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Abstract: The software crisis has led to several models that
describe whole or parts of the software development process.
This paper introduces a model which formally describes the
later stages of this cycle where the code is modified. The code
is treated as a simple string without any semantic or syntactic
meaning. A set of operations to manipulate strings is defined,
then five operators describing the more usual changes
undergone by the code are introduced. A set of properties
which allows to reduce the number of transformations needed
to pass from a version of the code to another one is
introduced. Then the operators are extended in order to grant
their invertibility and their inverse versions are defined.
Finally a tool which implements the changes described by the
operators, keeps trace of the transformations and allows to
navigate through the versions of the code, is described.
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1. Introduction

The current situation of crisis in the software
sector has led to the definition of many models
that try to formally define the software
development process in order to improve it and
obtain higher quality software at lower costs.

Some of these studies (such as [27], [28], [39],
[42], [44] and [45]) consider the whole
development process, while some others prefer to
focus their attention on a single phase of the
process itself. Many of these works regard the
earlier steps of the software life-cycle, i.e. the
analysis of the user’s expectations, the definition
of the product’s requirements, the design of the
architecture and the production of the code, but
the most interesting ones in the context of this
paper are the ones related to the later stages of the
process during which the software resulting from
the previous steps is modified.

For example, in [1] and in [26] Boyle and
Muralidharan consider a series of transformations
which allow to get to a FORTRAN program
starting from a LISP version of the same program,
passing through an intermediate version using an
extended FORTRAN language allowing the use
of recursion.

Freak, in [9], deals with the _conversion from
FORTRAN to Pascal, while Loveman, in [2],
discusses a set of rules to transform a program
written in an Algol-like language in order to get
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an improvement in terms of speed and memory
occupation.

Arsac in [3] deals with transformations on the
source code, too. These changes are divided into
two groups in some way complementary: a first
set is constituted of transformation rules which do
not alter the flow of the operations performed by
the program, while the second set contains some
semantic  transformations which alter the
behaviour of little parts of the program.

Burstall and Darlington, in [4], consider a slightly
restricted set of transformations on the source
code, which allows to get rid of recursion. The
same problem is addressed by Irlik in [10].

The goal of a greater efficiency through program
transformation is pursued by Partsch and
Steinbruggen in [7], and by Partsch alone in [5],
too. The same intent can be found in the work of
Pettorossi and Proietti [21] with particular
reference to the logic and functional languages,
and in the work of Boyle and Harmer [22] who
deal with the functional languages only.

Some -code transformations for the maintenance
of a COBOL program can be found in [6] and in
[12], while the object of the work of Freak in-[8]
is the set of changes needed to divide existing
programs into more modules.

Maintenance oriented changes are considered by
Overstreet, Chen and Byrum in [15], while
Merks, Dyck and Cameron consider in [13] the
problem of designing a programming language
which facilitates the modification of the software.

Finally some examples of transformations
targeted towards the software re-use can be found
in the works of Cheatham [20] and Boyle [23].
Other cases of code changes are presented in
[11],[16], [171, [18], [19], [24] and [25].

Some of the models presented in these studies
focus their attention only on a specific kind of
transformation, for instance on the
transformations performed in order to get rid of
the recursion and so improving the efficiency of
the program, or on the transformations that allow
the translation of a program from a given
programming language to a different one. The
approach taken in this work is intended to model
program changes in the most general way. The

obtained model is useful in many situations in
which there is the necessity to modify the code:

1. Changes due to the maintenance of
the program.

2. Changes performed in order to
improve some feature of the
program.

3. Changes needed for making a chunk
of code re-usable.

In all these cases, the only alternative to the
modification of the existing code is to re-write all
the program from scratch, with a natural increase
of the costs.

Since modifications are an important issue in the
software life-cycle, a model which describes these
transformations can be useful for several reasons:

e  Modelling the changes can help in
better understanding of a program.
In fact, through analyzing the changes
along with the reasons which made
them necessary and the effects of the
changes themselves, the functions of
the single parts of the program can be
better understood.

e It is important to trace the changes
undergone by the code. This can
allow to try to inductively infer some
properties owned by the code after a
new change. If X is the i-th version of
a program (the version obtained after
the i-th change), from the knowledge
of all the versions X,, X, ..., X, and
of the transformations Xy—X,,
X=X, ..., Xo1—=X,, along with the
effects of these changes upon the code
we can try to extract the elements
necessary to try to understand
possible effects of the next
transformation X, —Xp+1.

e It is important to identify the parts
of the code more subjected to
modifications. This is very useful in
the context of a domain analysis
method.

e  Such a model can be useful during the
testing phase. In fact, if we know that
a piece of code has been copied from
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another program which is known to
behave correctly, the testing phase can
be limited to the new phase and its
interaction with the copied chunk.

¢ The documentation can be produced
more easily using this model. Like for
the previous point, the copied parts
are already documented and the
related documentation can be simply
copied, too.

For all these reasons we define a model to
describe the changes that the source code of a
program undergoes in the later stages of its life-
cycle. This model is very simple, but Jjust for its
simplicity it is suited to all the situation in which
a program is modified.

The code is considered as a simple string of text,
without any associated syntactic or semantic
meaning. Of course such an approach presents its
drawbacks, first of all the fact that it cannot
provide any warranty on the correctness of the
code after it has been modified. On the other
hand, if a syntactic or a semantic value were
associated with the code, this would result in a
greater complexity and would go to the detriment
of the wanted generality because it would be
necessary to choose a particular programming
language for which to describe the changes.

The model is built of five operators which
formalize five different kinds of changes that a
string of characters, in our case the code, may
undergo. Some properties of these operators
which allow to reduce more transformations to a
single one and to invert a modification to get back
to a previous version of the code, have been
discovered and demonstrated.

After the model has been defined, a set of
functions integrated with a well- known text-
editor has been realized. These functions provide
the programmer with the operators constituting
the model and automatically keep trace of the
performed operations.

Here is the outline of the following sections.

We begin by defining some simple operations on
strings on which we further base the general
structure of the model (Section 2).

In Section 3 we introduce the reasons why to look
for possible simplifications. Then some
simplifications are introduced.

In Section 4 we describe some of the limits of the
model and an extension is proposed in order to
get over these limits and obtain the invertibility of
the operators.

In Section 5 the functionalities and some
interesting features of the tool which implements
the model are described.

Finally, Section 6 provides some conclusions and
directions for future work.

2. Definition of the Model

The model defined in this Section is very simple:
the files with the source code are treated Just like
plain text without any syntactic nor semantic
meaning, and the model consists of a set of
operators which allows to modify these files in
order to obtain new versions of the program. The
way the operators act on the code is ruled by a
series of parameters,

Each one of the operators that will be defined
formally describes a particular transformation
which is often used to modify a program for one
of the reasons seen in Section 1. The operators,
which allow to obtain any file starting from any
other file if combined with the right parameters,
are five:

e Insert (1): the effect of this operator is
the insertion of a new substring in a
given position of the code.

e Delete (y): this is the operator inverse
of Insert and allows to cancel part of
the code.

e Substitute  (o):  this operator
substitutes a determined part of the
code with a new string, It can be seen
as a deletion followed by an insertion.

* Replace (p): like Substitute, this
operator performs a substitution. In
this case the effect is not the
substitution of a given part of the
code, but the substitution of all the
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occurrences of a substring passed as a
parameter in the program.

e  Apply (a): this operator takes part of
the code and substitutes with it a
variable in a function passed as a
parameter. The resulting function
takes then the place of the original
part in the modified code.

