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‘Abstract: In this paper an expert (knowledge-based)
decision support system (KBDSS) architecture is presented
which is then specialized to the generalized network (GN)
domain. The resulting KBDSS developed by the authors and
called GENETEXP is actually useful for decision making in
real problems that may be put in the GN form and need
additional higher level expertise. Some results in the
optimized transportation planning area are included to
illustrate the functioning and usefulness of the KBDSS.

1. Introduction

Techniques from the disciplines of operational
research (OR), decision analysis (DA) and
artificial intelligence (AT) have been extensively
investigated over the years and recently used in
the development of computerized decision aids.
Such systems alone have been found to have
significant limitations in handling practical
problems. Conventional decision support systems
(DSS) are usually built around prescriptive
models which however are very rigid and do not
have the required flexibility. On the other hand
Al/knowledge-based systems (KBS) tools show a
lack of established techniques for problem
structuring and knowledge acquisition.The Al
and DSS fields currently draw attention of many
workers  to the end of integrating and unifying
such techniques and tools. The ultimate goal is to
beneficially employ the problem structuring
aspects of OR/DSS and the incrementally
modifiable properties found in AI/KBS tools.
Several  conceptual, methodological and
implementation issues along this path of
DSS/KBS integration can be found in [1-6].

In this paper a general architecture of integrated
KBS-DSS (or KBDSS) is presented and its main
properties and requirements are discussed. Then
a new generalized network (GN) - based
software tool (the GENETEXP) developed by the
authors is briefly described. GENETEXP is
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actually an integrated knowledge-based software
environment for decision- making in practical
problems that are dominated by a GN model. The
tool is under further development particularly in
the direction of enhancing the capabilities of its
knowledge-based component. For completeness a
brief overview of the major GN algorithms
developed over the years (Jewell's algorithm, a
dual algorithm, relaxation algorithm) and
incorporated in our KBDSS is provided.

2. A General Architecture for Knowledge
Based Decision Support Systems

According to Elam et al [7] a conventional DSS
consists of four basic components, namely:
control subsystem, data subsystem, model
subsystem and report subsystem (Figure 1).
The functioning of each one of them is as
follows:

CONTROL SUBSYSTEM : This subsystem
connects the data, model and report subsystems,
and provides the primary user interface for
system operation. The user sends via this
interface appropriate instructions to be carried
out by the DSS in order to perform a particular
decision analysis. The control subsystem should
be able to consult each of the other subsystems,
as necessary, to meet the user's request(s) in
addition to satisfying the job step and file
manipulation requirements of the host computers.
Actually, the control subsystem frees the decision
maker from the requirement of mastering any
operating procedures of his’her computer(s). He
(she) has only to understand the problem
situation and analysis procedures.

The design of the user interface is of primary
importance. It should consist of a set of high

343



level, English-like language statements which can
be used to produce the instructions about
carrying out a certain analysis in accordance with
the manager's conceptualization of the problem
situation.

DATA SUBSYSTEM : This subsystem
organizes and maintains all the data needed for
the implementation and operation of the KB
decision support system (KBDSS). It should
involve

- data definition (specification and organization
of the data items)

- data query (to retrieve data items from the
database)

- data manipulation (to update or review data
items for an alternative scenario analysis)

A database management system can be used to
efficiently perform the above tasks.

MODEL SUBSYSTEM : This subsystem
enables the KBDSS to consider all relevant
processes/activities in an integrated way. This is
done by quantifying the combined impact over a
planning horizon of resource restrictions, costs,
management policies, and market conditions on
alternative logistical tactics, etc. The model
subsystem involves two particular functions:

- model definition and generation

- model solution, to determine the recommended
supply, movement and storage plan.

The model should exhibit the appropriate degree
of realism (with regard to the planning
objectives) and also be understandable.

REPORT SUBSYSTEM : This is an important
link in the communication process between the
model subsystem and the users of the KBDSS.
The report subsystem accesses the basic data and
model solutions, which became a part of the
database. From these data, it generates the set of
reports specified by the user. Report facility
options include printed copy, CRT copy, printed
graphics, and CRT graphics.

