How To Ensure Predictable Response Times

for Real-time Tasks With Resource Constraints

Maryline Silly

Ecole Centrale de Nantes
Université de Nantes
LAN /U.A CNRS n° 823
1 rue de la Noé

44072 Nantes Cédex 03
FRANCE

Abstract: To meet its timing requirements, a real-time
system must adopt a scheduling algorithm that permits to
ensure a predictable response time. In this paper, we are
specifically concerned with the problem of serving soft
sporadic tasks in a uniprocessor system in which hard
periodic tasks are scheduled using a dynamic priority
algorithm. Typically, soft sporadic tasks benefit from being
executed as early as possile while periodic tasks need to meet
their deadlines. First, we present an analysis of preemptive
Earliest Deadline scheduling for a model of independent
periodic tasks.

Then, we augment our analysis to cater for periodic tasks
which exclusively access to critical sections handled by the
Kernelized Monitor protocol [9]. Our analysis determines the
maximum processing time which may be stolen from periodic
tasks without jeopardizing both their timing constraints and
resource consistency. It provides the basis for an optimal
dynamic scheduling algorithm in a context of resource
sharing. Optimality means that every soft sporadic task is
executed with a minimal response time.

Keywords: Real-time systems, Dynamic scheduling, Hard
deadline periodic tasks, Sporadic tasks, Resource constraints

Maryline Silly was born at Illiers, France, in December
1959. She received the Maitrise d'Electronique from the
University of Nantes, France, in 1981, the degree of Docteur
de 3eme cycle in Concurrent Computing in 1984, and the
degree of Habilité¢ a Diriger des Recherches in 1993,
respectively.

Between 1984 and 1985, she was an Assistant Professor at
IFSIC (Institut de Formation aux Sciences de I'Informatique et
de la Communication) of Rennes, France. Since 1986, she has
been an Assistant Professor at IRESTE (Institut de Recherche
et d'Enseignement aux Sciences et Techniques de
I'Electronique) of Nantes and a researcher at the Laboratoire
d'Automatique de Nantes , Ecole Centrale de Nantes. Her
research interests are scheduling and fault-tolerance in real-
time systems.

1. Introduction

Hard real-time systems are defined as being
those systems in which a failure to meet the
timing constraints imposed by the environment

will result in property damage or even in a loss of
human life. Whereas a large proportion of real-
time systems implemented in the past were static,
the new generation of applications required real-
time software that might change during their life
time. In the so -called dynamic real-time systems,
no a priori knowledge of the task set is complete
and consequently the effective sequence in which
the tasks will take place cannot be determined
off-line. Obviously, this implies that a scheduler
has been designed to be able to cope with such
dynamic change in processor workload. At any
time during the lifetime of the application, there
must be effected a re-evaluation of the timing
behaviour of tasks for the future. This operation
needs be relatively fast in order to reduce the
overhead incurred by its execution.

In this paper, we address the problem of jointly
scheduling periodic tasks with sporadic tasks.
Timing constraints of periodic tasks are
described by hard deadlines assumed to be less
than or equal to their periods. A sporadic task
consists of a computation that responds to internal
or external events. It has a well-defined maximum
execution time and a start time equal to its arrival
time. Furthermore, periodic and sporadic tasks
may indirectly interact with one another by
sharing data or special devices (called resources)
other than CPU. Consequently, we assume that
they may have mutual exclusion requirements
modelled as critical sections. Soft sporadic tasks
benefit from being executed as soon as possible
after their arrival.

We will present a dynamic uniprocessor
scheduling algorithm that provides the shortest
response time for every sporadic task. In contrast
to [5] and [7] where tasks are scheduled using a

Studies in Informatics and Control, Vol 4, No.4, Dec. 1995 421

fixed priority algorithm, the now presented
algorithm is a dynamic priority one and is based
on the Earliest Deadline (ED) policy. The main
results of this research concern the extension of
specific properties of the Earliest Deadline
algorithm stated in [3] to a more general periodic
task model.

We will show how to determine the location and
duration of processor idle times for any arbitrary
window of time, which enables us to provide the
maximum processing time which may be stolen
from periodic tasks without jeopardizing their
timing constraints. Then, we extend our approach
to tasks that may exclusively access critical
sections. We assume that the kernelized monitor
protocol (KMP) is used. Recall that KMP is
identical to ED with the restriction that all critical
sections are non-preemptable. It can easily be
proved that this scheduler prevents both deadlock
and chained blocking since a task can only be
blocked before its execution is started and since
one active critical section can only exist at any
time in the system. We show that a simple
extension of the previous algorithm can
accommodate resource constraints and determine
the maximum processing time which may be
stolen. Finally, we present a dynamic scheduling
algorithm that services sporadic requests by
making any spare processing time available as
soon as possible.