A. Operations defined on strings

Treating the code as a simple string, there is a
need for introducing some basic operations for
the manipulation of strings upon which the
operators will be based.

First of all a domain for these operations has to be
defined. We define the alphabet I as the set of all
the characters which can be found in the code and
add to this set the void string € not contained in
the alphabet.

Then we define £ bottom as the union between
the alphabet and the void string:

7, =Zutel

followed by the languages constituted by the sets
of all the strings of length n:

EN=F
E(") - Z{ﬂ—l) x Y
As a convention we say that &' = €.

We can now define the language which the code
will belong to: the set of all the strings of any
length :

i :[u E(”)}.
n=0

This language £, along with the set of the natural
numbers N, constitutes the domain and the range
of the operations on strings that are now defined
and of the operators of the model, too.

The operations defined on strings are 12 and can
be grouped in two main categories: operations
which give a string as a result of their application
and operations which return an integer
representing a position in the string (Table I
reports this division).

From now on we will use the convention of
identifying by number 1 the position of the first
character in a string, and by number 0 the position
immediately before.

e CONCAT

This is the fundamental operation of our
model; it allows to build strings starting from
single characters or other strings. Its task is to
accept two strings as its arguments and to
return their juxtaposition the same order they
have been passed. Since this function will be
used many times in the course, for brevity it
will be denoted by the symbol - from now on.

The operation wants two strings as parameters
and returns a string, so its domain is given by

YRy,

while its range is X

Table 1. Operations On Strings.

Operations returning | Operations returning
a string an integer
CONCAT LENGTH
LTEND SAUX
LTRUNC SEARCH
RTEND

RTRUNC

MID

SUBSTRING

LSTRING

RSTRING

if x and y are two strings belonging to the
language £, the result of the concatenation of
x with y will be the string obtained by
juxtaposing y to x, i.e. xy. Then we have:
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CONCAT(-):Z" xZ" > %’
CONCAT(x,y)=x-y=xy

For example:

CONCAT(‘ ‘key,’,”Word”):“key”‘“Word’,:‘ nke
yword”

This operation has an associative property. In
fact we have:

(xy)z=xyz=xyz

x(yz)=x yz=xyz

and then:

(xy)z=x(y2).

This property allows to omit the parentheses
when performing more concatenation. Then it
is correct to write:

(xy)yz=x(yz)y=xyz.

LTEND

This function takes a string as its only
parameter and returns the first character of
this string. If the parameter is €, then there are
no characters in the string and the void string
& itself is returned. If we identify the n-th
character of a string s by the expression s[n],
then we can define:

LTEND(-):Z" > X,
LTEND(g)=¢
LTEND(s)=s[1] Vs#¢

For example:
LTEND(“model”)=“m”

LTRUNC

This function is in some way complementary
to LTEND. It gets a string as its only
parameter and truncates it returning all but the

first characters. In this case the void string € is
mapped in itself, too. The resulting string is
the only one that concatenated after the result
of LTEND on the same original string returns
the first string itself. The definition of
LTRUNC is the following:

LTRUNC():Z' - %'
LTRUNC(e) =¢
LTRUNC(s) = w such that
LTEND(s) - w =y

For example:

LTRUNC(“model”)=“odel”

LENGTH

To be able to define the following operations,
it is necessary to introduce a function which
belongs to the second group of operations (the
ones that return a number), This function is
LENGTH and its task is to calculate the
length of a string, intended as the number of
characters in it. For brevity we will denote this
function by the symbol | - | ie.
LENGTH(s)=|s|. The definition is recursive:
the length of the void string is set equal to 0,
then the length of any other string can be
calculated adding one to the length of the
same string without its first character. This
leads to the following definition:

|- |:Z" >N
el =0
|s/=1+|LTRUNC(s)| Vs=¢

For exampie:

[’model”|=1+{"odel”|=1+(1+["del")=...=1+(1
HIHI+H(1HeD)="))=.. =1+(1+(1+(1+(1+0)))
=5

RTEND

This operation can be considered the
“mirrored” version of LTEND. In fact, it
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returns the last character (the first from the
right) of the string passed as the only
parameter. The definition of RTEND is very
similar to the one given for LTEND:

RTEND(-):Z' — =,
RTEND(g) = ¢
RTEND(s) = s[)s]] Vs=e

For example:

RTEND(“model”)="1"

RTRUNC

RTRUNC is related to LTRUNC in the same
way RTEND is related to LTEND. It returns
all but the last characters of the string passed
as argument. This operation is defined as
follows:

RTRUNC():Z - %'
RTRUNC(g) =¢
RTRUNC(s) = w such that
w-RTEND(s) =

For example:

RTRUNC(*model”)=“mode”

MID

All the operations defined until now allow to
extract the external parts (starting from the left
or from the right side) of a string. MID returns
a single character in a middle position of a
string. The position is specified by a number.
Two parameters have to be passed to this
function: the string from which to extract the
character and the position of the character to
be extracted. If the position falls outside the
range covered by the string, i.e. if the position
is equal to O or greater than the length of the
string, the void string € is returned. The
function is defined in a recursive way, just
like LENGTH. Of course if the position is 1,
then the first character is returned using the

370

previously defined LTEND, otherwise the
character to be returned is found,
remembering that the »-th character in a string
is the same as the (n-/)-th character in the
same string without its first character, which
can be obtained using the operation of
LTRUNC. This leads to the definition:

MID():Z" > £,

MID(s5,0) = ¢

MID(s,n) =€ Vne N such that n>|g
MID(s]) = LTEND(s)

MID(s, 1) = MID(LTRUN C(s), n—1)

otherwise.

For example:

MID(*model”,3)=MID(LTRUNC(*“model”),
2)=MID(LTRUNC(LTRUNC(“model)),1)=

LTEND(LTRUNC(LTRUNC(“model”)))=L T
END(LTRUNC(“odel”))=L TEND(*del”)="d”

From this definition there follows immediately
that, like for the previously defined
operations:

MID(g,n)=¢ Vne N
And:

LTEND(s)=MID(s,1)
RTEND(s)=MID(s,]s]).

SUBSTRING

This function returns part of a string starting
from a given position and stopping to another
one. We use the convention of including the
character at the initial position, but not the one
at the ending position: the ending position
denotes the first character not to be taken.
This convention results in the difference
between the values of the two positions being
equal to the number of characters returned by
the operation, i.e. to the length of the returned
string. The discrimination between the initial
and the ending position is not given by the
order in which the parameters are passed to
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the function, but by the cardinal relation
between the two numbers: the greater one
denotes the final position, and the smaller one
the starting position. There are some
particular situations to take care of:

1. If the two numbers denoting the
positions are equal, then the void
string € is returned.

2. If the initial position is equal to 0, and
then it is outside the string, its value
is setto 1.

3. If the final position falls outside the
string, i.e. it is greater than the length
of the string plus 1 (|s|+1, if s is the
string), then it is set to |s|+1.

Like for other operations, this function is
defined recursively. If the difference between
the final and the initial position is exactly 1,
then the operation can be reduced to the
application of the previously defined MID,
otherwise, if we suppose n and m to be the
initial and the final position respectively, the
result is given by the concatenation between
the character at the position n, extracted using
MID, and the substring starting from the
position #+/ and ending at the position m.

