Scheduling Unit-Length Parts On Identical Machines
With A Constant Setup for Different Part Types

Alekos Triantafyllakis and Spyros G. Tzafestas

Intelligent Robotics and Control Unit

Department of Electrical and Computer Engineering
National Technical University of Athens

Zografou, Athens 15773

GREECE

Abstract: The problem of scheduling unit length tasks on
identical machines in an industrial production unit is con-
sidered. The tasks belong 1o k part types. such that any task
may and must belong to one part type. Every machine needs a
setup time. say S, when changing from one part type to another.
The problem is to obtain an assignment of tasks on machines
such that the makespan is minimized. For the case of k=2 part
types, a method that leads to the optimal solution (i.e.to the
minimum makespan), as well as the associated algorithm are
presented. For the case of k>2 part types, a method is
presented that reduces the complexity of the optimal algo-
rithm, and helps in the construction of approximate heuristic
algorithms. A 2-part type example is provided that illustrates
the application of the optimal algorithm, and shows the effect
of the machines set-up time upon the optimal schedule.

1. Introduction

The problem under consideration in this paper
belongs to the scheduling area, and is briefly as
follows. There is a set of m identical machines and
n unit length independent and nonpreemptive
tasks. The tasks belong to k part types, such that
any task may and must belong to one type. There
is a setup time, say S, on any machine when
changing from one part type to another, provided
that both tasks belong to different part types. The
setup is independent of the machines and the part
types (i.e. it is a constant parameter). No more
than one part can be processed by any machine at
a time and machine capacity is not a restriction.
For a given solution (i.e. the assignment of tasks
on machines), the workload of each machine can
be computed as the number of tasks that have
been assigned on the machine plus S times the
number of changeovers. The problem is to obtain
an assignment (and scheduling) of tasks on
machines such that the greatest workload
(makespan) is minimized.

In the literature,many special and general cases of
this problem have been studied and solved. In [1],
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anumber of dispatching rules for such scheduling
problems are exposed, and a comparison of their
effectiveness features is made. In [2-4], several
problems of this type are investigated, while in [5]
a survey of solutions for single machine problems
is made.

Particularly, in [5] it is shown that most problems
of this type, (even for the single machine case:
m=1) are NP-complete problems [6]. That is why
many works were devoted to finding special
models and subproblems, for which an optimal
solution can be found in finite (polynomial) time.
Two excellent surveys on the general scheduling
problem can be found in [7,8] and two
comprehensive textbooks are given in [9,10]. A
study of the complexity of computer algorithms is
presented in [11].

In this paper we will be concerned with the case
of m=2 identical machines, arbitrary numbers of
unit length tasks, and an arbitrary set-up time.
The optimization goal is to minimize the
makespan.

The structure of the paper is as follows. In Section
2, the problem is precisely formulated, and in
Section 3 the methodology for determining the
optimal solution for the 2-part type case is
presented, together with the proof of optimality.
Section 4 contains the detailed steps of the
optimal scheduling algorithm. In Section 5, we
provide a representative illustrative example.
Finally, in Section 6, we generalize the results to
the case of more than two task part types, and in
Section 7, we present some concluding remarks.
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2. Optimal Scheduling Problem
Formulation

In this section we formulate the problem of two
part types. We are given:

— m identical machines, all available from time
t=0, without any machine capacity
restriction.

- n unit length independent nonpreemptive
tasks (n , tasks of part type A and n, tasks of
part type B where n, +n,=n)

- a setup time S needed by every machine for
changing from one part type to the other.

At time t=0 no setup is needed by the machines
to start execution of tsks of any part type.

We define the following parameters:

- i machine index

- n,; the number of tasks of part type A
assigned on machine i (i = 1,...,m)

- ng:  the number of tasks of part type B

assigned on machine i (i = 1,...,m)
- X3 the number of setups on machine i

— W.. the workload of machine i,
W;=n,;+ng;+8x

- W_ :the makespan, W __ =max{W,}.

Problem:

Fi.n(! n AP g, and X, (i=1,...,m) such that Wmle is
minimized.

3. Scheduling Two Part Types of Unit
Length Tasks

Here we shall present the following proposition,
which will help us in constructing the optimal
scheduling algorithm of complexity O (logn).

Proposition

At least one optimal solution of the above
problem (Sec.2) has the property that
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Proof

By definition, the optimal solution is the solution
that provides the minimum makespan among all
feasible schedules. All feasible schedules can be
searched through the following two search levels.