The remainder of this paper is organized as
follows. The next Section contains background
material. Section 3 describes the task model
under consideration. In Section 4, we report
fundamental properties of the ED algorithm with
task independence assumed and in Section 5, we
show how to extend these properties in a context
of resource sharing. Section 6 presents the
dynamic algorithm for scheduling sporadic tasks
and the paper concludes with Section 7.

2. Related Work

2.1 Scheduling Independent Tasks

The problem of jointly scheduling both hard and
soft deadline tasks has been an active research
area in the last few years. Most of approaches

extend the Rate Monotonic algorithm and the
Deadline Monotonic algorithm specifically
designed to schedule periodic tasks with
preemption allowed in static priority systems. The
simplest approach consists in relegating soft tasks
to background processing by executing them at a
lower priority level than any hard periodic task.
In another approach known as Polling, the
capacity of a periodic task called server is used
to service sporadic tasks. This pressupposes to
compute off-line the capacity of this server such
that the set of hard periodic tasks is schedulable.
Other approaches termed Bandwith Preserving
have been developed [6]. The Priority Exchange,
Deferrable server and Sporadic server also give a
preferential treatment of periodic tasks over
sporadic tasks but they allow to preserve capacity
throughout the server's period and not only at the
beginning. While Bandwith Preserving methods
lead to shorter response times than Polling and
Background at low and medium loads, they
degrade to provide the same performance as
Polling at high loads. Furthermore, since they are
based on the worst case execution time of
periodic tasks, they do not permit to reclaim spare
capacity when the effective execution time is less
than the worst case execution time.

More recently, a new algorithm called Slack
Stealing was developed by Lehoczky and Ramos
Thuel [7]. It was proved to be optimal in the
sense that it minimized the response time of soft
sporadic tasks among all static priority algorithms
which met deadlines of hard periodic tasks. The
Slack Stealing algorithm consists in making any
spare processing time available as soon as
possible. Determination of processor idle time
available at any instant is possible because the
processor schedule is mapped out off-line and
then inspected at run-time.

A variation of this algorithm, termed Dynamic
Slack Stealing, was proposed by Davis et al [5]
to permit to deal with a more general task model.
Optimal for static priority systems, the Dynamic
Slack Stealing algorithm computes the slack at
run-time. Its high execution time overhead has
led to developing approximate algorithms that
provide close to optimal performance. Two
similar approaches reported in [4] and [1 1] were
designed for dynamic priority systems using the
ED algorithm. They are based on an on-line
computation of the maximum processing time

422 Studies in Informatics and Control, Vol.4, No.4, Dec 1995

available for sporadic tasks, and execute them as
soon as possible.

2.2 Scheduling Tasks With Resource
Constraints

In many systems, tasks are not independent since
they interact with each other by sharing resources
such as data or devices. We usually call such
resources that must be accessed exclusively by
one task at a time, critical resources. Adding
critical sections to real-time tasks makes the
scheduling problem a NP-hard problem. If we use
classical priority-driven policies, we must cope
with a specific problem called priority inversion
that occurs when a high priority task is forced to
wait for the execution of many lower priority
tasks for an indefinite length of time.

One way to reduce the priority inversion problem
consists in using resource access control
protocols which co-ordinate the access to shared
resources: according to the so-called Kernelized
Monitor protocol (KMP) [9], tasks are scheduled
by ED and all critical sections are not
preemptable. The Priority Ceiling protocol (PCP)
proposed in [10] has been designed for systems
with a fixed priority scheme. A priority ceiling is
defined for every critical section and its value
corresponds to the priority of the highest priority
task which may enter the critical section. In the
priority ceiling mechanism, a task T is allowed to
enter a critical section only if its priority is higher
than the priority ceilings of all critical sections
currently used by any other task.