We define SUBSTRING as:

SUBSTRING(,"): ¥ xNxN— 5
SUBSTRING(s, i ) =€
SUBSTRING(s, 1 m) =SUBSTRING(s; m, 1)
if n>m

SUBSTRING(s, %) = SUBSTRING(s], )

SUBSTRING(s 1, m) =SUBSTRING(s 1§ +1)

ifm>|d

SUBSTRING(s # n+1) =MIIXs )
SUBSTRING(s, 7 m) =MIIXs 7)-
SUBSTRING(s, n+L m) otherwise.

For example:

SUBSTRING(“model”,2,5)=MID(“model”,2)
-SUBSTRING(“model”,3,5)=

MID(“model”,2) MID(“model”,3)- SUB
STRING(“model” 4,5)=

MID(“model]”,2)-MID(“model”,3)-MID
(“modél",4)=“0”-“d”-“e”=‘ ;Ode”

LSTRING

This operation is a simple application of the
function SUBSTRING. It returns the first »n
characters, where » is specified as a parameter
of the given string. Its definition is the
following:

LSTRING(,,):Z" xN > %’
LSTRING(s, n) = SUBSTRING(s,1, 7 +1)

For example:

LSTRING(“model”,3)=SUBSTRING
(“model”,1,4)=“mod”

RSTRING

It is another application of SUBSTRING.
Here n characters are taken starting from the
right end of the string. In this case the ending
position is the first one after the end of the
string (Jsj+1 if s is the string), while the
starting position has to be put »n positions
before, at |s|+1-7. RSTRING is defined as:

RSTRING(,): " xN = %'
RSTRING(s,n) =
SUBSTRING (s, o — n+1,|s]+1)

For example:

RSTRING(“model”,2)=SUBSTRING
(“model” 4,6)="¢l”

SAUX

This is the second operation - we define that
belongs to the group of operations which
return a number as their result. It is a function
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that will be used only as an auxiliary operation
in defining the next operation of search of a
substring in a given string (SEARCH). The
purpose of SEARCH is to return the position
of the first occurrence of a substring in
another string starting from a given position;
the function returns 0 if the substring is not
found. This function will use another
operation (SAUX) which is slightly different
since its search starts always from the first
character and the returned value when the
substring is not found is not 0, but |s|+1, where
s is the string in which the search is
performed.

Two parameters are passed to SAUX: the
string in which to search and the string for
which to look for, in this order. There are
some particular cases to take into account:

1. If the string in which the search will
be performed is the void string €, the
substring will never be found and the
result of the function is [g[+1=1.

2. If the string searched for is the void
string €, the result will always be
negative, and so it will be equal to
|s]+1.

In any other case, the first thing to do is to
check if the string to search in starts with the
searched substring. If this is the case, the
result of the operation is 1. If the searched
substring is not found at the beginning of the
given string, it could be anywhere in the
middle of the string itself, so we add
recursively 1 to the result of the function
applied to the string without the first character
(obtained using LTRUNC). The recursion will
stop when the substring is found at the
beginning of the remaining characters, or
when there is no character ieft to look in and
the function is applied to €. In this case the
returned value is equal to |s|+1 as we wanted.
This leads to the definition:

SAUX():Z xZ' >N

SAUX(g,f) =1 Vte X
SAUX(s€)=|f+1 Vse T’
SAUX(s,t) =1 if LSTRING(s,[t}) =¢
SAUX(s,t) =1+ SAUX(LTRUNC(s),)

otherwise.

For example:

SAUX(*A model which describes the
evolution of the code”,”de”)=

1+SAUX(LTRUNC(“A model which
describes the evolution of the code’),”de”)=

I1+(1+SAUX(LTRUNC(*  model  which
describes the evolution of the code”),”de”))=

1+(1+(1+SAUX(LTRUNC(“model which
describes the evolution of the code”),”de”)))=

1+(1+(1+(1+SAUX(LTRUNC(“odel  which
describes the evolution of the
Code”),”de”))))=

I+(1+(1+(1+SAUX(“del which describes the
evolution of the code™),”de™)))=

IH(1+1H1+1))))=5

While:

SAUX(“one”,"I")=1+SAUX(LTRUNC(*One
), P)=1+(1+SAUX(LTRUNC(“ne”),”I™)=

1+(1+(1+SAUX(LTRUNC(“e”),"I")))=1+(1+
(I+SAUX(E,"I"))=1+(1+(1+1))=4

SEARCH

The definition of this function is very simple
using the auxiliary function just defined.
There is one more parameter than the two
seen for SAUX: the position from which to
start the search. Another difference is the
value returned when the search fails: it is not
the length of the string plus 1, but 0. This
means that the search in the void string & will
return 0 and not 1.
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If the starting position is 0, the position is set
to 1. In any other case, if the starting position
is n, the result is calculated using SAUX:
SAUX is applied to the part of the string to
the right of the starting position (with the
starting position included) which can be
obtained using RSTRING, and »-1 is added to
the result (in this way if SAUX returns i, then
the result of the addition is n, the real position
of the substring). If the obtained value is
smaller than or equal to the length of the
string in which the search is performed, then
SEARCH returns this value, otherwise the
search fails, and 0 is returned.

The definition for SEARCH is the following:

L] *
SEARCH(,)'% xI xN - N
*
SEARCH(S,I):U Vi e I and
Yn e N
SEARCH(s,r,O)=SEARCH(s,l,i)
*
Vit e ¥
SEARCH(S,I,n)=0 if
1~ 1+ SAUX(RSTRING (s,
[s,—n+]),r) z
SEARCH(A‘,I,H)rn—i-i-

SAUX (R STRING(s,’sIk no+1),1)
otherwise.

For example:

SEARCH(“A model which describes the
evolution of the code”,”de”,1)=

l-1+SAUX(RSTRING(“A model  which
describes the evolution of the code”,| “A
model which describes the evolution of the
code”|-1+1),”de”)=

0+SAUX(“A model which describes the
evolution of the code”,”de”)=5

While:

SEARCH(“A model which describes the
evolution of the code”,”de”,10)=

10-I+SAUX(RSTRING(“A  mode] which
describes the evolution of the code”| “A

Table 2. Operations On Strings:

model which describes the evolution of the
code”|-10+1),”de”)=

9+SAUX(RSTRING(“A model which
describes the evolution of the
code”,40),”de™)=

9+SAUX(*hich describes the evolution of the
code”,’de”)=9+6=15

And:

SEARCH(“A model which describes the
evolution of the code”,’I”,1)=0

because

1-1 +SAUX(RSTRING(“A  model which
describes the evolution of the code”,| “A:
model which describes the evolution of the
code”|-1+1),”de)=50

and

50>[A model which describes the evolution
of the code”|=49

Table 2 summarizes the defined operations.

B. Definition of the operators

In this subsection we define the operators briefly
introduced at the beginning of the Section.

* Insert (1)

The insertion of new parts is the simplest and
the most common transformation that the code
can undergo, and even the creation of a new
file from scratch can be seen as an insertion in
a void string. The parameters needed to
formalize this simple operation are three: the
code which is modified, the new string to
insert, and the position of the insertion. The
position of the insertion indicates the position
which will be held by the first character of the
inserted string; this means that it has to be
equal to |s|+1 if a new text has to be added at
the end of the code 5.

Domain, Range and Description

Operation Domain Range | Description

CONCAT(.,) T xy 8

LTEND(.) 3y Z

Concatenates two strings
First character of a string
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LTRUNCC(,") 54 )N String without the first character

|-] (LENGTH) b2 N Length of a string

RTEND() 3 z Last character of a string
RTRUNC(") v ¥ String without the last character
MID(:,") ¥ x N Z A character in the middle of a string
SUBSTRING(,,) |Z"xNxN |Z' Extracts a substring

LSTRING(,) T xN x Substring starting from the left
RSTRING(:,) T xN 4 Substring starting from the right
SAUX(-,") ¥ xE N Auxiliary search function
SEARCH(-,-,") 'xT xN [N Search a substring in a string

When the position of the insertion falls
outside the range covered by the code, the
string is inserted at its beginning or at its end.