The DSS architecture described above can now
be generalized by adding a knowledge-based
subsystem as shown in Figure 1. This subsystem
employs Al/expert system techniques and
enhances management support by incorporating
into the system the knowledge of analysis,
decision- makers, and experts in the field.

It involves the following principal functions:
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- Input data analysis (to analyze, verify and
modify the data which support the system)

- Parameter changes (to automate tactical what-if
analysis by resetting certain parameters of the
model or to set parameters based on logical
conditions). Parametric changes may be used to
study the sensitivity of the optimal solution to
changes in the data values.

- Post- optimality analysis (to extract key
information from the model solution and from
several reports in order to facilitate evaluation of
the model proposal).

The overall knowledge-based decision support
system (KBDSS) architecture of Figure 1 can
also be cast in the structure of the KBDSS
proposed in [8] where three principal
components are considered, namely a language
system (LS), a knowledge system (KS) and a
problem processing system (PPS) (Figure 2).
The language system is the total of the linguistic
facilities made available to the decision maker by
the DSS, and plays the role of a vehicle that
allows that the decision- maker or user conveys
information to the DSS. The user put his (her)
problem to the DSS via the LS, and in addition
the LS is a two -way avenue through which the
decision maker and the PPS can interact. In the
architecture shown in Figurel the LS consists of
the control subsystem, data subsystem and
(partly) the report subsystem. The syntactic and
semantic rules of a LS determine the allowable
problem statements that can actually be posed to
the DSS. All languages from fully procedural to
fully non procedural (i.e. AI) languages can
possibly be used according to the particular
nature of the problem(s) domain the KBDSS is to
be used in. A natural language is ideal from the
user's point of view but a full natural language
(such as English) is difficult to parse because of
its context-sensitive characteristics. Several
research studies are currently conducted in this
important area for the next generation KBDSS[9-
11].
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Figure 1. General Architecture of Knowledge-based Decision Support System
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The knowledge system (KS) provides all
required facilities for the representation and
organization of knowledge. Several knowledge
representation methods can be used here
(predicate calculus, AI production systems, rules,
objects, etc.). Very frequently it is desirable to
use in an integrated way more than one
knowledge representation method combined with
( relational, hierarchical or network type)database
systems.

USER

A

3. The GENETEXP Tool

GENETEXP is a tool for analyzing GN
problems within generalized decision making
environment. With this package, any problem
that has the mathematical formulation (1) can be
modelled and analyzed. Actually, the problems to
be treated with GENETEXP are of a broader
scope than the one stated in (1), as it can deal
with boundary condition constraints of inequality
type, i.e. the nonzero supply for a given node can
be specified either as a resource

PROBLEM
LANGUAGE | | PROCESSING |,__,| KNOWLEDGE
SYSTEM (LS) SYSTEM (PPS) SYSTEM (KS)

Figure2. An Alternative Structure of KBDSS

The problem processing system (PPS) (i.c. the
model subsystem in Figure 1) is the formal
specification of the DSS, behaviour patterns, and
must be capable of recognizing problems by
transforming problem statements into suitable
executable plans of action which, when executed,
yield a solution to the problem. If a model is
specified or selected by the user, then there is no
need for the PPS to recognize the modelling
problem. But if the PPS has itself to select or
formulate the model, a highly sophisticated
problem recognition facility must be incorporated
into the PPS. An additional important PPS ability
is that of analysis i.e. the process of interfacing
models with data in order to generate assertions.
Some useful ways of implementing a PPS can be
found in [12-14].
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to be compulsorily conveyed through network,
or as the available quantity of the resources
considered. In the same way, the value of a
demand can be considered either as a specified
requirement to be met, or as a minimum of the
required quantity. The  architecture of
GENETEXP is as shown in Figure 1. The user
controls the execution of the program
interactively, by selecting among the "active”
options of a hierarchically organized menu. The
structure of the menu, accompanied by a brief
description of each of its functions, is given in
Figure 3. The routines implementing the
mathematical algorithms necessary for the
solution of the model are aggregated into the
Model Subsystem. The role of the Data and
Report subsystems is self-explanatory. Care has
been taken so that the program is user-friendly
and robust to any user’s mistypings.
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GENETEXP is the outcome of the integration of
GENET OPTIMIZER (a previous pure numeric
GN-DSS package [21]) with an expert system
shell developed at NTVA and used extensively
for engine fault diagnosis (ENGEXP) and
medical therapeutic treatment (BIOEXP) [22-
23]. The package was developed in PASCAL
under DOS on an IBM-PC compatible with
sufficient memory to support the model's data
and knowledge structure. A number of
experiential rules have been accommodated to
the knowledge base for heuristic (expert based)
post optimization analysis. Work is under
development by the authors to incorporate into
the knowledge base subsystem fully heuristic
models accompanied by user-decision maker
preferential rules. This is done in co-operation
with European-level supply-distribution chain.
The system will then be capable of evaluating the
solutions and use the one that satisfies not only
numerical but also other experiential preferential
requirements.