Similar to PCP, under the Dynamic Priority
Ceiling Protocol (DPCP) described in [2], a
priority ceiling is defined for every critical
section associated with a shared resource. As it is
based on the ED algorithm, the ceiling value at
any time t is the priority of the highest priority
task that may enter the critical section at or after
time t. Baker [1] proposed another protocol called
Stack Resource Policy (SRP) that could be used
with either the RM or the ED algorithm. In
addition to priority, every task is also assigned a
‘fixed parameter called preemption level
according to its period. The ceiling of critical
section is defined to be the highest preemption
level of those tasks that may enter the critical
section. At any time, the current ceiling of the

system is defined to be the maximum of the
preemption level of the currently executed task
and the ceilings of all locked critical sections. '

Although the ceiling-based protocols have been
extensively studied in the last few years, most of
results only apply to periodic tasks and concern
schedulability conditions.

3. System Characteristics

In this paper, we consider a set of n periodic tasks
denoted by T={T|,.Tp} on a uniprocessor
system. Each task Tj is characterized by its worst-
case computation time Cj, a period Pj, and a
deadline Rj measured relative to the time of the
request and assumed to satisfy Rj<Pj. Tasks are
indexed such that i<j implies Ri<R;. Then, each
task gives rise to an infinite sequence of
Invocation requests, that begins at the time origin,
here equal to zero. We assume that T is
schedulable i.e. there exists at least one algorithm
that can schedule the tasks of T such that their
timing constraints should be met. The
schedulability analysis can be realized, by
constructing the schedule produced by ED and
checking if the schedule is feasible. For T, it
suffices to map out the schedule over the
hyperperiod of which length is equal to the least
common multiple of the task's periods.

Further, each periodic task may share resources.
The set of critical sections accessed by T s
defined by § = {Si (B), i=1 to m} where Bl
denotes the duration of critical section SI. We
assume that all requests of a task need enter the
same set of critical sections. This is defined by a
list CS;j for task Tj. A schedule for T is said to be
JSeasible if all tasks in this set can be scheduled
such that their timing constraints are met and the
resources consistency is ‘never violated. Here,
KMP is used to handle resources.The worst case
blocking time, which an invocation of task Tj can
experience due to the operation of this protocol,
will be denoted by Bj. To derive Bj, we need to
identify the blocking set Z;, which is the set of
critical sections that can cause Tj to be blocked.
Once Z; is identified, Bj is the duration of the

Studies in Informatics and Control. Vol 4. No.4, Dec. 1995 423

longest critical section in Zj. It can be stated that
Z; is defined as follows: Zj={s; se CSk, Rk>R;}.

The application software has also dynamic
attributes due to the current execution of tasks
which are available via the operating system and
derived from data stored in a task control block.
At any time, every hard periodic task is
characterized by its remaining execution time and
its deadline corresponding to the time instant by
which its job must be completed.

4. Scheduling Independent
Periodic Tasks

When a uniprocessor system solely supports
periodic tasks, it is easy to know exactly what is
done by the processor at any time since the
schedule to be executed can be determined off-
line and will not be modified during the life time
of the application. Specifically it is interesting to
determine the particular time intervals called idle
times during which the processor is not occupied
and that can be recovered to process additional
tasks including soft and hard sporadic tasks.

With this end in view, we shall use C) (7,,£,)t0
denote the total units of time during which the
processor is idle in the time interval [t], t2] when
task set ¥ is scheduled by algorithm X.

4.1 Basic Properties of ED

By virtue of executing soft sporadic tasks, we
may imagine an implementation of ED that
amounts to executing periodic tasks as late as
possible without causing their deadline to be
missed. Then, determination of the latest start
time for every job of the periodic tasks requires
preliminary construction of the schedule by the
so-called Earliest Deadline as Late as possible
algorithm denoted EDL.

Let T={Tj (rj, Ci, dj), i=1 to m} be a set of
independent hard deadline tasks (sporadic or
periodic) and D= max{d;}. For every task Tj, it is
respectively denoted by i, Cj, dj, its release time,
its time requirement and its deadline. We propose

to recall a fundamental result which will be
needed later in our discussion .

Theorem 1: Let X be any preemptive scheduling
algorithm. For any instant t such thatt £ D,

QL 0,0 <0 (0.t) 1)

Proof: see [3]

Now, we may conclude that applying EDL to any
hard task set will result in the maximization of
total idle time within any time interval [0, t],

Ut gD,

4.2 Static Idle Times

Let us investigate the problem of estimating
localization and duration of idle times within the
schedule produced by EDL for T. We construct a
row vector K called deadline vector, from a
distinct request's deadlines within the hyperperiod
plus the time instant 0. K = (ko, kl’ o Ky Ki g
cisy kq) with k; <ki+1’ kg =0 and kq =P - inf
{xi;l <i<n} wherexi :Pi-Ri forail ISi<n

and P=LCM(P] ...Py). Then, by using specific
recurrent formulae reported in [4], we have a
complete description of processor activity for the
EDL schedule thanks to K and the associated
idle time vector denoted D and equal to (AQ,
Al,edBi, Ajtl, -, Aq) Where Aj represents the
lerigth of the idle time which starts at time k; .

