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1. Introduction

IoT (Internet of Things) refers to the networked 
interconnection of everyday objects, which are 
often equipped with ubiquitous intelligence 
(Xia et al., 2012). IoT represents a concept of 
physical computational objects (such as sensors, 
home devices etc.) made accessible to humans 
via Internet. IoT devices are employed in a 
broad range of applications where information 
about device operation, performance and 
environmental conditions in device vicinity need 
to be monitored and controlled remotely. IoT 
applications have spread to almost every part of 
human activity, including consumer, commercial, 
industrial and infrastructure applications. Smart 
home IoT devices have a rising presence in 
consumer households: learning thermostats, 
energy tracking switches, video doorbells, 
smart baby observers, and remotely controlled 
washing machines, all increasingly available and 
affordable. These devices, using their sensors 
and actuators transform the regular house into a 
digital home, providing their user with data and 
control via the Internet. Commercial applications 
include healthcare, transportation, and building 
automation. Industrial applications of IoT include 
manufacturing, agriculture, and the military. 
Infrastructure applications include energy 
metering, environmental monitoring etc.

Under the umbrella of the IoT paradigm, several 
other models have emerged. In certain scenarios, it is 
of great convenience to use the edge device not only 
to collect and measure different parameters (such 
as temperature or humidity) or act accordingly but 
to store and process certain amounts of data. This 

model is called “fog computing”. As Fog computing 
is implemented at the edge of the network, it 
provides low latency, location awareness, and 
improves quality-of-services (QoS) for streaming 
and real-time applications (Stojmenovic & Wen, 
2014, Chiang & Zhang, 2016). 

IoT devices typically use wireless transmission, 
utilising a broad range of communication standards 
such as short-range IEEE 802.15.4 or IEEE 802.11 
networks or long-range networks such as GSM, 
LTE, 5G and others. In the case of the short-
range communication standards, IoT devices are 
mutually interconnected to form a local network, 
further connected to the Web server through 
network gateway, which also acts as a network 
controller or network sink node (Figure 1).  
In the case of long-range networks, IoT devices 
are capable to directly communicate with the Web 
server. The concept of fog computing uses fog 
nodes for data processing to significantly decrease 
the load on cloud infrastructure, while additionally 
reducing the data latency.

Despite very diverse communication technologies 
on lower layers of protocol stack, IoT devices 
tend to use common protocols on higher layers to 
enable compatibility with ever-evolving Internet 
technologies. Most IoT devices rely on TCP/IP 
protocol stack to be able to interact via Internet 
infrastructure. Although there are special protocols 
developed for inter-machine communication, such 
as MQTT - Message Queuing Telemetry Transport 
(Banks et al., 2019, Kumar & Dezfouli, 2019) or 
CoAP - Constrained Application Protocol (Shelby 
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et al., 2014), general web protocols are in heavy 
usage in IoT. Improvement of these protocols 
can potentially bring benefits to the performance 
and security of IoT, which has been particularly 
challenged (Mahmoud et al., 2016).

Figure 1. Typical IoT architecture

HTTP (HyperText Transfer Protocol) has come 
a long way from its initial version and use for 
basic modest web-pages. Today the needs for 
performance and security require complex 
protocols capable to serve multimedia and various 
web applications.

The goal of this paper is to evaluate the use of 
HTTP for different scenarios in IoT, focusing 
on the analysis of the data latency between fog 
nodes and the web server. The main aim is to test 
the new HTTP/3 protocol, whose standardisation 
is still under development and which provides 
a breakthrough in the HTTP evolution. For that 
purpose, a IoT infrastructure was created and 
different scenarios were configured.

The contributions of this paper are as follows:

	- A network performance measurement 
methodology for IoT scenarios is built. It 
can be tuned according to the additional 
scenarios needed;

	- The novell HTTP/3 protocol boosts the 
performance of IoT-related traffic, in 
comparison with the HTTP/2 protocol.

