cayn

Jobs are considered according to their priorities
given by X and starting by the last job in the
list made out.
This will be used at the beginning of the al-
gorithm, but in the following iterations (when
L7 .. is changed) we would rather have the solu-
tion made out in the last iteration wherein L* __
was successful.
However, the number of “turning backs” after a
blocking in the algorithm may become very im-
portant; for this reason it has been limited by a
certain bound which depends on the size of the
problem instance in order to bring about a so-
lution in a reasonable computation time.
Any iteration of the algorithm can be presented
as follows :
/*Next(Input : ¢, Qutput : o, ind) : its ob-
Jective is to make some order function on the set
of permutations of the jobs. Ii gives the permu-
tation obtained by a minimum switching starting
from the end of the sequence o and aiming to
change the content of si;, and ind is the indez
of the little rank changed in the new permuta-
tion. */
Next(Input : o, Output : o, ind)
ind=n-—1;
While Tind > Oind+1 do

ind = ind — 1
enddo
Determine ¢ € {ind + 1,...,n} such that :
mino.)o’,nd (Ji - Uind)
Permut (0,4, 0;).

Range (¢ing41,...,0,) in the increasing order.
end Next
Lemn; je—m; compt—0;



74

initial permutation o it /*determined according
to the above remarks*/
Sol_Adm « True;
Repeat
Repeat
Determine the
F(o,J);
J—i-}
Until (j < 0) or (r(e:,5) > F(04,5)) 5
if (j > 0) then
o +— Nezt(o,ind + 1);
i «— max{t,ind};
compt — compt + 1;
endif;

zUnd:zi.l (i < 0) or (compt > B)
if (: > 0) then

Sol_Adm « false;
endif;

bounds r(o;,7) and

e Applications

The performance evaluation of the proposed
methad is illustrated via one of several exam-
ples made with uniformly distributed processing
times.

The production line cons-
idered, is composed of 30 jobs and 15 ma-
chines , separated by buffers of capacities b =
(2,3,4,1,2,6,4,3,10,0,0,0,0,0).

The sub-systems FS(n, m, b™) consist of the n <
15 first jobs, the m < 15 first machines and their
rorresponding buffers sizes b™.

Jobs Ji,...,J, have to be processed on each
station, all the jobs must flow in the same order
and it is assumed that each job requires one unit
of storage capacity.

The due dates associated with the jobs are given
by :

d(i) = 100 + 10 ¢ =]y 2oy T

The performance criterion we considered is the
minimum of jobs maximum lateness.

For each sub-system FS(n,m,b™), 20 tests of
the problem are generated and every time the
obtained jobs sequence is collected.

In order to evaluate these resuits we have com-
pared them with a set of K arbitrary permuta-
tions (including the obtained one). We consid-
ered K = 1000 for n = 6 and K = 5000 for

n = 10, 15.

For every test the minimum of jobs maximum
lateness, the maximum one and also the mean
value of the K generated permutations, are de-
termined.

All the results are obtained using a PC DX2-66
and are summarised in Figures 5, 6 and 7 (7 rep-
resents the computing time).

The tests carried out show that our proposed al-
gorithm gives a relatively good soiution for the
flow shop problems with finite capacity storage.
The evaluation method may be considered, in
fact, as a procedure which aims to ameliorate
the obtained scheduling solution.

Moreover, the assumption related to the pro-
cessing times variance is not really restrictive,
therefore this method can be used even if the
operation times arc not close to each other.

4 Perturbation Propagation Rules

We denote by 5(oy,v) (resp. T(0y,v) ) the new
corresponding starting (resp. ending) time for
each job J,, u = 1,2,..,n and each machine
M,v =12, .. m We also denote by T*(0u,v)
the new departure time taking into account the
perturbation.

The relationships between variables S and T in
the flow shop problem with finite capacity stor-
age applied to the new variables can be written
as follows :

S(a’u, v) = n_'lax{f""‘(au, v—1),T"(0u-1,v)}
T(Uu; v) = S(oy, ”) +ﬁ(ﬂ'us_v)
T* (0, v) = max{T(cu,?), S(0u-s,-1,v + 1)}

where $(0y,v) is identical to p(oy,v) except
for (u,v) = (i,7) where we have p(oy,v) =
p(ow,v) + 6 ( 6 : perturbation duration).