Example 1.

Let consider the periodic task set T described by
(C1,R1,P1)= (2,6, 8), (C2, Rp, P2)=(3, 11, 12)
and (C3, R3, P3)= (4, 22, 24). The EDL

424 Studies in Informatics and Control, Vol 4, No.4, Dec. 1995

| A
T — A
idle imes hygomgzews : — { i — e
0 4 8 16 20 24
L Figure 1. Description of the EDL Schedule Computed At t=0

schedule for T is described in Figure 1. We have
K=(0, 6, 11, 14, 22, 23) and D=4, 2,100 0
which means that the EDL busy periods are [4,
6], [8, 11] and [12, 23].

4.3 Dynamic Idle Times

Suppose we wish to determine the largest
amount of processing denoted by Wi(A) that can
be done during any time interval [t, t+A]. We
assume that at time t, every periodic task is
characterized by its dynamic attributes Ci(t) and
dj where Ci(t) is the maximum amount of
processor time required for completing its current
request, and dj is the deadline of the request. We
will denote by T(t) the set of periodic requests
available from time t up to the end of the
hyperperiod. T(t) s composed of current
Tequests occurring at or before t and not being
completed at t and of future requests which have
not started yet their execution at t. By
considering t as a new time reference, we are able
to state corollary 2.

Corollary 2: If T is a set of independent periodic
EDL
tasks, W’(A) = Q(r) (I,t + A) Jor any

instant t and any length A

Corollary 2 is fundamental because it stipuiates
that spare processor time, which can be recovered

within a current time interval while maintaining
adherence to timing constraints, is obtained by
constructing the schedule where periodic tasks are
executed according to EDL from the current time,
On allowing for the dynamic occurrence of
sporadic tasks at any time t, we know 'that the
maximum amount of sporadic processing in [t,

DL
t+A] will be given by Qfm (t,t + A).

The EDL schedule from time t is described by a
dynamic deadline vector denoted K(t) and a
dynamic idle time vector denoted D(t):

k) -= (k. &/, k1)
with ko= tand /= min{kjck:; ki>t}.

Do) =(4%, 4,....4°)

where A'r denotes the length of the idle time that
follows timek, in the EDL schedule for T(t).

D) is computed by a recurrence relation which
ends with A"O that represents the length of the
time interval between t and the start time of the
first busy period. This value is called system
laxity at time t and is denoted by §(t). Details of
computation of D(t) are given in [4]. The first part
of D(t) is computed from static values and

Studies in Informatics and Control, Vol 4. No.4, Dec 1995 425

consequently, it requires 0(1) operations since we
assume that the static idle time vector has been
computed off-line and is available at any time.
The second part of D(t) requires at most O(K)
operations where K represents the total number
of requests which are released within a time
interval of which length is limited by the greatest
deadline R;. In the worst case situation,

5 {max{Rj,l <j< n}—l

i

where [x] denotes the least integer greater than or
equal to x. Although the complexity of the
approach is linear, it depends on the periods and
deadlines of periodic tasks.

5. Scheduling Periodic Tasks
With Resource Constraints

In this section, we relax the assumption that the
periodic tasks are independent. Each request of a
task T;j may access critical sections according to

the Kerelized Monitor Protocol (KMP). Each
request of Tj may therefore be blocked for at

most Bj, the worst case blocking time.

5.1 Schedulability Analysis

In a context of resource sharing, the
schedulability analysis is asked to ensure that all
periodic tasks will always meet their deadlines
and that consistency constraints of shared
resources will never be violated. For these
reasons, determining the schedulability of a task
set requires an analytical approach which
considers the properties of the scheduling
algorithm and uses the timing information for the
tasks. It can be proved that a sufficient condition
for T to be schedulable is the following:
c, € C,+B
S

1

A - T e

] n

1 2)

where B is the execution time of the longest
critical section. Condition (2) is derived by
treating the worst case blocking delay B as an

extra computation time of Tp in addition to its
normal computation time Cp. However, blocking
does not actually consume any processing time.
Although this condition gives us a very simple
test, it represents a pessimistic upper bound to
processor utilization that guarantees
schedulability.