In every case, the insertion can be done by
concatenating the substring preceding the
position ~of insertion (obtained  with
LSTRING) with the new string and then with
the substring following the position of
insertion (obtained using RSTRING). This
leads to:

) Z x Nx Z —)Z
1205 = UElx) YeselX
ens) = L(c[c+ls) Ve se 2 and

Vn e N such that n>\c+
ife .9 = LoTRING(gn—1)"5:
RSTRING(c,|cd—n+1) otherwise.

For example:

W(“This model is simple”,”’very “,15)=“This
model is very simple”

Delete (y)

This operator formalizes the change inverse to
the insertion: the deletion of part of the code.
For this operation it is necessary to specify
with two parameters the part of the code to
delete; these parameters are the position of the
first character to cancel and the position
following the last character to cancel. The
initial and the final positions are identified by
their cardinal order and not by the order in

which they are passed to the operator.
Whenever one of the parameters falls outside
the range covered by the code, it is set to the
boundary value.

The transformation is simply obtained by
concatenating the characters preceding the
deleted part with the ones following the same
part. Formally:

xE 3 xNxN-> 3
o) =y(ceb) if b>¢
ECO e) x(cl Yeeld

ﬁSTR} I%(ST [Nalglf e>|c\+1

otherwise.

For example:

v(“This model is very simple”,15,20)="This
model is simple”

¢ Substitute (o)
Another common kind of transformation is the
substitution of a chunk of code with another
one. The substitution is performed by deleting
part of the code and then inserting the new
string in the position previously occupied by
the cancelled characters. This can be obtained
by the application of the two operators already
defined: Delete and Insert. The required
parameters, apart from the code to modify,
consist in the new string to insert and the
positions of the beginning and the end of the
part to substitute (as for Delete, the positions
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are identified by their cardinal order and not
by the order in which they are passed to the
operator). The definition is based on the use
of x and 1, this means that the particular cases
are managed by these operators and there is
no need to specify many cases. The definition
is simply:

() 2 xNxNxZ' — 3
og_cébes) o(c,e,b,5) Ve,se X'

o(c, be,5) = (y(c be),b,s) otherwise.

For example:

o(“This model is rather
simple”,15,21,”very”)=“This model is very
simple”

Replace (p)

As said at the beginning of this Section, this
operator looks for all the occurrences of a
given substring in the code and substitutes
them with a new string. The parameters to
pass to the operator are the code to modify,
the searched substring and the string to insert.
If the searched substring is not present in the
p(“for(int num1=0;num1<5;numi++)

if (check==numl)
break;”,”num1”,”num2”)=
LSTRING(“for(int num1=0;num1<5;num1++)
if (check==num1)
break;”,

SEARCH(*for(int num1=0;num1<5;num1 ++)

if (check==num1)

break;”,”num1”,0)-1)-“num2”-

P(RSTRING(“for(int num1=0;num1<5;num1 ++)

if (check==pum1)

code, the result of the transformation is the
unmodified code. When an occurrence of the
searched string is found, the replacement can
be done as seen for Substitute by
concatenating the preceding part of the string
with the new string and the part of the code
following the last character of the searched
string. This is not sufficient, because all the
other occurrences of the string have to be
found, too. For this reason the function is
defined recursively and the operator is applied
to the string following the found string before
its concatenation with the left part of the string
and the new string to insert. This yields the
following definition:

D XE xS 5 F
st,w)=gs if SEARCH(stO) =0
stw)=LSTRING
s SEARCH( stO ,%
F(R TRING(S ARCH(sr0)+
I, , w) otherwise.

For example:

break;”,|” for(int num1=0;num1<5;num1++)

if (check==num1)

break;”|-

SEARCH(“for(int num1=0;num1 <5;numl++)
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if (check==num1)

break;”,”num1”,0)+1-"num1”|),”num1”,”’num2”)=

“for(int “-“num2” -p(*=0;num1<5;num1++)

if (check==numl)

break;”,”num1”,”’num2”)=...

“for(int num2=0;num2<5;num2++)
if (check==num2)
break;”

Apply (o)

This transformation is not as simple as the
previous one. It consists of the “application”
of a function written in the programming
language used in the code as part of the code
itself. For example, if a sequence of
instructions has to be repeated, a certain
number of times, this sequence can be seen as
the argument of a for-loop. The parameters to
pass to the operator are: the code to modify,
the starting and ending position of the chunk
of code to take as argument of the function to
apply, the function to apply, and the string
that is the variable in the function to apply and
which will be substituted by the selected
chunk of code. If the substring identifying the
variable is not present in the function, the
code is returned by the operator without any
change, otherwise the transformation consists
of a substitution (performed by the operator
Substitute) of the selected part of the code
with the function in which all the variable
occurrences  have been replaced (by the
operator Replace) by the selected chunk of
code. The definition of this operator is rather

For example:
o“int i=0;

i++;

)

exit(-2);”,10,13,”if (x1<10)
a=xl;
else

exit(-1)","x1”)=

o(“int i=0;
i++;
exit(-2);",10,13,p( if (x1<10)
a=xl1;
else

1)7,”x17,SUBSTRING(“int i=0;
i++;

;]

exit(-2);7,10,13)))=

o(“int i=0;
i++;
exit(-2);”,10,13,”if (i++<10)
a=i++;
else
exit(-1)")=
“int i=0;
if (i++<10)
a=i++;
else
exit(-1);
exit(-2);”
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The operators that constitute the model are
summarized in Table 3.

Table 3. The Operators of the Model

Operator Domain Range | Description

W) ' xNxZX 34 Insertion

XCr) T xNxN 34 Deletion

Blye) 2 xNxNxZ b3 Substitution

) Ty kY il Replacement of a
substring

Si-yirge) TxNxNxZ' xs |3 Application of a function

3. Properties of the Operators

This Section deals with some simplifications
possible when more operators, equal or different,
are applied consecutively to the same piece of
code.

This search for simplifications in the use of the
operators in order to reduce the number of
transformations necessary for getting from one
version to another of the code could seem to go
against the purpose of the model of describing
and recording every single change in the code.
This 15 not true, because the introduction of a
series of rules to simplify the sequence of the
modifications can be useful when trying to verify
some property of the code. In fact, a small
number of changes interesting for different zones
of the code may be more meaningful for a long
series of transformations always regarding the
same chunk of code because in this case it is more
difficult to see the ultimate goal of these
microchanges. These considerations apply when
we want to try to understand which features of the
original program can be found in the modified
version, which ones are lost in the
transformations, and which are the newly
acquired ones.

For example, let us suppose 4 to be a chunk of
code with the set of related properties P(4), and
T(4) to result from the application of a series s of
n operators to A4, and let us try to understand
which is the set of properties P(T(4)) of the
resulting program. It is intuitive that if there exists
a sequence of transformations s’ of length m,
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where it is m<n which brings from 4 to T(4), then
it will probably be easier to infer the properties
of T(A) starting from s’ than starting from s. A
deletion followed by an insertion in the same
position can be seen as a substitution, and this
point of view can be more meaningful when
rying to understand the effects of the
transformation.

