
75

ICI Bucharest © Copyright 2012-2021. All rights reserved

ISSN: 1220-1766 eISSN: 1841-429X	

1. Introduction

IoT (Internet of Things) refers to the networked
interconnection of everyday objects, which are
often equipped with ubiquitous intelligence
(Xia et al., 2012). IoT represents a concept of
physical computational objects (such as sensors,
home devices etc.) made accessible to humans
via Internet. IoT devices are employed in a
broad range of applications where information
about device operation, performance and
environmental conditions in device vicinity need
to be monitored and controlled remotely. IoT
applications have spread to almost every part of
human activity, including consumer, commercial,
industrial and infrastructure applications. Smart
home IoT devices have a rising presence in
consumer households: learning thermostats,
energy tracking switches, video doorbells,
smart baby observers, and remotely controlled
washing machines, all increasingly available and
affordable. These devices, using their sensors
and actuators transform the regular house into a
digital home, providing their user with data and
control via the Internet. Commercial applications
include healthcare, transportation, and building
automation. Industrial applications of IoT include
manufacturing, agriculture, and the military.
Infrastructure applications include energy
metering, environmental monitoring etc.

Under the umbrella of the IoT paradigm, several
other models have emerged. In certain scenarios, it is
of great convenience to use the edge device not only
to collect and measure different parameters (such
as temperature or humidity) or act accordingly but
to store and process certain amounts of data. This

model is called “fog computing”. As Fog computing
is implemented at the edge of the network, it
provides low latency, location awareness, and
improves quality-of-services (QoS) for streaming
and real-time applications (Stojmenovic & Wen,
2014, Chiang & Zhang, 2016).

IoT devices typically use wireless transmission,
utilising a broad range of communication standards
such as short-range IEEE 802.15.4 or IEEE 802.11
networks or long-range networks such as GSM,
LTE, 5G and others. In the case of the short-
range communication standards, IoT devices are
mutually interconnected to form a local network,
further connected to the Web server through
network gateway, which also acts as a network
controller or network sink node (Figure 1).
In the case of long-range networks, IoT devices
are capable to directly communicate with the Web
server. The concept of fog computing uses fog
nodes for data processing to significantly decrease
the load on cloud infrastructure, while additionally
reducing the data latency.

Despite very diverse communication technologies
on lower layers of protocol stack, IoT devices
tend to use common protocols on higher layers to
enable compatibility with ever-evolving Internet
technologies. Most IoT devices rely on TCP/IP
protocol stack to be able to interact via Internet
infrastructure. Although there are special protocols
developed for inter-machine communication, such
as MQTT - Message Queuing Telemetry Transport
(Banks et al., 2019, Kumar & Dezfouli, 2019) or
CoAP - Constrained Application Protocol (Shelby

Studies in Informatics and Control, 30(3) 75-84, September 2021

https://doi.org/10.24846/v30i3y202107

Evaluation of HTTP/3 Protocol for Internet of Things
and Fog Computing Scenarios

Marjan MILOŠEVIĆ, Vladimir MLADENOVIĆ, Uroš PEŠOVIĆ*
University of Kragujevac, Faculty of Technical Sciences Čačak, Svetog Save 65, Čačak, 32102, Serbia
marjan.milosevic@ftn.kg.ac.rs, vladimir.mladenovic@ftn.kg.ac.rs,
uros.pesovic@ftn.kg.ac.rs (*Corresponding author)

Abstract: The paper investigates the performance properties of the new HTTP/3 protocol in IoT scenarios, with the focus
on fog computing. A specific experimental environment is created, providing realistic IoT conditions. End-to-end delay
and three different models for packet loss are introduced using the NetEm simulator in Linux. Three contemporary HTTP
protocols are contrasted with two scenarios of IoT use. By comparing the experimental results obtained by the protocols
HTTP/1, HTTP/2 and HTTP/3, it can be noticed that the protocol HTTP/3 outperforms the protocol HTTP/2 in 19 cases out
of 24, yet it only outperforms HTTP/1 in 12 cases out of 24. Even if HTTP/3 is under development, it fulfils the requirements
for performance and security for IoT and fog computing scenarios, involving unconstrained devices. With a lower connection
overhead and an inherent security, HTTP/3 has secured a firm place for itself among other specialised IoT protocols.

