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Abstraci: Most of today’s industrial processes being of com-
plex and hybrid nature (consisting of both continuous and
discrete event parts), require by necessity a supervisor for
control. Since the supervisor is at the upper level of a two-level
hybrid system, it is required to process and make decisions on
alarge amount of nonhomogeneous information. In this paper
we discuss the categorization of information through neural
network interfaces and the issues surrounding the format of
the input data to the network, along with a measure of the
information content of the data eventually reaching the super-
visor.

Peter P. Groumpos received his Ph.D in Electrical Engineer-
ing from the State University of New York at Buffalo, in 1978.
He is Professor at the Division of Systems & Control and
Director of the Laboratory for Automation and Robotics, the
University of Patras. He was formerly on the faculty at
Cleveland State University, USA, 1979-1989. He was director
of the Communication Research Laboratory (1981-1986) and
a member of the Technical Committee of the Advanced
Manufacturing Center (1985-1987). For the academic year
1987-88 he was a Fulbright visiting scholar at the University of
Patras. He is an associate Editor for the International Jour-
nals: a) Computers and Electrical Engineering and b) Studies
in Informatics and Control. He is a member of the Honorary
Societies Eta Kappa Nu and Tau Beta Pi. He is the Co-or-
dinator of the ESPRIT Network of Excellence in Inteiligent
Controls and Integrated Manufacturing Systems. He has
puublished over 70 journal, conference papers and technical
reports. He has been the principal investigator on many R&D
projects both in the USA and in Greece, His main research
interests are intelligent manufacturing systems and CIM,
process control, hierarchical large-scale control systems and
adaptive control.

Voula C. Georgopoulos is a Research Fellow at the Laboratory
for Automation and Robotics of the Department of Electrical
and Computer Engineering, the University of Patras. She
received a Diploma in Electrical Engineering from the
Democritus University of Thrace in 1984, a M.Sc. degree in
Electrical Engineering and Computer Science from M.LT. in
1987, and a Ph.D degree from Tufts University in 1992. She
was a member of technical staff of the MITRE Corporation in
the USA from 1988 to 1994. She also taught courses at North-
eastern University and Tufts University. She has published
more than 30 papers in journals and conference proceedings.

Her interests are in neural networks, signal processing and
hybrid systems. She is a member of Tau Beta Pi and Sigma Xi.

1. Introduction

Industrial systems are by nature complex and they
consist of a number of nonhomogeneous
subsystems. They involve problems of different
time-scales, they are continuous, or discrete-time
and often mixed. Of particular interest in such an
environment is a two-level hierarchical system
where a supervisor at the upper level supervises
and co-ordinates the operation of a number of
processes/machines in the first layer, as shown in
Figure 1. It should be noted here that two-level
hierarchical structures have been used for
extensively modelling and controlling large scale
systems [1].
The supervisor is embedded in a dynamic
environment where it continually interacts with
and reacts to its environment and it must reason
about events and actions.The information that
the supervisor receives from the lower level in an
industrial environment is in the form of discrete
events, i.e. a sequence of events describing the
System operation. Thus, the supervisor alongwith
its interfaces can be considered an information
representation and processing which in general
must [2]:
* integrate in a coherent way the information
and knowledge on the processes and
machines

© synthesize the available data coming from
the processes and machines
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e explain any event in terms of
tause-consequence trees of past related
events,

¢ localize any anomalies and inform through
their causes,

e mask and hierarchize dynamically the
alarms in function of the operational
context, and ‘

® generate dynamically the required actions
innormal or problematic conditions evenin
case of multiple failures,

Thereisalarge gap between the generation of this
information (data) at the machine/process level
and its being properly processed and effectively
comprehended at the supervisory level to be able
to perform the above tasks. Some of the issues
Surrounding this problem are discussed in the
following sections:

* Whatkinds of interface architectures canbe
used so that the necessary daia at the
machine/process level can be translated
into appropriate events at the Supervisor?