¢ The simplifications introduced in the rest of
this Section are divided into two groups:

e simplifications possible when the
same operator is applied twice
consecutively

e simplifications possible when two
different operators are applied
consecutively.

It must be noted that all the properties are valid
only when the parameters identifying the
positions in the strings are in the range covered
by the strings which they are related to and when
the positions are passed to the operators with the
beginning value preceding the ending one.

A.  Simplifications involving a single
operator

All the simplifications introduced in this
Subsection refer to two consecutive applications
of the same operator. In many cases these are
properties which reduce to one the number of
transformations used to get from a version to
another of the code.
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The simplifications do not apply each time an
operator is applied twice consecutively, their
application is only possible when the parameters
satisfy some condition.

An example of the way these properties can be
demonstrated is to be found in Appendix.

1
e Insert|/Insert

e If certain conditions are verified, it is easy to
see how two applications of Insert can be
reduced to a single application of the same
operator to the code, while the other
application of u interests one of the inserted
strings. This happens when the inserted
strings are in some way adjacent in the
resulting code. There are three possible cases
in which this condition is verified:

1. With the result of the double
transformation the second inserted
string is immediately followed by the
first one. This happens when the
second insertion is performed with
the same insertion point of the first
transformation, and can be seen as the
insertion of the second string
concatenated with the first.

2. This case is the opposite of the
previous one: the second string
inserted appears immediately after the
first one. This happens when the
position of the second insertion is
equal to the position of the first
insertion plus the length of the first
inserted string, and comes to the same
result of the insertion of the first
string concatenated with the second.

3. The last case in which a double
insertion can be simplified occurs
when in the resulting code the second
string appears in the middle of the
first. This happens when the second
insertion point assumes a value

'From now on the combination of two operators will be
denoted by the symbol . For example, if o, and o, are two
operators, @0 w> indicates the operator obtained from their
combination if w» is applied before w,. This means that

o lw,(s) =, (@, (s))-

included between the first insertion
point and the first insertion point plus
the length of the inserted string. In
this case the transformations can be
reduced to the insertion of a string
obtained by concatenating the left
part of the first string with the second
string and the right part of the first
string once again. This concatenation
is indeed an insertion, so we have a
double insertion again, but this time
the first insertion is made on the
inserted string and not on the code.
This simplification does not reduce
the number of operations that have to
be performed, but can be useful when
other operators are then applied to the
code.

It has to be noted that the first two cases are only
particular cases of the third one, where the first or
the last substrings concatenated are equal to the
void string €. The property can be written as
follows:

1(1(cn,s)mr) e, myus,m—n+11))
fn<m<n+|d

e Delete]Delete

Two consecutive applications of Delete can
be simplified when the position of the first
character removed by the first cancellation
falls above one of the characters which
belong to the part deleted by the second
transformation. This happens in two
situations, of which the first is a particular
case of the second:

1. The two initial positions of the chunk
to delete are equal. In this case the
transformation can be reduced to the
cancellation of a number of
characters equal to the sum of the
lengths of the two chunks deleted
starting with the character at the
initial position for both operations.

2. The same kind of simplification can
be performed when the initial
position of the second transformation
falls before the initial position of the
first deletion, and the ending position
falls after the same position. In this
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case the number of characters
removed is still equal to the sum of
the lengths of the two strings deleted,
but the initial position is the initial
position of the second transformation.

This simplification can be expressed formally as:

X(p(eb,e) o m) = x(emn+e—b)

e  Substitute]|Substitute

The different cases in which a double
substitution can be simplified amount to four.
in all these situations the chunk substituted
by the second operator contains part of the
string inserted in the first transformation, or,
at least, is adjacent to this string.

1. The simplest situation occurs when
the whole string inserted in the first
transformation is fully contained in
the chunk deleted by the second
Substitute, i.e. if the initial and the
ending positions of the second
substitution fall respectively before
and after the first and the last
characters of the inserted string. In
this case the transformations can be
reduced to a simple substitution of
the chunk made up of a number of
characters equal to the sum of
characters deleted by the two original
transformations and starting from the
initial position used in the second
application of the operator. The
inserted string is the one inserted by
the second Substitute.

2. The second situation considered
occurs when the beginning position of
the substring to remove falls to the
left (or on) the first character of the
string inserted by the first Substitute,
but the ending position falls in the
middle of the same string. The
transformations cannot be reduced to
the application of a single operator,
but one of the operators can change:
the resulting transformations are a
deletion followed by a substitution. In
fact, the result is the same as that
which can be obtained by substituting
all the characters starting from the
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initial position given to the second
Substitute, for a total of characters
equal to the characters removed by
the first operation plus the characters
belonging to the original code deleted
by the second one, by the
concatenation of the second string
inserted with the first string inserted,
where the characters deleted by the
second transformation have been
removed by an application of Delete.
In this case the number of operators
is not reduced, but the simplification
can be useful because the new
sequence of changes could allow to
perform other simplifications that
were not possible before this
manipulation.

This sitmation is complementary to
the second one. It occurs when the
initial position of the second chunk to
delete falls in the middle of the string
inserted by the first Substitute, and
the ending position falls to the right
of the last character of the same
string. The result is equal to the one
obtained with a deletion followed by
a substitution, just like for the
previous case, with a change in the
parameters used, to be seen in the
formalization of the property.

The last situation is complementary to
the first one and occurs when all the
characters removed belong to the
string inserted by the first application
of Substitute. This means that the
starting position of the chunk deleted
by the second transformation falls to
the left of or above the inserted
string, while the ending position falls
to the right of or above the: last
character of the same string. The
transformations can then be reduced
to a simple substitution of the
characters deleted by the first
application of Substitute with a string
obtained by substituting the parts
removed by the second application of
o from the first inserted string with



the string inserted by the second
change.

All these simplifications can be written as
follows:

o(c,b,e,5),m,nt) =

c,mh i +e—g,t) if m<b and

n> +| .

c(c m,el- 7(]( 1, n— b+1)) if m<b and
+

2

oo bm e~ b (s m—b L4+
c,bn sm—b+1l|s+1) ¢
if n>b+ f and

o

<smg<
be,o(s,m—-b+1n +1t£)
Cﬁ'mzb and n<b+]s1b

e ReplaceReplace

For this combination of transformations,
the found property does not consist of a
real simplification, but of a simple
permutation of the parameters. This
property will be useful in the definition
of some of the properties that will be
introduced in the next Subsection.

The property can be applied when all the
occwrrences of a given string s are
substituted with another string ¢, and then
all the occurrences of ¢ are replaced by
another string ». This sequence of
transformations can be deceptive. In fact,
one could think that the same result could
be obtained simply if replacing all the
occurrences of s by the string u, but this
is not true, since this way the
occurrences of ¢ present in the original
code would not be replaced by the string
u, as it happens if the sequence of the
two Replace is applied. The only
possible  simplification  consists  in
changing the order of the replacement.
The same result can be obtained, in fact,
by replacing all the ¢ by s, and then all
the s by u, or , by replacing all the ¢ by u,
and then all the s by u, or, finally, by
replacing all the s by u, and then all the ¢
by u. This means that:

e

While it is not always true that:

p(p(c,s,t),t,u) = p(C, 8, u)

B. Simplifications involving two different
operators

The possible combinations of two operators taken
from a set of five are twenty-five. Not all these
combinations determine some simplification.
Table 4 summarizes the situation with a ¢
denoting the combinations for which some
properties have been found. In this Table the first
applied operator can be found on the horizontal
axis, while the vertical axis refers to the second
operator.