Keywords: Internet of Things, Fog computing, HTTP/3, Web protocols, NetEm, Raspberry Pi.

https://www.sic.ici.ro

76 Marjan Milošević, Vladimir Mladenović, Uroš Pešović

et al., 2014), general web protocols are in heavy
usage in IoT. Improvement of these protocols
can potentially bring benefits to the performance
and security of IoT, which has been particularly
challenged (Mahmoud et al., 2016).

Figure 1. Typical IoT architecture

HTTP (HyperText Transfer Protocol) has come
a long way from its initial version and use for
basic modest web-pages. Today the needs for
performance and security require complex
protocols capable to serve multimedia and various
web applications.

The goal of this paper is to evaluate the use of
HTTP for different scenarios in IoT, focusing
on the analysis of the data latency between fog
nodes and the web server. The main aim is to test
the new HTTP/3 protocol, whose standardisation
is still under development and which provides
a breakthrough in the HTTP evolution. For that
purpose, a IoT infrastructure was created and
different scenarios were configured.

The contributions of this paper are as follows:

	- A network performance measurement
methodology for IoT scenarios is built. It
can be tuned according to the additional
scenarios needed;

	- The novell HTTP/3 protocol boosts the
performance of IoT-related traffic, in
comparison with the HTTP/2 protocol.

The rest of the paper is organised as follows. In
Section 2, the problem statement is presented,
along with the selected related works. Section
3 sets forth the methodology and describes the

testbed. The results are described in Section 4.
Section 5 concludes the paper and presents ideas
for future work.

2. Background

Application-level network protocols in use for
IoT fall into two categories: general-purpose
protocols and specific protocols. While the HTTP
is the main protocol in the first group, the second
one is populated with several protocols, such as:
MQTT, CoAT, XMPP (Extensible Messaging and
Presence Protocol) and others. Extensive previews
of the protocols utilised for IoT are given in
(Čolaković & Hadžialić, 2018; Dizdarević et al.,
2019, Al-Masri et al., 2020, Silva et al., 2021).

HTTP, the running force of World Wide Web
(WWW), in its first version was a simple client-
server pull protocol, using one TCP (Transmission
Control Protocol) connection for transfer of one
web-page object, from server to client. HTTP
requires a reliable transfer to render the web
content completely and without errors. Therefore,
only TCP was considered as a transport layer
protocol. Although WWW by definition is not
a real-time service, the price of TCP connection
establishment has proven to be significantly high.
In the non-persistent HTTP (versions 0.9 and
1.0) every object (such as JavaScript code, GIF
images, and text) was transferred using its separate
connection. Since the Internet grew, the round
time trip (RTT) became a significant element in
the equation, increasing the whole TCP connection
establishment time. Version 1.1 of HTTP brought
about a plethora of optional features. However,
many of them were never implemented.

The second implementation of HTTP was forged
under the supervision of Google and Mozilla
and inherited SPDY. HTTP/2 is supported by
all major web browsers and by virtually all
popular web-servers, such as Apache, Nginx and
Internet Information Server. HTTP/2 support
is usually not enabled by default but requires
special configuration.

While HTTP/2 has brought about many
improvements, the inherent burden of the
TCP connection negotiation delay, as well as
HOL blocking, remained as serious pitfalls
(Oda & Yamaguchi, 2018). QUIC (Quick UDP
Internet Connection) was initiated as a Google
experimental protocol, which breaks up the

	 77

ICI Bucharest © Copyright 2012-2021. All rights reserved

Evaluation of HTTP/3 Protocol for Internet of Things and Fog Computing Scenarios

continuity of TCP-based WWW and uses UDP
(User Datagram Protocol). While in the beginning
it was solely supported by Google services, QUIC
swiftly expanded over Google’s border, getting
support on web-servers Caddy (Anon, 2021) and
LiteSpeed (LiteSpeed Technologies Inc, 2021).
The IETF renamed the term “HTTP over QUIC”
as HTTP/3, therefore officially bringing about the
next HTTP generation (IETF, 2018; Yong et al.,
2017, Polese et al., 2019).

The first delay reduction is related to the three-
way handshake, which is absent in UDP and
therefore in HTTP/3 too. Another means of
performance improvement is related to the
TLS (Transport Layer Security) handshake,
which involves an exchange of cryptographic
data required for the connection encryption. It
is important to state that TLS 1.3 handshake
includes fewer steps than version 1.2 when
using TCP or UDP. Various cases of connection
establishment are given in Figure 2.