4, Brief Review of GN Algorithms

4,1 Statement of the GN Optimal Flow
Problem

A network is defined by a set V of
vertices/nodes i and a set B of directed
branches (i,j) which is a subset of VxV. With
every branch we associate a non negative flow Xj;
running through it, the accepted interval (L; ,
M,) for the flow values, the cost C;; for every unit
of flow transferred through the branch, and a
gain/multiplier K;, which modifies the incoming
flow X, to the outgoing K, -X; Nodes are
classified as 1) supply nodes, where positive flow
S, is input into the network, ii) demand nodes,
where flow D, leaves that network, and iii)
transshipment nodes, where branch-flow
running into the node balances the branch-flow
running out of it.

A pictorial representation of the above notions
has been established in order to facilitate network
modelling, the NETFORM presentation. A
typical branch in this representation looks like
that of Figure 4. In this Figure, the representation
of modal supply and demand is also given.
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The mathematical statement of the problem
results directly from its verbal expression and the
parameter definitions given above. It reduces to
the following Linear Programming (LP) problem:

min C:Z(i,J)eBC{;‘Xy (a)
sbj. 10 2 yeBXy—KjiX;i)=8;-D;, ieV
(®) (1)

Li < X; £ M, ())eB (©

ij ij
The A-matrix of this linear problem has the
special property that at most only two entries in
each column are non-zero; in fact, this remark
constitutes the principal criterion for the
identification of a GN structure. By scaling
and/or complementing to variable's upper bounds
the matrix and right-hand-side coefficients, it is
always possible to make one of the non-zero
entries of each column equal to-1. Taking the
corresponding node to be the branch start, the
other coefficient is equal to the branch-gain.

Usually, the constraint I-ij < Xij in
formulation (1) is handled by setting
X,=X,-L, and transforming problem (1)

into another one in variables
X{J ’ 0 B X:J < MI} _Li}' and with the
right-hand-side vector appropriately modified. In
what follows, we assume that this transformation
has taken place although we use unprimed
symbols.

4.2 Solution Algorithms

Since problem (1) is a LP program, it can be
treated by the Simplex method in any of its
variations. This method is established by the
Jfundamental theorem of Linear Programming,
and constitutes a systematic searching among the
set of basic solutions (i.e. solutions in which the
number of variables with a non-zero value is
equal to the rank of the A-matrix) for the optimal
one (i.e. the one that satisfies (1a)). However, the
special structure of the A-matrix gives rise to the
following theorem concerning the basis topology:
Theorem: Any subset B, of B spanning all
vertices V constitutes a basis if and only if it
consists of a number of components of
connectivity with each component having only
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Figure 4. NETFORM Presentation

one loop in it and the loop-gain is different from
unity.

The loop-gain is related to a direction of
transversion and it is defined as the product of
gains of the branches transversed in the direct
sense divided by the product of gains of the
branches transversed in the reverse sense. A loop
with gains equal to unity is said to be degenerate.
The conceptualization of the problem structure
and its primary features has led to the
development of specialized algorithms for its
solution. According to these approaches, data
structures are suggested by the GN concepts and
the underlying topologies, while computations
make explicit use of these concepts and are
related directly to their schemes. Even though the
developed algorithms are tailored to the GN
structure, they depart from the Simplex method
and make extensive use of the relevant theory of
their validation. Thus, they can be classified as
Primal, Dual, and Primal-Dual, in a similar
fashion. Primal and Primal-Dual algorithms
appear to be the most efficient ones, while it is
established that duality and dual methods are
most appropriate  when it comes to post-
optimality aspects. During the past thirty years, a
variety of algorithms belonging to the above
three categories has been developed. Some of
them treat the problem to its general formulation,
while some others are adapted for the solution of
specific GN configurations. In [15-17] a citation
of the algorithms and codes developed until that
time (late "70s) is made. In what follows, a
Primal-Dual algorithm developed by Jewell in
1962 is firstly presented [18], while in
continuation, a dual algorithm developed by the
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authors [19], is discussed; finally, a more recent
approach, which has been developed by
Bertsekas and Tseng at MIT and is classified as a
relaxation method, is outlined [20].