Table 4.
Simplifications

1 |y |o |p |a
1 LR E
X | ® | & | ¢
G (¢ |¢ | ¢
p +
o | ¢ ¢ | ¢

o Inserf][Delete

When a cancellation is followed by an
insertion, a simplification is possible only if
the starting position of the deleted chunk
coincides with the insertion point. In this
case, the result is the same to that which can
be obtained through a simple substitution:

Wy(c,b,e),b,5)=0(c,b,e,s)

e DeleteflInsert

This combination of operators is not as
simple as the previous one. A
simplification, or an interchange in the
order of the operators, can be performed
when one or more of the deleted
characters belong to the string inserted
by 1, or at least the removed chunk and
the inserted string are adjacent. There
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are four possible situations to take care

of:

1.

The deleted chunk contains the
whole string inserted by 1. This
happens when the starting position
(&) of the part of code to remove
falls to the right of or coincides
with the insertion point (#), and the
ending position of the part to delete
(e) falls to the right of the last
character of the inserted string (s),
so it is greater than or equal to
n+|s|. In this situation, after this
double transformation there will be
no trace of the inserted string and
the resulting code can be obtained
by a single cancellation.

The second situation considered
occurs when the starting position is
still to the left of the insertion point,
like in the previous case, but the
ending position falls in the middle
of the inserted string, i.e. to the left
of the last character of this string,
but to the right of the insertion
point. In this case it is not possible
to simplify the transformation using
a single operator, but we can invert
the order of the modifications if we
add another change not to be
performed on the code, but on the
string which is inserted by 1. In fact
we can first delete the part of the
original code that is removed by ¥
and then insert the part of the new
string which is not of interest
cancellation (obtained with another
application of ).

This situation is complementary to
the previous one: it occurs when the
ending position of the chunk to
delete falls to the right of the last
character of the inserted string,
while the starting position of the
same chunk falls in the middle of
this string. In this case the order of
the operators can be changed
adding another transformation, just
like in the previous situation,
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The last considered situation occurs
when all the deleted characters
belong to the inserted string, In this
case the result of the double change
can be obtained by deleting the
removed characters from the
originally inserted string and then
inserting the result in the code.

All these considerations can be formalized as
follows:;

Dec. 1995

c,be—

Et(c n,s),b,e) =

if b<n and e>n+|

%xcbm,,@e n+1)) if b<n

<e<n+
t(tx(cn,e—si) %(s,6—n+1[4+1)
n<bhb<n+|s and e>n+
%C@XUb Le—n+1))
n=b<n+is and n<e< n+|d
Substitute]lInsert

The different situations under which some
kind of property can be found for this
combination of operators, are analogous to

the

ones

remarked for the previous

combination;

1.

If the whole string inserted by 1 is
contained in the chunk that is
removed by o, after the substitution
there is no trace left of this string.
This means that the same result can
be obtained through a simple
substitution  interesting for the
characters of the original code that
are removed by the operator.

When the starting position of the
substituted chunk falls to the left of or
above the first character of the
inserted string and the ending
position of this chunk falls in the
middle of the same string, the two
transformations can be inverted in
their order if we add a deletion on the
string inserted by . In fact, we can
first  substitute the characters
belonging to the original code, and
then insert at the end of the string
added by o the characters of the
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string added by the original 1 not
interesting for o (extracted using ).

3. This situation is complementary to
the previous one. In this case the
ending position of the deletion falls to
the right of the last character of the
inserted string, while the starting
position falls in the middle of this
string. The order of the operators can
be inverted just like in the previous
situation.

4. When the substitution refers only
characters belonging to the inserted
string, we can get the same result if
we first substitute these characters
and then insert in the code the result
of this transformation.

This means that:

and
f1)>)n+|é1

e, m,8),bet) =
St e

if b<n arld n< eé

1
1(G(g?§<r5j+i an e>n+|§v+ )

e,mo(s,b—n+le—n+l1))
if n<b<n+|sd and n<e<n+ld

Insert][Substitute

The order of these two transformations
can be inverted when the insertion point
of t coincides with or is immediately
adjacent to the position of one of the
characters inserted by o. In this case, the
same result can be obtained if we
substitute the chunk of code deleted by o
with the string obtained through the
insertion of the characters passed to t in
the string passed to o:

L(O(C b, e, s) rz,t')j olc, bes,n—b+11))

b<n

Substitute][Delete

This combination allows a simplification
when the substituted chunk begins before the
position occupied by the string removed by
Delete, and ends after the same position. In
this situation, the whole deletion of all the

characters can be made by the single
Substitute:

(ﬁxggsgg)g”;;nss)=0(caman+e_bss)

Delete][Substitute

Once again The situations in which a
simplification  is  possible for  this
combination of operators are four. In all
these cases the chunk deleted by y contains
part of the string inserted by o or is at least
adjacent to it.

I. The simplest situation occurs when
all the characters inserted by o in
substitution of a chunk of the code,
are contained in the part of the code
deleted by y. In this case it is evident
that the transformation is reduced to a
simple deletion of the characters
deleted by x and present in the
original code together with the
characters removed by o to make
room for the inserted string.

2. When all the characters deleted
belong to the string inserted by o, we
can only invert the order in which the
operators are applied: the modified
code can be obtained if removing the
characters deleted by y from the
string inserted by o, and then
applying o with the result of this
application of Delete passed as the
string to insert in the code.

3. This situation and the following one
consider the cases where the
characters removed by Delete belong
part to the original code and part to
the string inserted by Substitute. If
the starting position of the chunk to
delete falls to the left of the first
character belonging to the string
inserted by o, and the ending position
of the same chunk falls in the middle
of  the same string, the
transformations produce the same
result of a substitution of the chunk
containing all the characters removed
by o plus the characters deleted by
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and belonging to the original code
with a string obtained by deleting the
characters removed by y from the
string inserted by o.

4. When the starting position of the
chunk to delete falls in the middle of
the string inserted by o and the
ending position falls to its right, the
same inversion in the order of the
operators as that introduced in case
3, can be applied. The only
distinction  between these two
situations consists of a different value
for some of the parameters.

The simplifications valid for this
combination are the following:

¢ bes),mn)=

Xc('f(m,n~ﬁr+e—)b) if m<b
3?‘15”21?”’1 b+l n—b+1)

c: :es S,m_ + !n— +
if b<m<bheld and b2nLbtld
olc,m,e, (s, n— +1) if m<bh
g?dbbSnsg+ " IH )

Goet+tn—0—s,x(ssm-b+1,is|+
if b<m<b+ly aﬁg n>b+ls

Apply[insert

Thke only simplification possible for this
combination of operators occurs when the
starting and the ending positions of the chunk
of code that will become argument of the
function passed to Apply coincide with the
first and the last characters of the string
inserted by 1. In this case the double
transformation can be seen as the insertion of
a string obtained by replacing all the
occurrences of the variable in the function by
the string inserted by 1:

(e, n,s),n,n+ls|, £,0)=v(c,n, p( £, 1,5))

Apply[[Substitute

This property is very similar to the previous
one: it can be applied only when the starting
and the ending positions of the chunk of code
that will become argument of the function
passed to Apply coincide with the first and
the last characters of the string inserted by o.