Figure 2. Different RTTs when (a) the client has
never connected to the server, (b) the client has

already connected to the server before

HTTP over QUIC was from the very beginning
supported by Chrome and Opera. This option can
be enabled/disabled through advanced settings.
HTTP/3 is supported by various command-line
tools, such as cURL and many libraries support
both client and server.

The standardisation of HTTP/3 is still in progress.
Currently (April, 2021) there is a 34th draft
version published by the IETF (IETF, 2021).

Security is mandatory in HTTP/3. A special
protocol called QUIC Crypto was designed by
Google to be compatible with TLS 1.3.

2.2 Related Work

The issue of HTTP performance in IoT scenarios
was investigated by Bziuk et al. (2018), with
focus on version 1.1 with pipelining. This
work concluded that HTTP 1.1 suffered from a
significant overload due to handling multiple
connections. It recommended further research to
be directed towards newer protocols.

The issue of overhead was analysed by Yokotani
& Sasaki (2016). They contrasted HTTP and
MQTT and found out that the inherent properties
of the TCP connection significantly degraded
performances of HTTP.

Naik (2017) contrasted four protocols used in
IoT: MQTT, CoAP, AMQP (Advanced Message
Queuing Protocol) and HTTP/1.1 according to
different criteria, such as message size, latency
and reliability. This research also emphasised the
issue of TCP connection overheads and its impact
on the performance of the HTTP.

Elmangoush (2017) made a comparative review of
5 protocols used in IoT scenarios, and conducted
measurement of performance of HTTP1 and
HTTP2 under different channel conditions.
HTTP2 proved to be superior in case of numerous
concurrent requests, but added overhead with use
of SSL (Secure Sockets Layer).

Currently, there is a modest number of papers
dealing with the use of HTTP/3 for IoT. Mostly
the focus is on the use of QUIC as a transport
layer protocol.

Researchers have paired QUIC with native IoT
protocols in order to achieve better security.
Alqattaa & Loebenberger (2020) proposed a
model for crypto-gateway using MQTT over
QUIC with the goal of moving the overhead of
encryption from constrained nodes to a gateway,
which is connected to the cloud.

Liri et al. (2018) examined how robust IoT
protocols are. It concluded that adapted QUIC
protocol may greatly improve communication
performance, which would enable QUIC to be a
potential request-response IoT protocol alternative
to CoAP.

Eggert (2020) explored the general feasibility
of QUIC deployment for IoT infrastructure. The
main reason for the use of QUIC was its inherent

https://www.sic.ici.ro

78 Marjan Milošević, Vladimir Mladenović, Uroš Pešović

security. It concluded that the measured memory
footprint, energy consumption, and performance
were suitable for constrained devices, but with
specific improvements.

3. Methodology

The basic idea for testing was to create an
environment that would be closely mapped to
realistic IoT scenarios and utilise web protocols. That
implies the use of the wireless network, a typical IoT
device acting as a fog node and a web server.

The established testbed consists of:

	- Raspberry Pi 4 (Version B, 4 GB)

	- Server (Ubuntu Server ver. 18.04)

	- Wi-Fi router (802.11g)

The web-server used was Nginx, custom compiled
using the quiche library to support HTTP/3. Nginx
is an open-source web-server, capable of serving
as a reverse proxy and load balancer.

The Raspberry Pi is used as a client. It is an
inexpensive small computer, with support for
a great number of peripherals and a common
solution for different IoT based systems (Milošević
et al., 2019). It has Raspbian OS installed and the
cURL 7.75, a developer version, custom compiled
with the quiche library. cURL is a versatile tool,
supporting dozens of protocols and it is equipped
with additional options for performance metrics.
It is chosen also because of its strong support for
HTTP/3 and its different implementations.

The environment where IoT devices work can
cause packet loss and delay. Depending on the
specific scenarios and service demands, these can
be tolerated to a lesser or greater extent (Mocnej
et al., 2017; Pekar et al., 2020).

To perform the tests in an environment which
would be as realistic as possible, the delay and
loss was simulated using the NetEm tool. (The
Linux Foundation, 2021) NetEm is built using
the existing Quality of Service (QoS) and
Differentiated Services (diffserv) facilities in the
Linux kernel. It is available out-of-the-box in
Linux distributions and can be administered via
the command line.

NetEm tool enables one to introduce various
events in the network traffic, such as delay, packet
reordering, and packet loss and so on.

Figure 3 shows a conceptual view of the testbed
used. The cURL’s timing in HTTP scenarios is
reported using five variables (Cornwell, 2018):
DNS Lookup, TCP handshake, SSL handshake,
Wait and Data Transfer.