¢ What are the choices of representation of
input information at each level, signal (in
time, in frequency, in Space, combinations
of the three, etc.) so that the interface
architectures can generate discrete events
that can be easily processed and understood
by the supervisor?

e What is the information content of the data
{or variables/features) so that a minimum
amount of information (something like a
basis) that s critical to the operation ofeach
subsystem is available to the supervisor?

This paper discusses these issues within a general
model shown in Figure 2, where the
processes/machines that the supervisor handles
are dissimilar. In this case there is a need for
breaking down the information into "equivalent"
categories. There is a number of different
machines attached to the supervisor, each one
through a type of interface that translates the
incoming data from each machine into discrete
events for the supervisor. Each individual
machine has its own set of states and dynamic
rules and consequently its own amount of
information "units", 0y, Dy, N3, ny, and ns. The
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amount of information by which each machine is
fepresented in the supervisor should be
‘equivalent” to the information from other
machines. In other words, if one of the machines
Is very critical in the entire process, more units of
information will be used to represent the
machines in the supervisor than other ess critieal
machines. We have identified the interface in this
case to be a neural network along with fuzzy logic
(N.N./F.L.) since we are particularly interested in
neural networks due to their information
transformation abilities, their adaptability to
handling new and unusual situations, and to their
modular-hierarchical structure.

2.The Role of Neural Networks in the
Categorization Process

Since in the supervisor the information that is
processed is symbolic ( in terms of discrete
évents), neural networks (along with fuzzy logic)
can also be used as an intermediate "Interface"
structure that will convert signal from the lower
level to symbols to be processed at the upper level.
This is because they have a nonlinearity built-in
making them highly suitable for interfaces from
continuous signals to discrete events,

Two categories of neural networks can be used
for unified signal/symbol (in our case hybrid)
representation and processing. The first category
includes distributed networks, such as pattern
recognition type neural networks using
back-error propagation learning. The
information is stored in a distributed way as it
becomes freely organized during learning. The
Output of the network must be unique so that the
network becomes stable after learning and the
neurons in the hidden layers are not in general
attached to any meaning or association, thus the
information is not localized. In distributed
models each concept is distributed over several
nodes and each node can participate in
representing more than one concept.

Pattern recognition neural networks can be
considered "interfaces" from continuous-state
systems to discrete event (symbolic) systems. The
events belong to a set of attributes, each of which
Is represented by a symbol (or for the case of the
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fuzzy cognitive map, a concept). The symbol is
connected to a continuous (sensory) signal x
through a series of transformations:

z=a((x))

where a(u) is a nonlinear transformation in
general. It partitions the state space so that each
region of the partition is associated with a symbol.
A simple example of a neural network which
performs such a function is a classification
network as shown in Figure 3. This can be
achieved using a multilayer standard
backward-error propagation artificial neural
network which, if sufficient number of neurons in
the hidden layer ,can be used to approximate any
mapping function [3]. The input to the system is
a two-element vector x whose elements x; and x,
take on continuous values. The output of the
system takes on one of the three discrete values
z={ab,c} depending on which class the input
signal belongs to. This example is presented here
since it shows the ability of the neural networks
to deal with hybrid control problems, such as
autonomous switching and autonomous jumps
[4] where abrupt changes are made in either
vector fields or subsystem states when certain
boundaries of the state space are "hit".

x, 4

The second category of neural networks that can
be used for unified signal/symbol representation
and processing includes localized neural
networks, such as fuzzy cognitive maps [5] where
each unit represents a concept and connections
and weights are linked to causal relationships
between concepts. Stability in these networks are
not important, oscillations allow more than one
potential answer. In localized neural networks
each node of system corresponds to a single
concept and vice versa.