4.3 Jewell's Algorithm
In relation to the problem (1), which is
characterized as the Primal problem, the Dual
problem is defined, in variables Uy , V,
(corresponding to the network branches and
nodes) as follows [18]:

maxc =2 y(S; -D;)V, - X a.neB M;Uj
sbj. to V, ‘Kijvj —Uij < Cij @)

V, unrestricted

To solve the problem by the algorithm
considered, it must be transformed into the
canonical form. The transformation is a  two-
step process: first, the least-flow constraints are
incorporated into the nodal boundary conditions,
and in continuation, artificial nodes and branches
appropriately capacitated are added, so that there
remains only one boundary node (condition). The
transformation technique is presented in Figure 5.

The transformed LP is:
minc=z{i'j)58CUXU

, Q. i=0
bj. 10 2 jey (X~ K X) = {o, i#0
(3)
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On generalizing the Ford and Fulkerson
techniques for pure networks, a restricted
Primal problem is formulated and solved at
every cycle of the algorithm. Specifically, by
stipulating non-negative costs, the algorithm is
initiated with a zero dual feasible solution and
zero network-flow; in this way, all of the
constraints in (3) are satisfied except for the
balance in the reduction of the non-feasibility of
the running network-flow, or in the resolution of
the problem's non-feasibility.

The formulation of the restricted Primal is as
follows:

max F

F,,i=
sbj. to ZJEV(XU—KJ‘X_H):{ S’ - (4)

0 < X <M

i for vV, - I(u-‘\f’j = Cij

0=X; forV,-K;V;(Cy

Xg= M:J for V, - K;V; v

It is obvious that (4) constitutes a maximal-flow
problem for an appropriately specified part of the
original network. To solve this problem, the
notions of the generating and absorbing loops
are exploited; it is demonstrable that a loop with
loop-gain greater than unity can operate as a
source of flow for the entire network, while a
loop-gain less than unity can operate as a sink.
Thus, the maximal-flow routine is reduced to the
identification of the absorbing structures of the
restricted network, and the determination of the
maximal-flow they can absorb, in an incremental
mode. This is done through a labelling and
relabelling procedure which uses the spanning-
tree concept.

At every iteration, once the restricted Primal has

FLOW=Q1

R Y
>

Q2<FLOW<Q3

ORIGINAL NETWORK

FLOW=Q4

Q5<FLOW<Q6

(a) Original network with mixed input-output conditions

M=Q1
Input-Flow Q

Q=0Q1+Q2+Q4+Q5 M=Q2

i,
V

M=Q3-Q2

M=Q4
ORIGINAL
NETWORK
M=Q5
M=Q6-Q5

(b) Canonical form of network (a)

Figure 5.
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been solved without reaching optimality, an
improved dual solution is computed, which in
turn leads to a new restricted Primal. As the
inspirer of the algorithm remarks, its efficiency is
partly due to the fact that most of the network-
type problems are loosely constrained, so that
cost consideration (duality concepts) while trying
to establish a feasible network-flow, is the
dominant factor in obtaining optimality.