Level 1 (For each machine independently of the
other machines)

(a) The machine does not make any changeover
(b) The machine one changeover

(c) The machine makes at least two changeovers

Level 2 (For the whole set of machines)
(a) No machine makes any changeover
(b) One machine makes at least one changeover

(c) At least two machines make at least one
changeover

Clearly, any feasible schedule may involve
combinations of cases belonging to both levels.
For a machine to make ! changeovers at level 1,
there must occur / transitions (interchanges)
among the part types under execution. With a
procedure by which all tasks of part type A are put
at the beginning, and those of part type B at the
end, we can obtain a scheme that contains at most
one changeover in each machine, and gives a
makespan less than, or equal to those
corresponding to case (c) of level 1. Thus, we
have reduced the possible cases to (a) and (b).

This will now be made for the feasible schedules
of level 2. Suppose that we have a feasible
schedule in which p machines (p<m) are making
changeover. It is obvious that each one of them
makes one changeover according to the case (b)
at level 1. Let us represent pictorially the partial
schedules for two of these p machines (Figgure 1).

We can now apply to these two machines a cyclic
procedure, which let us we give one task of part
type A from machine i to machine j, and one task
of part type B from machine j to machine i. In this
way we have

ng; =np+1
nBj =nBj'1
n,. =nAi-1
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Figure 1. Partial Schedule with Two Machines

n Aj’=n Aj+1

from which it follows that
Ng;'+M,;
=nBi+11M+S==-\1Vi=Wi

=nBi+nAi==~nBE +nAi +S=

n '+n,’=n_+n,.=>n.’'+n. ’'+S=
Bj “TAj "Bj TAjT Bj A

=11Bj+nAj+S==’Wj=Wj

This means that during this cyclic procedure the
two machines maintain their workloads
unchanged. However, continuing this procedure
takes us to one of the three cases below:

(a) Machine i does not make changeover and has
only B-tasks (n Ai<nBj).

(b) Machine j does not make changeover and has
only A-tasks (n . >nB}.).

(¢) Machines i and j do not make changeover and
have only B-tasks or A-tasks respectively
(n Al =nBj).

One observes that in each of these three cases the
partial makespan has been reduced by
S(n ;=Ng.), Or at most remained the same, since
only the workload of only one machine has been
reduced (n A% Dp:)- Thus the new schedule has
less than, or equall Imakespan to the original one,
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but one or two machines making changeover less
(k-10rk-2). On repeating the same procedure for
this schedule the situation is reached when only
one, or no machine makes changeover, and only
a single changeover exists, if it does. Thus, for
each feasible schedule of case (¢) of level 2, there
is a schedule of cases (a) and (b) of the same level
that gives smaller, or at most equal makespan.
The above implies that indeed the optimal
solution has the property that an optimal
schedule involves at most one changeover. This
completes the proof of the proposition.

Therefore, in the algorithm that follows, we
search the optimal solution between these two
cases. More specifically, we determine the best
solution for each one of these cases, and the best
of them is the desired optimal solution of the
problem.

4. The Optimal Scheduling Algorithm

Before presenting the steps of the optimal
algorithm we have to give some definitions.

- m,(mg)is the number of machines that
execute only part type A (B) tasks

- Round (x) is the closest integer to x. In
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particular if x equals an integer, sayy, plus 0.5 Ifm,=1 then W =n, =n, else
then Round (x) = y+1

— [x] is the closest integer to x, greater than or Set Wi=nAj= pe B i=1,...,mA—l and
equal to x. A
a—b ifa>b W _ =n, =n,-n (m —1)
_ Am A ALl A
D(a,b)= { (0 otherwise A A
Without loss of generality we assume thatn , =n._. Ul Y
The steps of the algorithm in pseudocode mode Ifm =1 then w o1 =Mp =N, else
are as follows:
Step 1: Set W.=n, ] i=m, +1,.,m—2and
T W 1
m, =Round |~ m m-1=Mpm.1 =Np gy 2 (Mg-1)
Set fg =N =1, W =S+2
3m A.m m

If m,=m then m, =m-1

4 Step 6:
m,=m-m ) _
B & Find an integer T such that max{Ci} is
Step 2: i
=0.i=m +1 minimiled, where
_ e C.=W.-D(W.-T),i=1,..,.m-1
[fmA—l then Wl—nm—nA else i i n‘1-—1
n
Set Wo=n,=|-—2 ,i=1,...,m,—1and C=S+2+ _2 D(Wi—T)
i A mA A i=1
WmA:nAmA:nA mA—]) Step T
. T
nm=(),|=1,...,mA Set n,\m=l+ z D(Wi"T),
— = = i=1
l[mB—1 then set Wm_“Bm““n else i
n —1
Set W=n_ = |—>|,i=m ,+1,.,m—1and n, =1+ 3 D(W T)
i Bi m A Bm
B l—m +1
W =n, =n,n,  (m,1) Setn, =W,-D(W.-T),i=1,..m, n, =0,
Set xi=(),i—1...., l_m/\.‘.l,_"’m-l
Step 3: Set nBi=Wi-D(Wi-T), i=mA+],...,m-1, ng.=0,
Wmﬂxl = miax {Wi} |=1,..‘,mA
xi=(),i=1,...,m-1,xm=1
Step 4: Set Wi=nm, i= 1,...,mA and
Set nA=nA-1, nR=nHAl, n=n-2 W}_:nBi’ i=mA+1,...,m—1