The rest of the paper is organised as follows. In 
Section 2, the problem statement is presented, 
along with the selected related works. Section 
3 sets forth the methodology and describes the 

testbed. The results are described in Section 4. 
Section 5 concludes the paper and presents ideas 
for future work.

2. Background

Application-level network protocols in use for 
IoT fall into two categories: general-purpose 
protocols and specific protocols. While the HTTP 
is the main protocol in the first group, the second 
one is populated with several protocols, such as: 
MQTT, CoAT, XMPP (Extensible Messaging and 
Presence Protocol) and others. Extensive previews 
of the protocols utilised for IoT are given in 
(Čolaković & Hadžialić, 2018; Dizdarević et al., 
2019, Al-Masri et al., 2020, Silva et al., 2021).

HTTP, the running force of World Wide Web 
(WWW), in its first version was a simple client-
server pull protocol, using one TCP (Transmission 
Control Protocol) connection for transfer of one 
web-page object, from server to client. HTTP 
requires a reliable transfer to render the web 
content completely and without errors. Therefore, 
only TCP was considered as a transport layer 
protocol. Although WWW by definition is not 
a real-time service, the price of TCP connection 
establishment has proven to be significantly high. 
In the non-persistent HTTP (versions 0.9 and 
1.0) every object (such as JavaScript code, GIF 
images, and text) was transferred using its separate 
connection. Since the Internet grew, the round 
time trip (RTT) became a significant element in 
the equation, increasing the whole TCP connection 
establishment time. Version 1.1 of HTTP brought 
about a plethora of optional features. However, 
many of them were never implemented.

The second implementation of HTTP was forged 
under the supervision of Google and Mozilla 
and inherited SPDY. HTTP/2 is supported by 
all major web browsers and by virtually all 
popular web-servers, such as Apache, Nginx and 
Internet Information Server. HTTP/2 support 
is usually not enabled by default but requires  
special configuration.

While HTTP/2 has brought about many 
improvements, the inherent burden of the 
TCP connection negotiation delay, as well as 
HOL blocking, remained as serious pitfalls 
(Oda & Yamaguchi, 2018). QUIC (Quick UDP 
Internet Connection) was initiated as a Google 
experimental protocol, which breaks up the 
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continuity of TCP-based WWW and uses UDP 
(User Datagram Protocol). While in the beginning 
it was solely supported by Google services, QUIC 
swiftly expanded over Google’s border, getting 
support on web-servers Caddy (Anon, 2021) and 
LiteSpeed (LiteSpeed Technologies Inc, 2021). 
The IETF renamed the term “HTTP over QUIC” 
as HTTP/3, therefore officially bringing about the 
next HTTP generation (IETF, 2018; Yong et al., 
2017, Polese et al., 2019).

The first delay reduction is related to the three-
way handshake, which is absent in UDP and 
therefore in HTTP/3 too. Another means of 
performance improvement is related to the 
TLS (Transport Layer Security) handshake, 
which involves an exchange of cryptographic 
data required for the connection encryption. It 
is important to state that TLS 1.3 handshake 
includes fewer steps than version 1.2 when 
using TCP or UDP. Various cases of connection 
establishment are given in Figure 2. 

Figure 2. Different RTTs when (a) the client has 
never connected to the server, (b) the client has 

already connected to the server before

HTTP over QUIC was from the very beginning 
supported by Chrome and Opera. This option can 
be enabled/disabled through advanced settings. 
HTTP/3 is supported by various command-line 
tools, such as cURL and many libraries support 
both client and server.

The standardisation of HTTP/3 is still in progress. 
Currently (April, 2021) there is a 34th draft 
version published by the IETF (IETF, 2021).

Security is mandatory in HTTP/3. A special 
protocol called QUIC Crypto was designed by 
Google to be compatible with TLS 1.3.

2.2 Related Work

The issue of HTTP performance in IoT scenarios 
was investigated by Bziuk et al. (2018), with 
focus on version 1.1 with pipelining. This 
work concluded that HTTP 1.1 suffered from a 
significant overload due to handling multiple 
connections. It recommended further research to 
be directed towards newer protocols.