4.4 A Dual Algorithm

The relation of the primal and dual problem
formulations, presented in (1) and (2)
respectively, is given by the Duality theorem
which states that if there exists a finite optimum
Jor one of the problems (1) and (2), then there
exists a finite optimum for the other, and these
two optima are equal, if one of them is found to
have an unbounded objective, then the other is
unfeasible. Moreover, if X and (V,U) are the
primal and dual solutions (in case of bounded
problems), the weak theorem of Complementary
Slackness asks that:

Vi -KV (CyU=0)=X; =0 (a)
0(X,(M,=>V,-K,V,=C
0

and U ")

iJ:

U)oV =KV, =Cy+Up=X;=M; (o)
A basic dual feasible solution is a set of V; , Uj;
for which there are exactly |V| (V's cardinal

number) branches satisfying the relation:

Vi-K;V;=Cy, Uy =0(6)

Given a basic dual feasible solution, the set of
real X satisfying (Sa.c) and the continuity
principle (1b) is called the network pseudoflow
related to that basic dual feasible solution.

Furthermore, branch coflow & , is defined to
be the quantity:

8=V, - KV, -C,m

The data structures that are used in the algorithm
system form the basis topology theorem and
network concepts. Data that describe the network
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topology are static, while those which concern
the basis representation are dynamically
reorganized at each iteration. The algorithm
begins with a dual feasible solution which is
assumed to be available; it has already been
pointed out that the method is efficient when
applied to post-optimization cases. (If this is not
the case, an initial basic dual feasible solution is
obtained by introducing artificial loop-branches
at every node, with very high cost and non-unary
gain. Vi's are selected such that loop-branch
coflows are priced at zero. If the problem is
feasible, their high cost will keep these branches
out of the optimal basis). Once an initial basic
dual feasible solution is available, pseudoflows of
the network branches are calculated by making
use of the complementary slackness.

Specifically, branches with positive coflow are
assigned a pseudoflow equal to their capacity,
while those with negative coflow are set to zero.
The pseudoflows of the remaining basic branches
are calculated such that they satisfy the continuity
principle. The basis topology allows for an
efficient organization of the computations
involved: in each basic connectivity component,
the calculation of the branch pseudoflows of
every basic subtree hanging from a cyclic node
can be performed starting from its end-nodes and
progressing to the root, the same principle at all
loop-nodes of the component leads to a well-
defined system of equations, is unknown to the
loop-branch  pseudoflows. This procedure,
combined with the non-degeneracy of the basic
loops, implies that for a given basic dual feasible
solution, the set of related pseudoflows is single-
valued. If the resulting basic flows are found to
be within their boundaries, the Duality Theorem
guarantees the optimality of the solution, and the
algorithm terminates. Otherwise, a new basis has
to be produced.

The branch (i , jo) to leave the basis is the one
that violates most the capacity constraints. The
determination of the branch to enter the basis
relies on a mechanism that ensures dual
feasibility of the resulting basis. Initially, the
non-basic branch coflow variations to a
hypothetical unary variation of the coflow of the
outgoing branch are calculated, with the rest of
the basic branch-coflows remaining at zero.
Taking into consideration the relation (7)

A = AV, —KU AVJ- and the calculation

351



previously mentioned, the problem reduces to the
solution of the system of equations:

AV, -K,AV, =0 (i,j) € B, —{(ioafO)]
AV:(U} “K;(o);m) AVJ(O) =1®)

in AV, . It is a well-defined system, and the basic
property of the branches involved implies the
uniqueness of its solution. A pattern similar to
that described for the computation of the
pseudoflows can be used for a fast solution of
this system. Afterwards, the maximal variation
that sets one (or more in case of degeneracy)
non-basic branch coflow to zero, leaving the
others at their previous signs, is performed. The
branch whose coflow is set to zero, enters the
basis. Dual variables are assigned their new
values, and data structures storing basis
information are appropriately updated.

The efficiency and promptness of the algorithm
results from the exploitation of the fact that only
the connectivity components where the outgoing
and entering branches belong to, are actively
involved in the required computations and basis
updating. At that point, a new iteration begins. It
can be shown that the dual objective function
increases at every iteration of the algorithm (or it
remains constant, in case of degeneracy). So,
convergence to optimality is achieved in a finite
number of iterations. On finishing the
presentation of the dual method, it is worth-
mentioning that by making use of the same
concepts and data structures, the Primal Simplex
method has been tailored, in a similar fashion, to
an efficient solution of the GN optimal flow
problem.