n

Sct m, = Round (T? (m-—l)), mB:m—l—m Set Wm=2+S+nAm+an

& Set W __=max {W}
max2 i i

Ifm, <m-1 then goto STEP 5 clse continue

If m = m-1 then goto STEP § else continue goto STEP 13

Step §: Step 8:

nA_={), i:mA+ l....m-1 If m=2 then goto STEP 10
]
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nAj=0, i=1,..,m-1 and nAm=1
nBi=O, i=1,...,m-2 and

Wm-l =an-1 =nB and an= 1

If m=3 then n,,=n,

AT Im=-2|

Wi 2=0am 2= 0,1, (M-3)

Step 9:

Find an integer T such that max{Ci} is
i

if m>3 then Wi=n i=1,..,m-3 and

minimized, where
C=W-D(W_-T),i=1,..,m-1 and
1 1 1
m—1
C_=5+2+ 3 D(W T)

i=1

Set W = max{C.}
m 1

ax2 ;
Set nAizwi-D(Wi-T), i=1,..m-2, nAm_] =()

Bn1= Y1 P W™D

Set nBiz(), i=1,..m-2and n

m—2
SetnAm=1+-.E D(Wi—T)and
i=1
an=1+D(Wm_1-T)
Setx=0,i=1,...m-1,x_=1.
1 m
Step 10:
SetnBi 1 ,mlandn —nB+1
Set W.=n, , i=1,...,m=2
Set W i I Al(mZ)andn =1
Step 11:

Find an integer T such that max{Ci} is
i
minimized, where
C=W,-D(W.T), i=1,.,m-1
m—1
C _=S+2+n_+ 3 D(WimT).

i=1

SetW = max{C.}
max2 i i

Set nAizwi-D(Wi-T), i=1,..,m-1and
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=(),i=1,...,m-1
m—1

Set n, =1+ igl D(Wi—T) and n, =l+ng

g

Set xi=0, i=1,...,m-1 and k.= 1

Step 12:

If m=3 then set W =min{w' W }
max2 max2’  max2

else set W =W
max2

max2
Step 13:
Wmax=min{ Wmaxl’wmaxz}
Step 14:

If the optlmal makespan w is W or
max

max1
L orw Jaan g then the optimal

values for n g, X (i =
steps 2,7,9 or 11 reﬁpculvely

1,..,m) are given by

The algorithm examines the cases with one
changeover (on machine m) and without
changeover in the schedule, and sclects among
them the bestone. Steps 1,2 and 3 provide the best
(minimum) makespan for the case where there is
no setup on any machine. In this case the
machines are splitinto two groups (m m )wnh
respect to n, and ng,. Then the n and n, tasks
are distributed among the m, and m, machmes
respectively on an equal basis.

Steps 4 through 12 examine the case where there
is exactly one setup only on machine m, providing
the best solution with a setup. Having defined m,
and m_ Step 6 or 9 or 11 in this case distributes
the tasks among the respective machines on an
equal basis to have the most balanced machinc
workloads. Some extreme cases e.g. m=2 or
m,=0 are also considered by the algorithm.
Finally Step 13 provides the optimal W may 20
Step 14 the final optimal values nan, n. and X,

Bi
(i=1,..,n). Having now the n, s npesandx; s

Bi
all tasks of the same part type on a given machine
are scheduled consecutively. Therefore the final
optimal schedule can easily be constructed.

From the proposition and the construction of the
algorithm it follows that the derived solution is
optimal.
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The complexity of the algorithm is dominated by
the complexity of Steps 6,9 and 11 (i.e. O (logn))
since a binary search can be applied between
integers proportional to n.

5. Example

In this section we present a simple but illustrative
example for the problem at hand.

Consider a two part type scheduling problem with
the following data:
m=5,n,=79, ng=63,5=83

Applying the presented optimal algorithm we get
as intermediate results the following:

After Step 3: Wmax1 = 32 (case without setup on
machine).

After Step 7: Wmax2 = 30.3 (case with one setup
on machine m).

Solving this example the algorithm did not
cxecute steps 8 to 12. Finally Step 13 finds the
optimal me—%[) 3 and Step 14 provides the
optimal valuesofn ., np. andx, (i=1,...,m) shown
in Table 1.