Figure 3. The testbed experiment

HTTP/1 without encryption has zero SSL
handshake latency. HTTP/3, using UDP, has
zero TCP handshake latency. HTTP/2 has both
handshake and SSL latencies.

DNS Lookup can be a significant indicator and can
greatly impact the whole timing. However, since
the test was done in LAN environment and also
DNS query response is cached, the DNS timing is
not taken into account for the measurement.

Measured results are collected for each packet,
where two metrics are used: response time and
end-to-end delay. Response time represents the
time required for web server to respond to user
request and is calculated as the difference between
the time when data transfer starts and the time
when DNS name lookup is finished. End-to-end
delay is calculated as the time difference between
the total time and DNS name lookup time (as the
DNS lookup was not relevant in this setup).

The scenarios involved three cases: lossless
transfer, 10% packet loss and Gilbert Elliot model
(Hasslinger & Hohlfeld, 2008) for three versions
of HTTP (1, 2 and 3). The Gilbert-Eliot model was
introduced with the following parameters: move-
to-burstmode (p) of 1%, move-to-gapmode (r) of
10%, drop-in-burstmode (1-h) of 70% and drop-
in-gap mode (1-k) of 0.1%.

In the first scenario, client and server communicate
without packet loss, thus there are no additional
delays in their communication, except due
protocol overhead. In the second scenario packets
are exchanged by client and server with 10%
loss rate, thus delay will be introduced since
transmit station will need a certain timeout before
starting retransmission. In the last scenario, client
and server communicate through the Gilbert-
Elliot channel model that creates burst errors

	 79

ICI Bucharest © Copyright 2012-2021. All rights reserved

Evaluation of HTTP/3 Protocol for Internet of Things and Fog Computing Scenarios

in transmitted packets. In this scenario packets
will be received as incorrect so destination will
immediately require packet retransmission from
source thus delays are expected to be shorter than
in the second scenario.

Testbed experiment is performed for two different
data sizes representing two different types of
fog nodes.

In the first case the upload of a very small file
(30 B) is tested, which represents direct upload
of data from fog node to web server. This kind
of scenario is typical for singular IoT nodes,
which are connected directly to the Cloud, where
a certain amount of data processing is performed
on the fog node (Figure 1), which is typically
implemented as part of the IoT node itself.

In the second case the upload of a 3.5 KB file
is tested, which can be taken as an example of
cumulative data that a fog node collects from
multiple sensors and then sends to the webserver.
This kind of scenario is typical when multiple
IoT nodes send data items to a fog node, which
performs data processing and bundles data in a
larger data unit before sending it to the web server.

4. Results and Discussion

The timings logged with cURL are serialised
into a CSV file and then processed using Matlab,
which contains around 3000 packets for every
scenario. Since some of the measured values
represent outliers, those values which amount to
more than three scaled median absolute deviations
(MAD) are removed from measured results.

The web server response time is displayed for
all three scenarios (lossless, 10% packet loss, the
Gilbert-Elliot channel model) in Table 1 for 30-
byte files, and also in Table 2 for 3.5 KB files.
Results are shown in form of mean deviation and
standard deviation value of measured results for
every scenario.

4.1 Response Time for Two File Sizes

Response time is given for a file of 30 B and one
of 3.5 KB in Tables 1 and 2.

Obtained results for web response times are the
shortest for HTTP/1 and HTTP/3 in all scenarios
for both file sizes, while HTTP/2 protocol

obtains a significantly longer web response time.
HTTP/1 has a short response time since it does not
use authentication.