In this section, we describe a more precise
schedulability condition for KMP. The maximum
amount of computation time needed for
completing Tj and all higher priority tasks is

given by

L (R] i, 1
ZL_}C . where [x] denotes the
Jj=} PJ

greatest integer less than or equal to x. Executing
a critical section in the scheduling interval of Tj

will affect all the tasks with a deadline greater
than or equal to that of Tj.

Let L be the ordered set of requests’ deadlines
within the time interval [Rj, Rn].

(1 [-r +Xx -l \
P _ 4
Let O mmLt ;{ P }C JJ. Clearly,

tel,

51 represents a lower bound of additional
computation time which the system can use within
the scheduling interval of Tj while guaranteeing
deadlines of lower priority tasks. We are now
prepared to derive the following schedulability
condition for KMP.

Theorem 3: Using KMP, all tasks meet their
deadlines if

2 C .
Z—#Q andB; & Vi 1<is<n (3)

i=1 J

Proof: For any task Tj, if neither Tj nor any of
the higher priority tasks in 1 is blocked by lower

- : ¢,

priority tasks, condition Z— <1 alone ensure
=1 i

that the task's deadline will always be met. If

blocking does occur, let us prove that the

426 Studies in Informatics and Control, Vol .4, No.4, Dec. 1995

schedule is feasible if (3) is true. We prove this
by contradiction. We assume that (3) is satisfied
and the schedule is not feasible which means that
there exists at least one task, Tk, which does not

meet its deadline. This signifies that a task Tj,
possibly Ty, such that di< dg was delayed by
one lower priority task released before time k.
Then, the maximum blocking delay of Tj is given
by B,.

The maximum processor time required by all
higher priority tasks and Ty within the scheduling

Rk+xj—,

interval of Ty is given by Zt C ;- As
J=] J
at most one task with a lower priority than Tj can

provoke blocking for T k. the worst case response

”rR +x 1
time of Ty s Zl kP ’Jcﬁ B;,

J=1

/
necessarily greater than Rk since di is missed,
which implies that

] f R, +x _,
J
Bi > Rk—Z{ P |C @

i=] J

Therefore Rr€ L since Rk >Rj. As (3) is
satisfied, in particular we have

[R +x,]
B R - 2= ‘e,)

J=] g

From (4) and (5), we have a contradiction.

5.2 Processor Idls Time With KMP

Although EDL js a useful algorithm, it
application to tasks that access critical sections, is
not intuitively obvious, With task independence
assumed, EDL provides uUs a means for
determining the maximum of spare processing
time that can be available as soon as possible,
without Jeopardizing the hard timing constraints,
We can prove that this algorithm extends without
any modification for executing tasks as late as
possible according to KMp from time zero
because resource constraints do not interfere with
processor activity, provided that the
schedulability condition (3) is satisfied. Such a

result can be proved by induction on the busy
periods starting at the end of the hyperperiod.
Consequently, we may disregard resource
constraints for computing the largest amount of
processing W((A) that can be done during [0, Y|

since it is given by 3 (0, A) .

Next we seek to determine the largest amount of
processing, W(A), that can be done during any
time interval [t, t+A]. Let us consider that there is
One resource accessed at time t. Indeed, we
know that at most one such resource may exist, It
Is characterized by the deadline of the request that
accessed it, d, and by the maximum amount of
processor time required to unlock it, B(t). We will
show that the schedule that maximizes processor
idle time from time t up to the end of the
hyperperiod, is obtained as follows:

- construct a new task set denoted T(t) by
subtracting the execution time of the request with
deadline d by B(t) and adding up the execution
time of the most imminent request by B(t),

- construct the EDL schedule from t o Tv).
The resulting schedule will be called EDLy,

schedule.
Now, we will show that the schedule produced
by KMP in the EDLp, busy periods from time t is

feasible and maximizes processor idle time as
500n as possible. In this view, lemma 5 is of most
interest.

Lemma 5: If condition (3) is satisfied then the
schedule produced by ED Jor T@t) in the EDL

busy periods js Jeasible.