Table 1. Optimal Solution

il 1213|415

Dhij 30130 0] 019
0|0 ]30}f3]f3

x| olo|lo|lof1

w;| 30| 30 | 30 | 30303

Wmax = 30.3

As we have already mentioned, all tasks of the
same part type on a given machine are scheduled
consecutively. On machine m we first schedule all
19 tasks of part type A, then there is the setup S
and finally the three tasks of part type B
consecutively. Figure 2 shows the Gantt chart of
this optimal solution.
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At this point it is very useful to examine the same
problem from another point of view. We would
like to find how the setup S affects the optimal
makespan, as well as the decision on whether to
have a setup or not. Applying the algorithm for
different values of S we get the results shown in
Figure 3.

From this Figure we conclude that given m, and
there is a threshold of S if and only if S is less than
this threshold then the optimal solution always
includes one setup.

6. The Case of Scheduling Many Task
Part Types

In this section, a useful property will be
established for the case of many (more than two)
task part types when the set-up time is the same
for any switching among them.

Consider k part types of unit length tasks, namely

A A, A.k The different changeovers that

mlght be in a schedule are A1 A, AAy
A A, Ay-A,... Their number is equal t

k) _k(k-1)
25"

Suppose we have an initial schedule. Using the
methodology (theorem) presented in the paper,
we can transform this schedule into some other
schedule of smaller, or at most equal schedule
length, which will not contain the same
changeover more than two times. By generalizing
this theorem, and by applying it to the resulting
schedule, we further reduce the number of
changeovers.

On the basis of this schedule, we can draw a graph
containing k nodes, one for each part type. If the
schedule involves a changeover A.-A, between
the task part types A and A, then the graph
contains the u)rre%pondmg afc, that connects
node i with node j. For example suppose that we
have k=5 part types and that the schedule
contains the changeovers A -A,, A-A,, Az Ay

A;f A4andA -A.. Then the parl typegraph is lhe
following (F:gurc 4.)

If the graph possesses a closed path (cycle), such
as Aj-ArzALA,, then we make a cyclic exchange
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Figure 3. Effect of Setup Time on Optimal Makespan
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Ag Aj
Figure 4. Part Type Graph

of tasks in the schedule, as follows. We remove an
A,-task from the section that contains the
changeover A,-A , and put it into the schedule
that contains the changeover A,-A.. Then we
move an A3 -task from A-A, 10 Ap-A, and
finally an A -task from A,-A, 10 A,-A_. In this
way the schedule lengths of all sections remain
unchanged. If we continue this cyclic process in
the same exchange direction, we will arrive at a
point where one or more changeovers do not
exist anymore in the schedule, and in the
corresponding graph at least one arc of the closed
path is removed, while some arcs are replaced by
others. The important pointis that, certainly, with
this cyclic permutation, the number of arcs in the
graph is finally reduced. The question now arises.
Can we repeat the above cyclic process on the new
graph, and if yes,up to what point? The answer to
the first question is obvious. Yes, we can repeat
this procedure as long as the new graph involves
at least one closed path. To answer the second
question, the following property of geometry
must be involved. "If on a plane we have n points,
not belonging to a straight line every three, and |
straight segments that connect 1 pairs ( I=n) of
points, then there exists at least one closed line
(path)". From this property it follows that we can
repeat the cyclic procedure at least until there
remain k-1 arcs in the graph, or equivalently, k-1
changeovers in the corresponding schedule.

In other words, we have shown that having any
schedule, we can get a better (or in the worst case
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an equivalent) schedule, which has at most k-1
changeovers, as it happens with an optimal
schedule. The above method does not of course
solve the problem which remains NP-complete
(k, m, n.: arbitrary), but we reduce considerably
the complexity of the optimal algorithm. and
contribute to developing efficient heyristic
algorithms.

7. Concluding Remarks

In this paper, an effort was made to provide an
optimal solution to a scheduling problem not
studied in the past (according to the
authors’knowledge). This problem is based on the
idea of batch processing. The approach made,
guarantees a fast and optimal solution to the
problem of two part types, and simplifies
substantially the solution to the problem of more
than two part types (i.e. k>2), that at most k-1
changeovers are possible in each schedule. For
k=2 there is at most only one changeover.

Using the methodology presented in this paper
(k=2), we can also solve a different, practical and
more difficult problem than the original one:
Givenn ,, ny m, find the maximum set-up time S
(if any exists), such that the schedule length does
not exceed a given deadline T. This problem can
be solved using the corresponding Figure 3, that
relates the optimal schedule length, and the
set-up time S. The results of the paper can find
important applications since most manufacturing
processes involve more than one part type. The
authors are currently in contact with a local
discrete manufacturing company to identify
particular practical problems that can be solved
by the present algorithm.

Other results derived by the authors for various
scheduling models and problems can be found in
[12-15]. Although many and important results are
available in the industrial scheduling area, much
research is needed for identifying and solving
practical scheduling problems, that can be solved
efficiently in polynomial time.
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