4.5 The Relaxation Method

This approach makes use of the non linear dual
function of the initial problem [20]. This is
introduced by the following definitions:

First, we define the Lagrangian function of
problem (1) as:

LX,p)=
Z{:,})GBCUXU +Zi’e,’v’ P'

(S pes Kok~ Zmes¥in) =
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=2 .pes €y + KB —F)X; O)

where P is the vector of Lagrange multipliers of
constraints (1b), also called the prices of the
nodes. Then, the dual functional q is given by

qP)= min LOXP)=X ,p0;® —K;P))
Lus)(,jsMij

(10)

where

q (R‘ *_K;'Pi) =
iy {(ch +K,P,~P)X,} =

Ly <X <M,

(c, -1, )M,if1, 2C,
(CU _ty)LU iff,-j SCU,
(i

and

ty =B - KyP; (12)

for all (I,J) € B, is the so-called tension vector
corresponding to P.

In order that the above definitions should be
valid, the right-hand-side vector of equation (1b)
must be equal to zero. This can be achieved by a
procedure similar to the canonical transform of
Jewell's algorithm, appropriately exploiting the
lower bounds L;; and the fact that a single branch-
loop with a non-unary gain operates as a source
or a drain for the entire network. Then, we define
the deficit of node i associated with a certain
flow pattern as:

dy = z(i,m)eBXim _z(m,i)es K i X mi (13)

From the above definitions it is obvious that q
can be considered as a function in t, as well. The
principal notion of the algorithm is that of the
ascent direction of the dual functional,
associated with a connected strict subset S of V,

expressed by the vectord = {‘911 /(i,j] € B},

where:
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Kyu, ifigS,jeS
; —u, ifieS,jeS
L= . . 14
VK, - lfIES,JGS( ‘
0 otherwise
In relation (14), y;'s are a set of positive numbers

which are calculated for all nodes of subset S,
with the aid of a spanning tree T of it, such that:

u; -Kju;=0 forall i,j)eT (15)

The directional derivative of the dual function
at point t, in direction & | is

C(S,t):Z( '-")EBQ—)O+ [qU £ +a.9y-)—qg-(ty-)]/a=

_Zles f

Z]ES JES (X Llj)
(1,)):active
ZIESJES (M X )KU j (16)
(1,j):active
- Z GSJGS(XU —Lij)(ui l_'| _])

(i,]):active,u; >K“uJ

- ZIESJES(Mij - X (Kju; —uy)

(1,))active,u <KuuJ

The weak duality of Lagrangian Relaxatio
postulates that at optimality

q(Po)=maxpq(P)=c(17)

The algorithm initiates with a set of dual prices P
and flows X satisfying complementary slackness,
but not the constraints (1b). At every iteration the
algorithm proceeds towards optimality by either
a redistribution of flow which reduces nodal
deficits, or a revision of the nodal prices, so that
the dual functional increases, whichever comes
first. Specifically, at every iteration a non-
balanced node is spotted, and in continuation, a
scanning mechanism is put to work in order to
determine one of the above-mentioned
possibilities of improvement. A deficit reduction
can be achieved any time a route to a node with
deficit of opposite sign to that of the set-out
node, is established or an appropriate cyclic
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structure is developed; a dual functional increase
is possible if the directional derivative associated
with the scanned subset of nodes S is positive. It
should be mentioned that primal-dual algorithms
operate in a similar way but the direction of
correction is that of the maximal rate of ascent.
However, according to the algorithm’s inspirers,
its efficiency stems from the fact that in many
iterations the direction subset S may consist of
the initial node only, which is attributed by the
characterization coordinate ascent algorithm. In
that case , it is shown that the negative of the
nodal deficit, -d; , is a subgradient of the dual
functional at P in the sth coordinate direction. A
final remark concerning the algorithm’'s
convergence, is that that the algorithm is proven
to be finite if £ -optimal solutions are searched,
with & defined arbitrary small. At every
iteration, vectors P, X must satisfy a modified
version of complementary slackness, the so
called & complementary slackness, defined by

& -inactive ifty<Cy-€&
E-active if C;-& <t; < C; +& (18)
£ -hyperactive ifC,+€ <t

Then, the produced solution will be within a
radius of SZ{I,j]eB(Mij —L;) from the

optimal one.