Neural networks have been used extensively in
the literature for decision- making, classification,
recognition, identification, and optimization.
Due to their highly parallel structure, they are
able to perform these tasks in many cases even in
real time and are able to perform global tasks with
local interconnections. In addition to these
advantages, neural networks have a number of
desirable characteristics of information
representation and processing schemes within
this supervisory control environment [6]:

¢ adaptability

e modularity

e ability to weight information and
o efficiency

In a complex system, such as an industrial system,
it may be too complex to be able to directly classify
incoming raw data into discrete event so that they
are processed by the supervisor. In such a case a
"preprocessing” stage, where an appropriate
number of relevant features is extracted from the
raw data. Neural networks that perform feature
extraction can be used prior to the neural network
interfaces that perform a classification leading
to "discrete events" to be processed by the
supervisor. In these networks while it is essential
that the information contained in the input vector
is sufficient to deiwcrmine the output class, the

presence of too many input features can burden
I Zz{a, b, C} the training process and can produce a neural
network with more connection weights than
those required by the problem.

*1 Neural
Xy — Network

Introducing model abstractions through selective
categorization means introducing tractability of
decision making inference at the expense of
decision quality [7]. Categorization of

Figure 3. Classification by A Neural Network
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characteristics, creates generalizations that hide
potentially relevant details in a decision model. If
computational and representational resources
were free or inexpensive, there would not be a
need to remove the detail through categorization.
Under conditions of limited resources, however,
a supervisor may find that representing objects
and events in the systems of the lower level in too
much detail may require subsequent spending of
intolerable computational time in computing
optimal decisions. A classification that is too
detailed may contain information that is
irrelevant to the decision to be made, thus causing
the supervisor waste cognitive effort without
gain. On the other hand, a categorization model
that is too abstract may overlook details thus
biasing the decision- making process and perhaps
ignoring a particular set of actions.

Thus, an important consideration should be how
to represent input data represented so that the
essential features can be extracted. There are two
areas of focus that can be helpful in such a case.
The first is the choice of domain in which to
represent the knowledge and the second is to
measure the information content of a given
variable or feature of a system.

3. Domain of Representation of
Input Data

There is a number of considerations in selection
of the optimum input signal representation to a
neural network. It is fundamental that the inputs
lo a neural network stage are comprehensible,
concise and sufficient so that the neural network
should be able to perform its function [8]. Of
course, the input format is application driven.
Input data representation can be in spatial form
(precise location of an object in a manufacturing
system), time, frequency or combinations of time
and frequency, space and frequency, etc.

1. Waveform Representations: This is a data
Séquence representing a sampled signal in
time. This can show effects such as
periodicities, echoes, onset and turn-off of
phenomena, etc.

2. Frequency-Domain Representations: The
frequency content of a signal can be
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represented through the use of a set of fixed
orthogonal functions as bases, such as DFT,
FFT, Cosine/Sine, and Hadamard transforms.
In such representation harmonics can be
seen, noise sources, efc.

3. Joint-Domain Representations: In cases of
signals whose characteristics as a whole vary
with time or space, it is appropriate to
represent themby using joint domain
representations. With these a signal can be
represented as a joint function of time and
frequency, time and Space, space and
frequency, etc. Most popular are
time-frequency distributions which were
introduced to analyze signals with rapidly
changing characteristics. The underlying idea
of time-frequency distributions is to devise a
joint function of time and frequency
describing the energy density or intensity of a
signal in time and frequency. Desired
properties of a time-frequency distribution
are: real distribution, integration over time
and frequency of the distribution results in the
energy of the signal, integration over time
yields the spectral density, integration over
frequency yields the instantaneous power, and
the first-order moments of the distribution are
the group delay and the instantaneous
frequency of the signal. Examples of time-
frequency distributions that obey all or some
of the desired properties are the spectrogram,
wavelets, and the Wigner Distribution.

Neural networks can be trained to process any
one of these types-of input signal representations.

4. Characterization of
Information Content

It is important to be able to measure how useful
a variable or feature is; in other words, what its
information content is. In addition, due to the
large number of variables available from each
subsystem attached to the supervisor, it is
desirable that the information reaching the
supervisor is free from redundancies that will
slow down and even prohibit in some cases the
decision- making process.