In this case, to get the same result in another
way, the first operator to apply is Replace as
in the previous property, but the second one
1s Substitute instead of Insert:

- b) 2 b) b + > 2 I =
%co%‘e SCS,!,S)) A
e Apply[Replace

The last property we introduce regards the
combination between Apply and Replace.
Particular care has to be taken in this case,
because Replace can induce some errors as
we have seen for the combination of this
operator with itself. If we consider an
application of o where u is the string chosen
to represent the variable in the function fthat
will be applied to a chunk of the code by the
operator, and we substitute all the
occurrences of a string # in the function # with
u, we could think that the result of the
transformations is the same as that we can
simply obtain if applying o with the original
function f where the variable is denoted by ¢
and no more by w. This is false. In fact,
proceeding like this the occurrences of u that
are present in the original version of / would
not be considered as variable as is done by
the double transformation which we started
from. The only property valid for this
combination of operators is a simple
permutation of the parameters 7 and u:

ofc,b,e,p( f,t,u), u)=aofc,b,e, p(f, u,t),t)

4. Extension of the Model

A major limit of the model introduced in the
previous Section is the non-invertibility of the
operators. It is not possible to rebuild the version
of the code preceding a transformation starting
from the knowledge of the resulting code and the
kind of operator applied. For example, after an
application of Delete it is not enough to know the
position of the removed characters and the
resulting code to get the original version of the
code because no data give information about the
cancelled part. This situation can be a limit when
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we keep trace of the transformations undergone
by a program, since every time we have to get a
desired previous version of the code it is
necessary to start from the very first version and
apply all the subsequent transformation until the
version is reached.

For this reason in the rest of this Section we will
introduce an extended version of the operators
previously defined, and then the inverse operators
for four of the five transformations (the inversion
of Replace would require the introduction of
more complex ranges. An approximation not
formally demonstrated of this inversion has been
introduced in the tool described in Section 5).

A. Extended operators

The extension of the operators strongly depends
on the operators introduced in the previous
Section, since the operation performed on the
code keeps unchange. In the following the
extended operators will be denoted by a star (For
example ' is the extended version of Insert).

o Insert(1)

The inverse of an operator must return
the parameters passed to the operator
starting from its results, this means
that in the case of Insert the result of
its inverse must contain the
unmodified code, the insertion point
and the inserted string. The extended
version of Insert must return the
modified version of the code plus
some data  which to extract the
insertion point and the inserted string
from. The insertion point is returned
as it is by 1, while the inserted string
could be drawn out from three
different data: the position of its last
character, its length, or the string
itself.

The chosen solution is the first for two
reasons: a number can be stored in
less space than a string, and this can
be useful when keeping track of a lot
of transformations. Returning a
number which identifies a position

means that the range of Insert
coincides with the domain of Delete.

The extended Insert returns three
elements in this order:

1. The modified code.
2. The insertion position.

3. The position following the last
character of the inserted string.

The formal definition of 1 is the following:
V)2 xNxZ -5 T x NxN

V(e,n,s)= (e, n,5),n,n+ls))

o Delete (y)

The inverse of Delete must return the
code before the transformation and
the starting and the ending positions
of the deleted chunk. In order to
rebuild the unmodified code it is
necessary to know the deleted string
and its position in the original version
of the code. In this case we cannot
choose among more solutions,
however a symmetry occurs since the
range of %' coincides with the domain
of . The deleted string cannot be
extracted directly from one of the
parameters, but it is obtained after
applying the operation SUBSTRING:

*

A (): E‘xleQI—)E'xg\IxE'
C c 0,e),min(o, e
Bs‘rfm%(, ,) (Be),

e Substitute (c)

The parameters required by o are
four: the code to modify, the starting
and the ending positions of the chunk
of the code to substitute and the new
string to insert. These are the data that
its inverse must return. Since this
operator is constituted by a
combination of Insert and Delete, its
extended version is similar to both of
extended versions of these operators.
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In fact it returns the modified code
and the starting position of the
inserted string (like in both 1" and 1),
the ending position of the inserted
string (like in 1) and the removed
characters (like in y"). There is still a
symmetry in the domain and the
range, since they coincide. In fact we
define:

0“(-,-&-,-):2' xNxNxz' -
=2 Z xNxNxZX

R SR N Sinibe)

*  Apply(a)

The five parameters that have to be
rebuilt starting from the result of o
are the ones passed to the operator;
the code before the transformation;
the starting and the ending positions
of the part of the code that becomes
argument of the applied function, the

function and the string denoting the
variable in the function. This
transformation is performed with a
substitution, that means that to get
back we need to know the position
occupied by the chunk removed and
the chunk itself, plus the ending
position of the inserted string (in this
case the function applied to the
substituted part of the code). The
function and the variable are returned
directly; this happens because of the
difficulty met with in trying to invert
Replace. The complete definition of
o is the following;
a'(~,-;-,-,-): ¥ x NxNx 2;‘ x2 -

> 2 XNxZ %X %y "
a (¢ be ) =(afcbe, f,1),b,
S ﬁs’rkfﬁ\r)(}(fc,ig,e),f,rf) )

Table 5 summarizes the extended operators.

Table 5. The Extended Operators

Operator | Domain Range

V() I xNxz' T xNxN

L () = xNxN S xNxs'

o (557°) ¥ xNxNx3" T xNxNx3'

& () I XNxNxE x5 | S xNxZ x5 x5

B. Inverse operators

After the introduction of an extended version for
the operators, it is now possible to define the
mverse for these transformations. The missing
inversion of Replace is due to its recursive nature,
It is the operator itself which looks for the
occurrences of the string to replace, and the
number of the substitutions is not fixed. This
would require a range of variable dimensions for
an extended operator which allows to rebuild the
original code. It is easy to note that a simple
exchange between the replaced and the replacing
strings is not a correct one. In fact, if we assume
to replace all the occurrences of string 5 by

string ¢, the replacement of al] the occurrences of ¢
in the resulting code by s could not give the
original code as its result, since this way the
originally present in the code would have been
substituted with s, too.

It has to be noted that the inversion of Delete and
Sigma returns the starting position of a chunk of
code always before its ending position, even if
this were not the case when the transformation
had been applied.

The demonstration of the fact that the inverse
oOperator applied on the result of the direct
Operator returns the original parameters can be
carried on the same way as followed when
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demonstrating the validity of the simplification,
an example of which can be found in Appendix.

386

e Insert

Of course the domain and the range of
the inverse operator must coincide
with the range and the domain of the
direct operator, respectively. This is
true for each of the inverse operators
introduced in the following.

The original code can simply be
obtained by deleting the characters
inserted through direct
transformation. The positions of the
first and the last one of these
characters are the second and the third
elements returned by the direct
operator. ~ The insertion  point
coincides with the second element of
the result, while the inserted string can
easily  be obtained  using
SUBSTRING:

(Q)"}(-,-,g: 5* x NxN = & xNx %

UV e b e) = (e be)sb,

Y opsGRINGES )

It is interestirg to note that this definition is
exactly the same as that given to the extended

version of Delete. This justifies the choice
made for the third element returned by 1.

e Delete

The inversion of Delete is somehow
symmetrical to the one performed for
Inseri. In this case in order to rebuild
the original version of the code we
have to reinsert the characters
removed by the transformation. The
other parameters are immediately
drawn out from the result of x':

@ T xR E > 5« Nx N
(X' )V‘ (C, n, S) = (L(C, H, S),n,n + 'SD

If we consider the definition of the
extended version of Insert we can note
that this is the same as the one just
introduced for the inverse of Delete.