RELAX-II, an implementation code of the
algorithm, is reported to be an order of
magnitude faster than the latest state-of-the-art
codes, which implement Primal and Primal-Dual
methods.

5. Applications and Conclusions

Generalized networks can be used to model
numerous problems to which there are no pure
network equivalents. Essentially there are two
ways in which GN multipliers can function: they
can simply act to modify the amount of flow
transversing the branch, representing for example
phenomena of evaporation, seepage,
deterioration, breeding, etc., or they can
transform flow from one type into another, thus
modelling the processes of manufacturing,
production, conversion of fuel to energy, etc. The
range of applications of GNs in various areas of
Operations Research (O.R.) is the following:
Scheduling and Planning:
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Scheduling and Planning models usually require
several time periods for their basic structure.
Observing that they possess a network structure,
one can see that the GN model has a significant
impact on their sclution. For one thing, large-
scale network applications can be solved easily,
and the level of detail provided to the model can
be expanded considerably. Secondly, planning
tools with quite fast response time may be
designed, so that they are executed interactively.
Outstanding areas of this category where
considerable work has been done are
Hydroelectric  Scheduling and  Air  Traffic
Control.

Finance:

Mathematical planning models are an established
part of financial analysis. Work in this area has
begun since 1950. Several authors have proposed
network models in which branch multipliers play
a primary role. Some suggest that multipliers can
be used for translating currencies across countries
(e.g. dollars to Deutsch Marks); others have
designed muitiperiod models in which interests,
dividends and loans are modelled by means of
multipliers. Cash flow management provides an
ideal application for this methodology.
Equilibrium Models:

There are many instances of such models; some
of them are summarized below.

- Traffic equilibrium, in which case branches
represent transportation paths (e.g. highways) and
nodes are the connections between paths.

- Market equilibrium, with nodes indicating
spatially separated markets for products, and
branches indicating their interdependence .

- Demographic  equilibrium, with nodes
indicating distinct demographic zones, and
branches indicating possible migration patterns
among the zones.

- Water/gas pipeline distribution systems, with
branches representing the pipes, and nodes
indicating the connection points.

Statistics and Large Databases:

The timely collection of very large databases has
become increasingly important over the past two
decades. Many government agencies and private
companies routinely depend upon these files for
maintaining their operations. One important class
of databases is known as microdata whereby the
file consists of a large number of individual
decision units-individuals, families, corporations,
etc. Typically, microdata files range in size from

354

one thousand to over one million observations.
There are numerous steps involved, several of
which employ network optimization. A
representative example of this category is the
estimation of Social Accounting Matrices and
File Merging (SAM).

Distribution and Logistics

Models of integrated production, inventory and
distribution are often based on a network form.
The flow of materials within the factory, and the
transport of the final product through distribution
centers onto the market, present an appealing
case where a large part of the problem can be
depicted as a graph. The commensurate gain in
efficiency lets the modeller room for including
and modelling such features as more time
periods, desegregate customer zones, additicnal
potential sites for warehouses, or even a more
realistic cost structure.

Of course, there are more active areas of research
in Engineering Design and O.R., in which GNs
play an important role for problem solvability.
An extended version of the GN's, the 0-1 GN
problem, broadens the scope of the problems to
be treated so that classical Integer Programming
(IP) and Mixed IP (MIP) problems are included.
According to this formulation, certain branch-
flows are obliged to take the values of only 1 and
0, and the incorporation into the network of
structures similar to those of Figure 6, can lead to
the integrality of all the variables, with only a
small number of them explicitly stated as being
of integer type. In case that a Branch and Bound
method is used for the solution of the problem,
this fact results in a considerable reduction of the
underlying enumeration-tree structure and thus,
in very fast solution times.

Taking the integer variables to be decision
variables, a new group of problems can be faced
as 0-1 GN's, including job assignment to
computers, the design and operation of
capacitated communication networks, financial
capital allocation, plant location, energy models
and physical distribution.

GENETEXP has been used by the authors in
transportation planning problems of large size
with real data and nodes provided by an
European supply-distribution chain. The results
are quite satisfactory from both the time-
accuracy and the conflict resolution poinis of
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view. Of course work is still in progress for
further enhancing the tool (especially its KB
component) and for improving the user-interface
module.
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