A neural network performing classification
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trained to classify patterns from a set of different
classes with the backpropagation algorithm, can
be considered as a system that reduces the initial
uncertainty of the information contained in the
input vector. In the ideal case the final uncertainty
will be zero (i.e. the class will be certain) [9].
However in a complex system, such as an
industrial system, the final uncertainty can be
higher due to insufficient input information or
suboptimal operation (insufficient network size,
training, etc.). It is important to be able 0
measure the information content of the various
features of data with respect to the data. In the
case that their information content is insufficient
to reduce uncertainty, more features or more
informative ones should be found. The
uncertainty of a given class is measured by its
entropy [10].

Since we are interested in categorizing the
variables from each of the systems in the lower
level so that a certain event is detected, it is
important to associate a certain probability p, (i)
of occurrence of each class of each variable. In a
manufacturing environment, it is very difficult to
have a priori knowiedge of ihe probabiiitics of
occurrence of a certain variable. Thus, each
variable is observed over a period of time with N
being the total number of observations, and the
number of occurrences of each "event," where the
variable belongs to the itk class of the set of classes
C;= {12 ip.,m} is n,;(i). And the probability
p, (i) can be defined as:
n,(1

p I(i)=1im—%2

N-> 0
The entropy H(x;) of the variable x, estimated
from N observations of the variable x;:

m ony(i) (ny()
H(xi)=—2 N log( N ]

i=1

which leads to:
1 m
H(x,) =logN — — 2 n;(i)log(n;(1)
() N 2, mlog (r.9)

The joint entropy of the two variables x; and x, is
similarly given by:
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m Kk
S 3 ny(if)log (ny (D)
i=1j=1

7|

H (vaz) =logN—

where ny,(i,j) being the number of event
happenings "x; belongs to the thclass of C "and
"x, belongs to the j th class of C," and
Cy={1,2,...),...k}.

And the conditional entropy of variables x; and
X, is:

H (s 1) =logN = ; S myaiiiog (r 1)

A non-negative quantity which shows the
intensity relationship between the two variables
x, and x, is the mutual information (MI) or
transinformation of x| 10 x, given by:

1 ("15"2) =l (Xl) R (xz) i (Xl’xz)

=i (x1 ) -H (x |x2)

=H (x;) ~H (x| %,)

Y \ 3
Since the conditional entropy will be less that or
equal to the initial entropy of a given variable, the
mutual information shows to what extent the
uncertainty is decreased by introducing a second
variable.

A necessary and sufficient condition for x, and x,
to be statisticaily independent is that their mutual
is equal to zero. The value of I(X;:X,) is maximum,
when one variable depends only on the other.

From the above, it can be seen that the MI can
measure the way the two are connected. Mutual
information can be used as a method for
measuring the information that a group of input
variables provides about the outputs. This
method can be used to eliminate less useful input
variables, thus reducing the number of weights of
a network and improving the networks
generalization ability [11].

5. Conclusions and Future Work
We have presented in this paper some issues

surrounding the categorization of information in
a two-level supervisory control industrial system.
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We have examined Lieural networks role playing
in the categorization process in terms of feature
extractors and classifiers » essentially performin a
signal-to—symbol conversion (from data to
discrete €venis) so that the Supervisor handles 4
minimum and sufficient amount of information,
Two areas of interest that might be helpful in this

TOCess we have also presented. The first is the
choice cf the domain in which to répresent the
knowledge and the Second is to measure the
information content ofa given variable or feature
of a system.

The issues and methods discussed here wil] be
usedin asystem funcu’onality model that has been
Proposed in [6] where the controls and
information in complex hierarchica] System are in
parailel considered jp g sortof integrated
information- contro concept [12]. This is a
fundamentaj Step towards establishing suitable
techniques for hierarchical multi-ieve] systems
for use in Flexible Intelligent Manufacturing
Systems.
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