The issue of overhead was analysed by Yokotani 
& Sasaki (2016). They contrasted HTTP and 
MQTT and found out that the inherent properties 
of the TCP connection significantly degraded 
performances of HTTP. 

Naik (2017) contrasted four protocols used in 
IoT: MQTT, CoAP, AMQP (Advanced Message 
Queuing Protocol) and HTTP/1.1 according to 
different criteria, such as message size, latency 
and reliability. This research also emphasised the 
issue of TCP connection overheads and its impact 
on the performance of the HTTP.

Elmangoush (2017) made a comparative review of 
5 protocols used in IoT scenarios, and conducted 
measurement of performance of HTTP1 and 
HTTP2 under different channel conditions. 
HTTP2 proved to be superior in case of numerous 
concurrent requests, but added overhead with use 
of SSL (Secure Sockets Layer).

Currently, there is a modest number of papers 
dealing with the use of HTTP/3 for IoT. Mostly 
the focus is on the use of QUIC as a transport 
layer protocol.

Researchers have paired QUIC with native IoT 
protocols in order to achieve better security. 
Alqattaa & Loebenberger (2020) proposed a 
model for crypto-gateway using MQTT over 
QUIC with the goal of moving the overhead of 
encryption from constrained nodes to a gateway, 
which is connected to the cloud.

Liri et al. (2018) examined how robust IoT 
protocols are. It concluded that adapted QUIC 
protocol may greatly improve communication 
performance, which would enable QUIC to be a 
potential request-response IoT protocol alternative 
to CoAP.

Eggert (2020) explored the general feasibility 
of QUIC deployment for IoT infrastructure. The 
main reason for the use of QUIC was its inherent 
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security. It concluded that the measured memory 
footprint, energy consumption, and performance 
were suitable for constrained devices, but with 
specific improvements. 

3. Methodology

The basic idea for testing was to create an 
environment that would be closely mapped to 
realistic IoT scenarios and utilise web protocols. That 
implies the use of the wireless network, a typical IoT 
device acting as a fog node and a web server. 

The established testbed consists of: 

	- Raspberry Pi 4 (Version B, 4 GB)

	- Server (Ubuntu Server ver. 18.04)

	- Wi-Fi router (802.11g) 

The web-server used was Nginx, custom compiled 
using the quiche library to support HTTP/3. Nginx 
is an open-source web-server, capable of serving 
as a reverse proxy and load balancer. 

The Raspberry Pi is used as a client. It is an 
inexpensive small computer, with support for 
a great number of peripherals and a common 
solution for different IoT based systems (Milošević 
et al., 2019). It has Raspbian OS installed and the 
cURL 7.75, a developer version, custom compiled 
with the quiche library. cURL is a versatile tool, 
supporting dozens of protocols and it is equipped 
with additional options for performance metrics. 
It is chosen also because of its strong support for 
HTTP/3 and its different implementations.

The environment where IoT devices work can 
cause packet loss and delay. Depending on the 
specific scenarios and service demands, these can 
be tolerated to a lesser or greater extent (Mocnej 
et al., 2017; Pekar et al., 2020).

To perform the tests in an environment which 
would be as realistic as possible, the delay and 
loss was simulated using the NetEm tool. (The 
Linux Foundation, 2021) NetEm is built using 
the existing Quality of Service (QoS) and 
Differentiated Services (diffserv) facilities in the 
Linux kernel. It is available out-of-the-box in 
Linux distributions and can be administered via 
the command line.

NetEm tool enables one to introduce various 
events in the network traffic, such as delay, packet 
reordering, and packet loss and so on. 

Figure 3 shows a conceptual view of the testbed 
used. The cURL’s timing in HTTP scenarios is 
reported using five variables (Cornwell, 2018): 
DNS Lookup, TCP handshake, SSL handshake, 
Wait and Data Transfer.