Table 1. Web server response time for a 30 B file

Scenario
HTTP/1

Mean St. Deviation
Lossless 52.86 ms 47.19 ms

10% packet loss 52.68 ms 49.57 ms
Gilbert-Elliot 20.22 ms 35.23 ms

HTTP/2
Lossless 88.50 ms 31.19 ms

10% packet loss 107.07 ms 54.94 ms
Gilbert-Elliot 41.74 ms 45.88 ms

HTTP/3
Lossless 27.26 ms 31.47 ms

10% packet loss 54.50 ms 46.33 ms
Gilbert-Elliot 55.21 ms 41.77 ms

Table 2. Web server response time for a 3.5 KB file

Scenario
HTTP/1

Mean St. Deviation
Lossless 44.43 ms 42.88 ms

10% packet loss 50.84 ms 50.19 ms
Gilbert-Elliot 62.06 ms 49.21 ms

HTTP/2
Lossless 99.25 ms 35.60 ms

10% packet loss 137.94 ms 79.68 ms
Gilbert-Elliot 85.52 ms 98.55 ms

HTTP/3
Lossless 46.45 ms 35.09 ms

10% packet loss 54.93 ms 47.43 ms
Gilbert-Elliot 56.57 ms 45.63 ms

Due to the new TLS 1.3 handshaking mechanism
HTTP/3 is a close match for non-secure HTTP/1.
On the other hand, HTTP/2 has a significantly
higher web response time due to TLS 1.2
handshaking mechanism which involves three-step
handshake mechanisms. Also, in scenarios which
include complete packet loss or damaged packets
with burst errors, HTTP/3 significantly outperforms
HTTP/2, thanks to the new QUIC protocol.

4.2 End-to-end Upload Delay
for a 30 B File

Results for end-to-end delay for the transfer of
a small file are presented in Table 3, while these
values are also presented in the form of histograms
of end-to-end delay for all protocols displayed on
the same graph.

https://www.sic.ici.ro

80 Marjan Milošević, Vladimir Mladenović, Uroš Pešović

Table 3. End-to-end delay for the upload of small
packets (30 B) in different scenarios

Scenario
HTTP/1

Mean St. Deviation
Lossless 65.4 ms 50.5 ms

10% packet loss 82.3 ms 78.6 ms
Gilbert-Elliot 64.3 ms 51.5 ms

HTTP/2
Lossless 96.6 ms 31. 4 ms

10% packet loss 130.5 ms 70.2 ms
Gilbert-Elliot 65.8 ms 54.5 ms

HTTP/3
Lossless 67.5 ms 51.1 ms

10% packet loss 77.7 ms 52.5 ms
Gilbert-Elliot 73.5 ms 45.9 ms

In the case of the lossless upload transmission
from a node to the server (Figure 4), results

indicate that HTTP/1 protocol has the shortest
end-to-end delay followed closely matched by
HTTP/3 protocol. HTTP/1 has a shorter end-
to end delay since it does not use any form of
security, like HTTP/2 and HTTP/3 protocols do.
According to the results, HTTP/3 outperforms
HTTP/2 which on average has a 43% longer
end-to-end delay, due to the newer TLS 1.3
handshake mechanism.

In the case of the 10% packet loss transmission
from node to server (Figure 5), results indicate that
the new HTTP/3 protocol has the shortest end-to-
end delay, followed closely by HTTP/1 protocol.
The results show that HTTP/3 outperforms
HTTP/2 which on average has a 68% longer end-
to-end delay, due to the QUIC protocol which
is based on UDP unlike the other two protocols
which are based on TCP protocol.

Figure 4. Lossless upload of a very small file (30 B)

Figure 5. Upload of a very small file (30 B) with 10% packet loss

	 81

ICI Bucharest © Copyright 2012-2021. All rights reserved

Evaluation of HTTP/3 Protocol for Internet of Things and Fog Computing Scenarios

In the case of packet transmission modelled by the
Gilbert-Elliot channel model (Figure 6), results
indicate that HTTP/1 protocol has the shortest
end-to-end delay, followed closely by HTTP/2
protocol. The results indicate that HTTP/3 has
on average a 11% longer end-to-end delay than
HTTP/2. The slight increase of end-to-end delay
in HTTP/3 protocol is due to connectionless
UDP transfer protocol, which does not start
retransmission immediately when damaged
packet loss is detected as connection-oriented TCP
protocol does for HTTP/1 and HTTP/2 protocols.

4.3 Upload of a 3.5 KB File

The measurements results, presented in Table 4,
show the distribution of end-to-end delay for a
packet size of 3.5 KB for all three protocols in
different simulation scenarios.