For production scheduling the nominal path and
the perturbed path are represented by a Gantt
diagram. The perturbation corresponds in gen-
eral to the operation times’ variation [3].

This is illustrated by an example of a flow shop
with three machines and five jobs. The buffer
B; has one unit capacity storage and the buffer
B, is null. The perturbation occurs at the end
of the operation of the job J,, onto M3 and is
of amount A (see Figure 8).
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figure 8: Gantt Diagram for the Nominal
and Perturbed Path

With respect to a given machine M,, the pertur-
bation will take effect as a certain job denoted
uv which is already on it or will visit it after
some period of time [3].

: max{T (o, v — 1), T(0u-1,v))}
S(oy,v) =
S(oy,v)

otherwise

After the perturbation period (at the instant
T(o;,j)+) every machine M, of the production
line is in one of the following situations :

case 1: M, is blocked owing to the limitation
of the downstream buffer capacity. Let M.
be the machine which finishes the blocking
chain which contains M, and J,. the job
blocked on it, then this relationship holds :

Uy =i + by 4+ ..+ by + 0" =0

We point out that the finishing times as-
sociated with the blocked jobs are not
changed but their departure times may be
affected.

Taking into account the fact that
T o) s 74 (oi,7)+. it follows that :

75
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T*(O'u, U) = T*(Uun+l U + 1)

and consequently :

T*(Uu,v) =T"(oi+,0v")

case 2: M, is starved.
Let M,- be the machine which starts the
starving chain including M, and J,. the
next job which will visit it, then it is clear
that :
Uy = 4"

Taking into account
the fact that T*(oy,v) > T*(0i,j)+, the
following relationship holds :

S(UUU’U) = S(Uuu! v— 1) +p~(‘7uu!v - 1)

and consequently :

S(ou,,v) = S(oir,v*) + i, ploie, 1)

case 3: M, is neither blocked nor starved. The
perturbation may become effective as the
current job J, . on machine M,_;, if the
latter is affected by the perturbation, and
also if it meets a starving period on M,
(otherwise the perturbation is absorbed be-
fore M, ). Under these conditions, we have :

S(Cf:",b‘) = T(G’iv,b‘ = 1)

We have so far considered only delays in depar-
ture times but it is possible to bring out similar
rules if job operation finishes earlier than on the
nominal path.

Afterwards, without mentioning it, the deter-
ministic similarity assumption was ever used,
that 1s : All of the accumulated perturbations
of a trajectory are so small as not to change the
order of events between the nomina! and the per-
turbed trajectories. For our purpose, we use the
propagation rules in order to predict the evolu-
tion of the system on the perturbed path.

By means of the provisional maximum jobs late-
ness, we can obtain some bounds for the oper-
ations within the current solution considered as
acceptable and the deviation is tolerable.
Reyond these limits, we will be urged to look for
anew jobs’ sequencing more adapted to the new
situation.

5 Rescheduling Via A Local

Search Based Method

In the retained generalship here, one fixes the
number of landings p, and the number of tests
by landing q; this is to know precisely the num-
ber of explored configurations [6, 14].

The adopted decreasing procedure is a geomet-
rical decreasing. If we denote T,,T,_y,...,T}
the temperatures (where T, represents the ini-
tial temperature and T} the ending one), then
we have :

T = Q.ﬂ+1 = (X‘..Tj (Ct' < 1)
The coefficient « is determined as follows :
T
Bl R
o 7

@ = exp (log (Tp/Tl )/p)

At the maximal temperature one accepts with
a high probability 4, an important deteri-

oration 6, of the initial solution L} ..

At the ending temperature one accepts with a
weak probability 8; a little deterioration §;
of the initial solution.

The neighbouring configuration ¢V in our case is
then obtained by switching, in a given iteration,
two random jobs according to the simulated an-
nealing method.

The maximum lateness is carried out taking into
account simultaneously the current sequence
and the new tested one obtained by switching
jobs as mentioned above.