Figure 3. The testbed experiment

HTTP/1 without encryption has zero SSL 
handshake latency. HTTP/3, using UDP, has 
zero TCP handshake latency. HTTP/2 has both 
handshake and SSL latencies.

DNS Lookup can be a significant indicator and can 
greatly impact the whole timing. However, since 
the test was done in LAN environment and also 
DNS query response is cached, the DNS timing is 
not taken into account for the measurement.

Measured results are collected for each packet, 
where two metrics are used: response time and 
end-to-end delay. Response time represents the 
time required for web server to respond to user 
request and is calculated as the difference between 
the time when data transfer starts and the time 
when DNS name lookup is finished. End-to-end 
delay is calculated as the time difference between 
the total time and DNS name lookup time (as the 
DNS lookup was not relevant in this setup). 

The scenarios involved three cases: lossless 
transfer, 10% packet loss and Gilbert Elliot model 
(Hasslinger & Hohlfeld, 2008) for three versions 
of HTTP (1, 2 and 3). The Gilbert-Eliot model was 
introduced with the following parameters: move-
to-burstmode (p) of 1%, move-to-gapmode (r) of 
10%, drop-in-burstmode (1-h) of 70% and drop-
in-gap mode (1-k) of 0.1%.

In the first scenario, client and server communicate 
without packet loss, thus there are no additional 
delays in their communication, except due 
protocol overhead. In the second scenario packets 
are exchanged by client and server with 10% 
loss rate, thus delay will be introduced since 
transmit station will need a certain timeout before 
starting retransmission. In the last scenario, client 
and server communicate through the Gilbert-
Elliot channel model that creates burst errors 
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in transmitted packets. In this scenario packets 
will be received as incorrect so destination will 
immediately require packet retransmission from 
source thus delays are expected to be shorter than 
in the second scenario.

Testbed experiment is performed for two different 
data sizes representing two different types of  
fog nodes. 

In the first case the upload of a very small file 
(30 B) is tested, which represents direct upload 
of data from fog node to web server. This kind 
of scenario is typical for singular IoT nodes, 
which are connected directly to the Cloud, where 
a certain amount of data processing is performed 
on the fog node (Figure 1), which is typically 
implemented as part of the IoT node itself.

In the second case the upload of a 3.5 KB file 
is tested, which can be taken as an example of 
cumulative data that a fog node collects from 
multiple sensors and then sends to the webserver. 
This kind of scenario is typical when multiple 
IoT nodes send data items to a fog node, which 
performs data processing and bundles data in a 
larger data unit before sending it to the web server.

4. Results and Discussion

The timings logged with cURL are serialised 
into a CSV file and then processed using Matlab, 
which contains around 3000 packets for every 
scenario. Since some of the measured values 
represent outliers, those values which amount to 
more than three scaled median absolute deviations 
(MAD) are removed from measured results.

The web server response time is displayed for 
all three scenarios (lossless, 10% packet loss, the 
Gilbert-Elliot channel model) in Table 1 for 30-
byte files, and also in Table 2 for 3.5 KB files. 
Results are shown in form of mean deviation and 
standard deviation value of measured results for 
every scenario.

4.1 Response Time for Two File Sizes

Response time is given for a file of 30 B and one 
of 3.5 KB in Tables 1 and 2.

Obtained results for web response times are the 
shortest for HTTP/1 and HTTP/3 in all scenarios 
for both file sizes, while HTTP/2 protocol 

obtains a significantly longer web response time. 
HTTP/1 has a short response time since it does not  
use authentication.