Studies in Infor

This along with the symmetrical
consideration ~ made after  the
definition of (1')", means that Insert
and Delete are one the inverse of the
other not only intuitively, but from a
formal point of view, t00.

e  Substitute

To invert a substitution we have
simply to substitute  the  new
characters for the old ones. This leads
to the following definition:

(G‘)—i (_’,’.’_):20 ” NX N)( Et 5
T x NxNxZ

-

-] 3 . 3 e
c ) (ci f[.W)= cz,f,w),z,z+]w
gU)Bs(T’IiIfN (c,(z,c})’)

This is exactly the same definition given to

the direct version of the operators. That
means that Substitute is the inverse of itself.

2

e Apply

Some of the parameters passed to
Apply , having to be returned by (a'y
are returned directly in the result of
o . These parameters are the function
and its variable. The original version
of the code is rebuilt with a
substitution (since the core of Apply
itself is a substitution and the inverse
of a substitution is again 2
substitution), ~ while  the other
parameters can easily be extracted
from the other elements returned by
o as follows:

(o Y G n T X NX E TxY o>
-z xNxNxX xZ

a )7 (e bw, f,1) = (o(c,b b+
p(f,t,W)aw),b,bJerLfJ)

5. A Tool Which Implements the
Operators of the Model

To experiment the model introduced in the
previous Sections we developed a set of functions
that could be added to a well- known text editor:
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Xemacs. These functions allow the programmers
to perform transformations on their code in the
way the operators describe them. The
transformations are recorded in a file and other
functions interpret this file enabling a navigation
through all the versions of the code highlighting
the kind of transformation that led from one
version to another .

The operator to apply is selected from a menu and
the position parameters are specified using the
mouse.

The file containing the history of a program
records the date and time of change, the operator
applied and its parameters.

For the operators that insert new characters in the
code (Insert and Substitute) it is possible to
choose if these characters have to be taken from
the keyboard or from another file. When the
string is taken from a file, in the history file jt is
the name of the file together with the positions
that bound the inserted characters which are
recorded, not the characters. In this situation it is
very important to record the exact time of
change, since it is necessary to accede to the
right version of the file which the characters were
taken from to rebuild correctly the code when
navigating through the changes. If the source file
has changed since the extraction of the inserted
string, then the navigation functions are going to
be recursively applied to this file for getting its
version at the time of the extraction.

A possible way for the implementation of the
transformations is the simple application of the
definitions given for the operators plus some
auxiliary functions for the management of
windows and files. This approach is only
theoretically possible. In fact, the recursjve nature
of some of the functions used to treat the strings
made them very expensive in terms of used
memory. For example the function used to
calculate the length of a string is used directly or
indirectly in almost every other operation. For

example, if we recall its definition (lel=0,
Jsf:1+[LTRUNC(S)| VS#€) we can see
that the function has to be applied 1001 times to
calculate the length of a string  of 1,000

characters. For this reason the operators will use
the operations on strings pre-defined in the Elisp

language used to extend the functionalities of
Xemacs, and not the functions defined in Section?.

6. Conclusion

In this work we introduced a mode] that formally
describes the evolution of a program on which
some changes are performed in order to improve,
maintain or re-use it.

In this model the code is represented as a string
without any syntactic or semantic value. This
choice was made in order to get the most
generality for the model which was completely
independent of the used programming language.

The first step has been the definition of a set of
functions which allows to manipulate the strings
concatenating them, extracting some parts, or
calculating their length. Then five operators based
on these functions were introduced.

The  operators formally  describe the
transformations more frequently applied to a
program:

®  insertion of new parts;
®  deletion of part of the code;

substitution of a chunk of the code
for another one;

replacement of all the occurrences of
a given string by another one;

®  application of some function taking
as its argument part of the original
code.

The multiplicity of the transformations usually
encountered when modifying a program drove to
look for some properties which allowed to reduce
the number of operations necessary for getting
from one version of the code to a subsequent one.

Then the introduced Operators have been
extended in order to render them invertible. This
allows to rebuild older versions of a program
starting from the newer ones. Some symmetry has
been found on inverting the operators: the
insertion and the deletion are one the inverse of
the other, while the substitution coincides with its
inverse.
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Finally a set of Lisp functions have been written
to add to a text editor the capability of performing
the transformations described by the model and of
navigating through the different versions of the
code.

This model can be useful for several reasons.

It can help in the understanding of a program,
because realizing the changes undergone by the
code it makes it easier to identify the
functionalities associated with different parts of a
program.

Keeping trace of the old changes can help in
trying to foresee the effects of new changes, or to
identify the variant parts of a program in a
domain analysis context.

It can be useful in testing and documentation
phases because it can reduce the bulk of work to
do. also allowing the reuse of previous results.

The introduced properties make it easier to verify
the properties of the code since a reduction in the
number of changes can simplify the
understanding of the goal of transformations.

It would be interesting to try to apply this model
to a real case in order to evaluate its effective
potential. In the future the model will be used to
describe a set of transformations for some
programming language, which do not alter the
behaviour of a program. Then we will try to
identify some properties that can be found in a
program and the way the operators applied on the
code affect them.

Appendix
A sample demonstration

We want to demonstrate that:
if nE<msn+s then
(e, n,s),m,t)=yc,n,Us,m—n+ L2

This is done to show that if the hypothesis is true
then the right and the left sides of the equation are
equal.

From the definition of « we have for the left side:

388

W(1(c, n, 8),m,t) = LSTRING (( 1, 5),m—1)
t-RSTRING(Uc,n, S),Tt(c, n, S)T— m+1)

If we consider separately the first and the last
member of the concatenation we have:

LSTRING(t(c,n,sB, m-1)=LSTRING
f STRING(c¢,n—1)-s-RSTRING(c,
ad-n+l),m-1)

This means that we have to take the first m-1
characters starting from the left of a string
obtained by concatenating three strings. For this
hypothesis it is #<m and this implies that
1 —1< m—1. This means that all the characters
of the first substring belong to the result of
LSTRING.

For the hypothesis it is m<n+ |S| and then
m—n=< |S| Then all the characters that are
extracted from the other two substrings, which are
m-1-(n-1y=m-n all belong to s.

This means that:

LSTRING(«(c,n8),m=1)=
LSTRING{cEnE’I))-LST?IING(s,m—n)

In the same way for the third string;

RSTRING L(c,n,s)nb(c,ms)l- m+1) =
RSTRING(LSTR ch,n—l)-s-
RSTRING(c,|d—n+1),ld+|sd—m+1)

|c|+|s|-m+1 characters have to be taken from the
right side of the concatenation of three substrings.
If we calculate the difference between the length
of the extracted substring and the length of the
third substring we obtain
| +|s] - m+1=(c|-n+1)=|s|-n+m=0
for the starting hypothesis m = n+ |S|

This implies that the whole third substring is
contained in the result of RSTRING and that |-
n+m more characters have to be taken from the
other two substrings. The hypothesis 1 < m
implies that isl— n+m SIS', then all the
remaining characters are extracted from s:
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RSTRING (y¢, 1, ), (e, 8)| - m +1) =
RSTRING§S, i‘+ n—m)-
RSTRING(c,|d—n+1),|c/+ |- m +1)

We can finally write:

ie,n,s),m,t)=
LSTRING(c,n—1)- LSTRING(s,m—n)-¢-

RSTRING s, §+ n—m)-
RSTRINGEC, ~n+1)ld+|-m+1)

If we consider the right side of the equation
deduced from the definition of Insert we obtain
the same result:

we,n(s,m—n+1,1))=

Ue,n LSTRING (5,m —n) -t -
RSTRING (s, n+ B—[ - m)) =
LSTR_ING(C,H m]) LSTRING(st _ n)‘ .

RSTRING G, §+ n—m)-
RSTRINch, —n+1)ld+|d-m+1)
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