Proof: We prove this by contradiction and
Suppose there is a task Tk with release time Ik

and deadline dy, less than d which does not meet
dk in the schedule produced by ED for T'(t).
Consider the two following cases:

Case 1: there is at least one idle time period
between t and dk in the EDLpy, schedule

Let denote by f the end time of this idle time
period. This means that the total length of busy
period from fto dk is greater than or equal to the

Studies in Informatics and Control, Vol .4, No .4, Dec. 1995 ‘427

sum of execution times for all the tasks of T(t)
with a deadline less than or equal to dg and
greater than or equal to f. As Tk is ready to be
processed from time f, Tk cannot miss its
deadline, in contradiction with the hypothesis.

Case 2: there is no idle time period between t and
dy in the EDLm schedule .

This means that the processor is continuously
busy from ri up to dk executing Tk and tasks with
a priority greater than Tk. The maximum
processor time required by these tasks is given by
2 [R X 1
ZL—E’_}C"’ + Bk where Bk is the
J=] g

longest critical section that can be executed in the
scheduling interval of Tk . From Theorem 4, such
quantity is assumed to be less than or equal to Ri
which implies that dg cannot be missed, in
contradiction with the hypothesis.

Theorem 6: The schedule produced by KMP in
the EDLy, busy periods from time t is feasible.

Proof: At time t, the dynamic workload imposed
on the machine by T(t) is composed of periodic
requests which are available from t up to the end
of the hyperperiod. Since requests with a
deadline greater than d cannot be blocked by
semaphores currently in $(t), we know that the
schedule produced by KMP in the EDL busy
periods from time d up to the end of the
hyperperiod is feasible since such a schedule is
identical to the ED schedule.

Now, let prove that the schedule produced by
KMP in the EDLy, busy periods from t up to dis
feasible. From jemma 5, it suffices to prove that
feasibility of ED for T(t) implies feasibility of
KMP for T(t).We prove this by contradiction and
suppose ED is feasible for T'(t) while there is a
request of Tk with deadline d less than d which
does not meet dy assuming tasks be scheduled

according to KMP.

The total length of the busy periods included in
the scheduling interval I of Tk is sufficient to

428

feasibly schedule by ED all the tasks of T'(t) with
a deadline less than or equal to dk. Such tasks
correspond to all the tasks of T(t) which have a
deadline less than or equal to di and an additional
task which is characterized by its deadline equal
to the deadiine of the most urgent periodic
request and its execution time equal to the
amount of processor time required for leaving the
critical section currently accessed at t. Executing
tasks of T(t) according to ED within I then
amounts to executing tasks of T(t) according to
KMP. As ED is feasible for T'(t), KMP is also
feasible for T(t), which contradicts that di is
missed.

Theorem 7:The schedule produced by KMP in
the EDLy, busy periods from time t maximizes

processor idle time as soon as possible.

Proof: We prove this by contradiction. We
assume that there exists some scheduling
algorithm X for which the schedule produced by
KMP in the X schedule is feasible and there

exists some instant t such that
Qiﬁ? (fsf’)«ﬂm(“’) ()
Let t (t = 1) be the latest time such that
Ol (RIE o tr) %)

From (6) and (7), it follows that
EDL,, X

Q% 7,7+, (7.7 +1) (8)

which means that the processor is busy from T to

t+1 in the EDLyy schedule while it is idle in the X

schedule. During [t, t], T(t) has received an
identical number of computation times by KMP
in the EDLy, schedule and the X schedule

respectively, because of (7). At time T, two
situations are possible:

Case 1: There is no ready task to be processed.
Obviously it follows that
§ﬁﬁ%nr+ﬂ=ﬁ%ﬂnr+ﬂ=&

in contradiction to (8).

Case 2: There is at least one ready task to be
processed.

Studies in Informatics and Control, Vol.4, No.4, Dec 1995

By the construction of the EDLpy, schedule, we
know that there exists a deadline d (d>1) such that
d is followed by an idle time period and the
processor is continuously busy from 1 up to d
executing tasks of T(t) with a deadline less than or
equal to d and at most one critical section with a
deadline less than d. As such tasks are processed
as late as possible, inequality (8) implies that
there is at least one task which cannot meet its
deadline within [r, d] in the X schedule, in
contradiction with the hypothesis.

From Theorem 7, we are now able to compute
WrKMP(t') for any instants t and t' since it is

given by Q?ﬁf (l,t‘) may there be some
semaphore currently locked at t or not.

Example 2.