Table 1. Web server response time for a 30 B file

Scenario
HTTP/1 

Mean St. Deviation
Lossless 52.86 ms 47.19 ms

10% packet loss 52.68 ms 49.57 ms
Gilbert-Elliot 20.22 ms 35.23 ms

HTTP/2
Lossless 88.50 ms 31.19 ms

10% packet loss 107.07 ms 54.94 ms
Gilbert-Elliot 41.74 ms 45.88 ms

HTTP/3
Lossless 27.26 ms 31.47 ms

10% packet loss 54.50 ms 46.33 ms
Gilbert-Elliot 55.21 ms 41.77 ms

Table 2. Web server response time for a 3.5 KB file

Scenario
HTTP/1 

Mean St. Deviation
Lossless 44.43 ms 42.88 ms

10% packet loss 50.84 ms 50.19 ms
Gilbert-Elliot 62.06 ms 49.21 ms

HTTP/2
Lossless 99.25 ms 35.60 ms

10% packet loss 137.94 ms 79.68 ms
Gilbert-Elliot 85.52 ms 98.55 ms

HTTP/3
Lossless 46.45 ms 35.09 ms

10% packet loss 54.93 ms 47.43 ms
Gilbert-Elliot 56.57 ms 45.63 ms

Due to the new TLS 1.3 handshaking mechanism 
HTTP/3 is a close match for non-secure HTTP/1. 
On the other hand, HTTP/2 has a significantly 
higher web response time due to TLS 1.2 
handshaking mechanism which involves three-step 
handshake mechanisms. Also, in scenarios which 
include complete packet loss or damaged packets 
with burst errors, HTTP/3 significantly outperforms 
HTTP/2, thanks to the new QUIC protocol. 

4.2 End-to-end Upload Delay  
for a 30 B File 

Results for end-to-end delay for the transfer of 
a small file are presented in Table 3, while these 
values are also presented in the form of histograms 
of end-to-end delay for all protocols displayed on 
the same graph.



https://www.sic.ici.ro

80 Marjan Milošević, Vladimir Mladenović, Uroš Pešović

Table 3. End-to-end delay for the upload of small 
packets (30 B) in different scenarios

Scenario
HTTP/1 

Mean St. Deviation
Lossless 65.4 ms 50.5 ms

10% packet loss 82.3 ms 78.6 ms
Gilbert-Elliot 64.3 ms 51.5 ms

HTTP/2
Lossless 96.6 ms 31. 4 ms

10% packet loss 130.5 ms 70.2 ms
Gilbert-Elliot 65.8 ms 54.5 ms

HTTP/3
Lossless 67.5 ms 51.1 ms

10% packet loss 77.7 ms 52.5 ms
Gilbert-Elliot 73.5 ms 45.9 ms

In the case of the lossless upload transmission 
from a node to the server (Figure 4), results 

indicate that HTTP/1 protocol has the shortest 
end-to-end delay followed closely matched by 
HTTP/3 protocol. HTTP/1 has a shorter end-
to end delay since it does not use any form of 
security, like HTTP/2 and HTTP/3 protocols do. 
According to the results, HTTP/3 outperforms 
HTTP/2 which on average has a 43% longer 
end-to-end delay, due to the newer TLS 1.3 
handshake mechanism.

In the case of the 10% packet loss transmission 
from node to server (Figure 5), results indicate that 
the new HTTP/3 protocol has the shortest end-to-
end delay, followed closely by HTTP/1 protocol. 
The results show that HTTP/3 outperforms 
HTTP/2 which on average has a 68% longer end-
to-end delay, due to the QUIC protocol which 
is based on UDP unlike the other two protocols 
which are based on TCP protocol.

Figure 4. Lossless upload of a very small file (30 B)

Figure 5. Upload of a very small file (30 B) with 10% packet loss
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In the case of packet transmission modelled by the 
Gilbert-Elliot channel model (Figure 6), results 
indicate that HTTP/1 protocol has the shortest 
end-to-end delay, followed closely by HTTP/2 
protocol. The results indicate that HTTP/3 has 
on average a 11% longer end-to-end delay than 
HTTP/2. The slight increase of end-to-end delay 
in HTTP/3 protocol is due to connectionless 
UDP transfer protocol, which does not start 
retransmission immediately when damaged 
packet loss is detected as connection-oriented TCP 
protocol does for HTTP/1 and HTTP/2 protocols.