The initial solution is provided from the last

jobs’ sequencing : L7, .

Algorithm:

fix a parameter T at an elevated value (the
temperature), T' = T,

initial configuration : L2 _ = L*

mazr mazr
repeat:
for a given T, repeat a certain number of
time (= q) :
pllt. Oa = Oy, L:'m.t: = Lvmux

randomly generate a neighbouring config-
uration o, of the current one o,. put
ALpgy =LY .. — L®

maxr mazr
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accept o, as a new current configuration
with the probability :

1 if 6Lmar <0
P= exp ((Lma:r: - Lfﬁﬁtx) 6;.log ﬁl/a‘ 61)
otherwise

This heuristic method does not require an im-
portant computation time, the number of land-
ings (p) and of tests by landing (g) is determined
relative to the data size, the desired accuracy of
the solution and its computation time.

To illustrate this approach let us consider an ex-
ample of a production line with four machines
and eight jobs to be processed in the same order
of processing, the buffers are supposed null.

We consider the initial solution minimizing the
maximum job lateness, and thereafter a pertur-
bation is introduced in the processing time of
job Jy during its operation onto machine M;.

Figure 9: Variation of the Absorbed Per-
turbation Using the Simulated Annealing
Method

The duration of the perturbation is varied from
0 to 50 by a step of 5 unit time, and every time
the new maximum lateness given by the simu-
lated annealing method is collected.

The latter takes into account the old sequenc-
ing before the end of the operation Oy; and the
new sequencing (carried out by the simulated
annealing) after it on each machine.

Figure 9 presents the variation of the lateness
function and the amount of the perturbation ab-
sorbed by the new sequencing solution.

6 Scheduling Robustness Analysis

Consider a flow shop system with limited
buffers, and suppose that the jobs dispatch-
ing times are represented by a nxm-—matrix
5(i,5), i=1,...,n, j =1,...,m, the schedul-
ing criterion is given by the function f. If no
disruption occurs, this function is valued fo.
According to these notations, the variation 6(S)
of the objective function holds :

£(8) = fo(S5)

The scheduling robustness represents the ex-
pected variation of the objective function for a
random disruption characterized by two param-
eters : the density function of its duration g(7)
and the density function of its arrival time h(})
[16].

The delay function R(r, A) gives the value of the
scheduling criterion variation due to any disrup-
tion represented by (7,A) on a particular ma-
chine M; (Figure 10).

8(5) =

Figure 10: Delay Function With Respect
to the Lateness Criterion

The expected delay then holds :

o= [~ [

This robustness measure is related to a particu-
lar machine Mj, and in order to obtain a similar
measure for the scheduling solution on all the

R(7,X) g(7) h(A) d7 dA

Studies in Informatics and Control, Vol.5, No.1, March 1996

77



system, we need combine the partial obtained
solutions. This procedure is not discussed in
this paper.

Definition 1

Let f be a regular scheduling criterion and R
its associaled delay function. The scheduling so-
lution is represented by the matriz S.
Then, the margin corresponding fo the lask of
the job J; on machine M; is given by :

er(i,j) = I;leagca

with
U={aeR tg R((i)—a)=R(0) )

In order to analyse the scheduling robustness,
let us consider two particular cases :
e )\ = )\ constant :

We suppose that the perturbation duration is
fixed, but its arrival time 1s a randomly dis-
tributed variable according to the density func-
tion g(7).

For the maximum lateness criterion, the delay
function R depends on the starting times, and
is formulated according to a given machine M;
as follows :

R(m, \)=r+X~-5;(i,j)—es(i,j) for 7 € [a;, b;]
with
S¢(i,7) : starting time of the operation of job 1
on M; with respect to the criterion f.
a; = max{S(%,5) + ez (i, 7),

Spli —1,4) + p(i - 1,5}}
bi = Sy(1,7) + pld, §) + s (3, 5)
The definition of the operation margin, in this
case, is illustrated in Figure 11.

gAUR) S+ pd) +epind)
1Sy (i, ) + es (i, 4)

!

i
Sp(i - 1,5+ pli—1,7)

Se(i—1,5)

Figure 11: Task Margin of O;; with Re-
spect to the Lateness Criterion
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A simple form of the robustness measure then
holds :

Bl =Y [

ienNY =0

E/): h(R)idA ] :R(T, X)g(r)dr
= r=a,

by
/= R(7,X) g(7) h(X) dT d)

tEN.