Let consider task set T of example 1 and suppose
now that CS1={S1}, C€Sy={s2} ang CS3=({sl,
$2} with Bl=] and B2=2 Condition (3) is
satisfied and guarantees a feasible execution for T
by KMP. Assume we wish to determine the
maximum amount of processor idle time available
between times 8 and 17. At time 8, critical section
S2 s being accessed. So, we compute the EDL
schedule as described above (see Figure 2). We
can verify that K(t)=(8, 11, 14, 22, 23) and
D=0, o, 4,0, 1) and consequently Wg(9)=6. If
tasks were independent, Wg(9) would be equal to
7.

6. Considerations of Soft
Sporadic Tasks

Next we introduce the soft sporadic tasks. Each
sporadic task s specified by a processing
requirement which corresponds to the maximum
time required for ijts complete execution. Any
sporadic task is ready to execute as soon as it
arrives and there is no a priori knowledge about
which set of sporadic tasks requests will be
encountered. We assume that sporadic tasks have
the same priority and consequently, the arrival
time will be used to break the competition tie on
First Come First Serve (FCFS) basis.

6.1 Sporadic Tasks With No Resource
Constraints

First, assume that sporadic tasks do not share
fesources together with periodic tasks. Our
scheduler will use a cyclic algorithm with period
equal to the least common multiple of task
periods. At the beginning of each hyperperiod the
dynamic idle time vector is updated with the
static idle time vector. When no sporadic task is
pending for execution, periodic tasks are executed
as soon as possible according to KMP. Whenever
a sporadic task arrives while no other sporadic
task was present, the dynamic idle time vector is
computed, after checking whether a resource is
currently accessed. Then, sporadic tasks are
executed in idle times of the EDLp, schedule until

they are all completed.

— :S"! [

: T SR S v
Tzl-::_l!* :—————{L
T ﬁ:ql_ﬁ—k li..._

51
idle times : *i—.‘*
t —_—t_,,

Figure 2. Description of the EDLpy, Schedule Computed At t=8

Studies in Informatics and Control, Vol.4, No.4, Dec. 1995 429

6.2 Sporadic Tasks With Resource
Constraints

We now consider the situation where sporadic
tasks share one or more resources with periodic
tasks. Suppose a sporadic task is being executed
and requests to enter a critical section at current
time t . To make sure that no deadline will be
missed, the sporadic task must be guaranteed
sufficient idle time to complete its critical section
prior to the beginning of the next periodic task
that will access this critical section. As we have
no a priori knowledge about which task will
access it, the task is only allowed to succeed in
Jocking the resource if §(t)> B where B is the
length of the critical section and &(t) the system
laxity at t. Provided this condition holds and the
requested Tesource is not currently accessed.
sporadic tasks will be executed in idle times of
the EDL schedule as long as they are all
completed, or a sporadic task needs to lock a
resource. 1f the critical section is currently
accessed at t, the periodic task is executed first,
just to unlock the resource, and sporadic tasks
are then executed in the EDL idle time periods.

Assume that condition 8(t)= B is not verified.
Let k be the next deadline followed by an idle
time in the EDL schedule. Since the system laxity
cannot increase as long as tasks with deadline k
have not completed their execution, periodic tasks
must be executed as soon as possible by KMP
until their completion , say at time t. Then, the

system laxity is given by k-t + A', where A’, is

the length of the idle time starting at time k and
previously computed at t. And the locking

condition is newly tested, leading to schedule
periodic tasks as soon as possible or as late as
possible depending on the test's result.

6.3 Comments and Illustration

We note that the time complexity of this strategy
is comparable with that of any priority driven
algorithm since the computation of the EDL
schedule is only required when a sporadic task
arrives while no other sporadic task was present.
This means that computational overhead
decreases as the load factor increases.

The optimality of the strategy lies in that periodic
tasks are executed as soon as possible by the
kernelized monitor protocol which enables us to
optimize the processing power of the machine for
the future. Whenever at least one sporadic task is
pending for execution, periodic tasks are executed
as late as possible in order to make this
processing power available for sporadic tasks as
long as they require to be run and as long as the
system laxity is sufficient to execute critical
sections non-preemptively.

Example 3.
Consider the previous periodic task set and

assume that the first sporadic task, say T1, arrives

at time 8. The dynamic idle time vector is
immediately computed as described in Example
2. T1 will be executed until it requires to enter

critical section s2 at time 10. As 52 is currently
accessed at time 10 and 8(10)=1(so, less than

B?), periodic tasks must be executed first, until

rT- | %

Figure 3. Description of the Final Sched

T Hmm W | * e | L

T3 T mm DR l L

Ty T_—‘ — —

T2 ' : $ — ; e
h 4 8 16 20 24

ule Produced on Sporadic and Periodic Tasks

430 Studies in Informatics and Control, Vol.4, No.4, Dec. 1995

all periodic requests with deadline 14 be
completed since 14 is the earliest deadline
followed by an idle time in the EDL schedule. At
time 13, the system laxity gets higher enough so

as to execute the critical section S2 pop-
preemptively. T finally completes at iime 15.
Task T2 which arrived at time 11 is executed
between times 15 and 16, The effective schedule
produced within the hyperperiod is described in
Figure 3.