4.3 Upload of a 3.5 KB File

The measurements results, presented in Table 4, 
show the distribution of end-to-end delay for a 
packet size of 3.5 KB for all three protocols in 
different simulation scenarios. 

Table 4. End-to-end delay for the upload of a 3.5 KB 
file in different scenarios

Scenario
HTTP/1 

Mean St. Deviation
Lossless 53.2 ms 44.27 ms

10% packet loss 79.7 ms 78.3 ms
Gilbert-Elliot 70.0 ms 51.3 ms

HTTP/2
Lossless 110.9 ms 36. 2 ms

10% packet loss 184.9 ms 110.4 ms
Gilbert-Elliot 239.5 ms 233.3 ms

HTTP/3
Lossless 78.3 ms 44.9 ms

10% packet loss 94.8 ms 57.8 ms
Gilbert-Elliot 84.6 ms 60.8 ms

In the case of the lossless upload transmission 
from node to server (Figure 7), results indicate 

Figure 6. Upload of a very small file (30 B) modelled with the Gilbert-Elliot channel model

Figure 7. Lossless upload of a 3,5 KB file
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that HTTP/1 protocol has the shortest end-to-
end delay, while HTTP/3 protocol has a 47% 
longer end-to-end delay. According to the results, 
HTTP/3 outperforms HTTP/2 which on average 
has a 41% longer end-to-end delay. This delay 
originates from TLS security overhead in HTTP/3 
and HTTP/3 protocols.

In the case of the 10% packet loss transmission 
from node to server (Figure 8), results indicate 
that HTTP/1 protocol has the shortest end-to-end 
delay, followed closely by HTTP/3 protocol with 
a 19% longer end-to-end delay time. According to 
the results, HTTP/3 outperforms HTTP/2 which 
on average has a two times longer end-to-end 
delay. The main reason for it is the problem with 
HOL (Head-of-Line) blocking in the case of lost 
packet block reception queue.

In the case of the packet transmission modelled 
by the Gilbert-Elliot channel model (Figure 9), 
results indicate that HTTP/1 protocol has the 
shortest end-to-end delay, followed closely by 
HTTP/3 protocol with a 20% longer end-to-
end delay. According to the results, HTTP/3 
outperforms HTTP/2 which on average has a three 
times longer end-to-end delay. The reason for that 
is the problem in the case of HOL blocking when 
lost packet block reception queue.

5. Conclusions

By comparing the results obtained by the protocols 
HTTP/2 and HTTP/3 as they are depicted in the 
Tables 3 and 4, it can be stated that the HTTP/3 
protocol significantly outperforms the HTTP/2 
protocol version in majority of scenarios (9 

Figure 8. Upload of a 3.5 KB file with 10% packet loss

Figure 9. Upload of a 3.5 KB file modelled with Gilbert-Elliot channel model
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out of 12), in terms of end-to-end delay, which 
significantly affects the responsiveness of 
implemented IoT applications. Compared to the 
HTTP/1 protocol, which offers no security unlike 
the new HTTP/3 protocol, the latter almost matches 
the end-to-end delay performance of the former.

The results of the experiment show that HTTP/3 
protocol has successfully solved problems faced by 
other versions of the HTTP, and still improved end-
to-end delay, which is one of the main performance 
evaluation parameters for IoT applications.

On the other hand, as encryption is mandatory 
for HTTP/3, the security is radically improved, 
in comparison with HTTP 1. Introducing client 
authentication (also built in TLS) can further 
foster security in specific scenarios with clients 
of a greater level of mobility. It is of essential 
importance to bring the standardization process 

to its end and have stable versions of both client 
and server implementations of HTTP/3. 

As future work, the issue of power consumption 
related to the new protocol use should be 
investigated. Also, additional scenarios for IoT 
and performance testing including IoT specific 
protocols should be implemented. To that, 
additional scenarios will be investigated, to find 
out the potential performance gains with regard to 
intensive data traffic, such as multimedia streaming.
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