E[5(S)]) = Tien Joia, R(7,X) g(7) dr

where N is the set of operations on machine Mj.

R(7,X)

|/\/14/1_

T

Figure 12: Delay Function with Constant
Perturbation Duration

e 7 = T constant :

In this situation, the arrival tume is supposed to
be a constant. If one considers a given machine
Mj, the latter date corresponds in fact to a par-
ticular operation of a certain job ¢".

In order to determine the expected delay due
to this disruption, it is important to distinguish
two subcases, depending on whether the dura-
tion of the disruption is greater than the opera-
tion margin of O;. ;.

(1) 0 < X < ep(d*,7):
pletely absorbed.

the disruption is com-

(il) A > eg(¢*, ) : there is an effective delay
according to the original solution.

[e0]

BB = [ atndr [ R )

=0 JA=0

1
i
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Taking into account the definition of the opera-
tion margin, the expected delay can be written
simply as the following form :

E[6(S)] = [z, v 1y BT, X) B(X) dA

For the makespan criterion, the delay function
has a linear form for A > ef(i*,j) as indicated
in Figure 12.

ef(*,3)

Figure 13: Delay Function with Constant
Perturbation Arrival Time

Application

Let us consider a delay function R represented
in Figure 14, wherein the duration of the dis-
ruption is a constant A = 4.
The variation of the function r with respect to
the arrival time 7 over the scheduling horizon
[0,12].
The scheduling robustness measure is expressed
as follows :
12 _
E[6(9)] = R(r, A) g(r) dT
=0
One supposes that the density function g of the
disruption is an exponentiel distribution of mean
w (exp(l/w)). B
The function E(r, A) g(7) is represented in Fig-
ure 15 for some values of w. The latter
shows that when the parameter w increases,
R(r,X) g(7) gradually becomes close to the form
of R(r,X) and g(r) looks as a constant function.

Studies in Informatics and Control, Vol.5, No.1, March 1996

Figure 14: Delay Function R(r,)) with
Constant Duration of the Disruption

wal w2
0.15 0.2
o -
e 91 o
§ .§a.:
3 0.05] 5
0 0
(] 5 10 ] 5 10
time time
wab w=10
0.2, 0.2
o o
-4 o
gm 0.1
5

Figure 15: Function R(t,X)g(r) for w =
1,2,5,10

0.8

[y 4

o8r

0.5

Robustness measute

04l

03r

Figure 16: Variation of the Robustness
Measure With Respect to w
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The variation of the robustness measure with
respect to the parameter of the density func-
tion w in Figure 16 shows that the scheduling
policy which the delay function R(r, ) is as-
sociated with reaches its worst robustness (i.e.
max, E[o(S)]) for a disruption with density
function exp(l/wp) with we = 5.2 .

7 Conclusion

The purpose of this paper concerns the flow line
systems with disturbances. A solution method-
ology is proposed to resolve the scheduling prob-
lem under static conditions. The simulations
show the results effectiveness.

Under the deterministic similarity assumption
between the sample and perturbed path, the
rules of perturbation propagation were pointed
out.

All the mentioned rules are simple and need
no significant computing time. This fact is im-
portant because otherwise the system evolution
may be stopped.

In addition when the perturbation becomes
more and more important, we are able to de-
termine at what time the sequence ought to be
reviewed.

The new solution is carried out by means of
a simulated annealing based method. Its as-
sociated computing time is relatively weak and
therefore suitable for on-line control of the sys-
tem.

The robustness property of scheduling policies
due to disruptions is analysed, the latter con-
sists of examining the delay function R(T, A) as-
sociated with the problem for a simple disrup-
tion characterized by its duration g(7) and its
arrival time h(A).

Because of the complication of the robustness
measure expression for the discrete systems, we
just studied this property for only one of two
parameters (duration or arrival time}.

An exponentially distributed duration of the dis-
ruption is considered for illustration.
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