We note that the Tesponse times of T| and T are
respectively 7 and 5, which provides a mean
response time equal to 6. We can verify that, with
a background strategy, T and T» respectively
complete at 20 and 21, which provides a mean
response time equal to 11.

7. Conclusion

In this paper, we considered the problem of
scheduling a set of periodic tasks initially
assigned to a single processor machine, and in
addition soft sporadic tasks that occur and
require to be run on this machine at unpredictable
times. We presented an analysis which builds
upon the Earliest Deadline algorithm in order to
schedule soft sporadic tasks as soon as possible
while guaranteeing timing constraints of periodic
tasks. It is an extension of our own work reported
in [11] +to tasks with mutya] exclusion
constraints, scheduled according to the
Kernelized Monitor protocol.

By virtue of computing at run-time the maximum
processor idle time that can be stolen, this
algorithm has the great advantage of providing
all the flexibility and predictability which are
being increasingly required by next generation
Systems. These systems are highly evolutive and
imply that the scheduler has been designed in
such a way as to be able to cope with dynamic
changes in processor workload. F urthermore, our
approach can easily adapt to a more general class
of scheduling problems including reclaiming
unused periodic execution times and scheduling
hard sporadic tasks. A similar study js currently
developed to solve this problem when using the
Dynamic Priority Ceiling Protoco] among other
ceiling-based protocols.

REFERENCES

39

Studies in Informatics and Control, Vol.4, No 4, Dec. 1995

BAKER, TP, Stack-based Scheduling of
Real-time Processes, IEEE Real-time
Systems Symp., Dec.1990, pp. 191-200.

CHEN, M. and LINK.J., Dynamic
Priority Ceilings: A Concurrency Control
Protocol for Real-time Systems, THE
JOURNAL OF REAL-TIME SYSTEMS,
Vol. 27, No. 4, Dec. 1990, pp.325-346.

CHETTO, H. and CHETTO—SILLY, M.,
Some Results of the Earliest Deadline
Scheduling Algorithm, [EEE T.SEE, Vol
15, No. 10, 1989, pp. 1261-1269.

CHETTO, H., An Optimal Algorithm for
Jointly Scheduling Sporadic and Periodic
Tasks, STUDIES IN INF ORMATICS AND
CONTROL, Vol 4, No. 2, June 1995, pp
167-182.

DAVIS, R.I, TINDELL, K.W. and BURNS,
A.,Scheduling Slack Time in Fixed
Priority Preemptive Systems, IEEE Rea)-
time Systems Symp., Dec. 1993, pp. 222-
231.

LEHOCZKY, JP, SHA, L. ang
STROSNIDER, LK., Enhanced Aperiodic
Responsiveness in Hard Real-time
Environments, IEEE Real-time Systems
Symp., Dec. 1987, pp. 166-171.

LEHOCZKY, J.P. and RAMOS -THUEL,S,,
An Optimal Algorithm for Scheduling Soft
Aperiodic Tasks jn Fixed Priority
Preemptive Systems, IEEE Real-time
Systems Symp., Dec.1992, pp. 110-123.

LIU, C. L. and LAYLAND, LW,
Scheduling Algorithms for
Multiprogramming in a Hard Real-time
Environment, JACM, Vol. 20, No.1, 1973,
pp. 46-61.

MOK, AK, Programming Language
Support for Distributed Real-time
Applications, Technical Report, Department
of Computer Sciences, University of Texas,
Austin, 1987.

431

10. SHA, L., RAJKUMAR, R. and 11. SILLY, M., Un algorithme

LEHOCZKY, J.P., Priority Inheritance d'ordonnancement de taches sporadigues
Protocols: An Approach To Real-time pour les systémes temps-réel, Revue APII,
Synchronization, IEEE T.C, Vol. 39, 1990, Vol .28, No. 2, 1994, pp. 179-205.

pp. 1175-1185.

432 Studies in Informatics and Control, Vol.4, No.4, Dec. 1995