Table 4. End-to-end delay for the upload of a 3.5 KB
file in different scenarios

Scenario
HTTP/1

Mean St. Deviation
Lossless 53.2 ms 44.27 ms

10% packet loss 79.7 ms 78.3 ms
Gilbert-Elliot 70.0 ms 51.3 ms

HTTP/2
Lossless 110.9 ms 36. 2 ms

10% packet loss 184.9 ms 110.4 ms
Gilbert-Elliot 239.5 ms 233.3 ms

HTTP/3
Lossless 78.3 ms 44.9 ms

10% packet loss 94.8 ms 57.8 ms
Gilbert-Elliot 84.6 ms 60.8 ms

In the case of the lossless upload transmission
from node to server (Figure 7), results indicate

Figure 6. Upload of a very small file (30 B) modelled with the Gilbert-Elliot channel model

Figure 7. Lossless upload of a 3,5 KB file

https://www.sic.ici.ro

82 Marjan Milošević, Vladimir Mladenović, Uroš Pešović

that HTTP/1 protocol has the shortest end-to-
end delay, while HTTP/3 protocol has a 47%
longer end-to-end delay. According to the results,
HTTP/3 outperforms HTTP/2 which on average
has a 41% longer end-to-end delay. This delay
originates from TLS security overhead in HTTP/3
and HTTP/3 protocols.

In the case of the 10% packet loss transmission
from node to server (Figure 8), results indicate
that HTTP/1 protocol has the shortest end-to-end
delay, followed closely by HTTP/3 protocol with
a 19% longer end-to-end delay time. According to
the results, HTTP/3 outperforms HTTP/2 which
on average has a two times longer end-to-end
delay. The main reason for it is the problem with
HOL (Head-of-Line) blocking in the case of lost
packet block reception queue.

In the case of the packet transmission modelled
by the Gilbert-Elliot channel model (Figure 9),
results indicate that HTTP/1 protocol has the
shortest end-to-end delay, followed closely by
HTTP/3 protocol with a 20% longer end-to-
end delay. According to the results, HTTP/3
outperforms HTTP/2 which on average has a three
times longer end-to-end delay. The reason for that
is the problem in the case of HOL blocking when
lost packet block reception queue.

5. Conclusions

By comparing the results obtained by the protocols
HTTP/2 and HTTP/3 as they are depicted in the
Tables 3 and 4, it can be stated that the HTTP/3
protocol significantly outperforms the HTTP/2
protocol version in majority of scenarios (9

Figure 8. Upload of a 3.5 KB file with 10% packet loss

Figure 9. Upload of a 3.5 KB file modelled with Gilbert-Elliot channel model

	 83

ICI Bucharest © Copyright 2012-2021. All rights reserved

Evaluation of HTTP/3 Protocol for Internet of Things and Fog Computing Scenarios

out of 12), in terms of end-to-end delay, which
significantly affects the responsiveness of
implemented IoT applications. Compared to the
HTTP/1 protocol, which offers no security unlike
the new HTTP/3 protocol, the latter almost matches
the end-to-end delay performance of the former.

The results of the experiment show that HTTP/3
protocol has successfully solved problems faced by
other versions of the HTTP, and still improved end-
to-end delay, which is one of the main performance
evaluation parameters for IoT applications.

On the other hand, as encryption is mandatory
for HTTP/3, the security is radically improved,
in comparison with HTTP 1. Introducing client
authentication (also built in TLS) can further
foster security in specific scenarios with clients
of a greater level of mobility. It is of essential
importance to bring the standardization process

to its end and have stable versions of both client
and server implementations of HTTP/3.

As future work, the issue of power consumption
related to the new protocol use should be
investigated. Also, additional scenarios for IoT
and performance testing including IoT specific
protocols should be implemented. To that,
additional scenarios will be investigated, to find
out the potential performance gains with regard to
intensive data traffic, such as multimedia streaming.

Acknowledgements

This study is supported by the Ministry of
Education, Science and Technological Development
of the Republic of Serbia, and these results were
obtained as part of the Grant No. 451-03-9/2021-
14/200132 for the University of Kragujevac -
Faculty of Technical Sciences Čačak.

REFERENCES

Al-Masri, E., Kalyanam, K. R., Batts, J., Kim, J.,
Singh, S., Vo, T. & Yan, C. (2020). Investigating
Messaging Protocols for the Internet of Things
(IoT), IEEE Access, 8, 94880-94911. DOI: 10.1109/
ACCESS.2020.2993363

Alqattaa, A. & Loebenberger, D. (2020). An IoT
Gateway for Resource-Constrained IoT Devices.
In CLOUD COMPUTING 2020: The Eleventh
International Conference on Cloud Computing,
GRIDs, and Virtualization, Nice (pp. 50-54).

Anon (2021). Caddy Server. Available at: <https://
caddyserver.com/>.

Banks, A., Briggs, E., Borgendale, K. & Gupta R.
(2019). MQTT 5.0 specification. Available at: <https://
docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html>,
last accessed: 10th Oct. 2020.

Bziuk, W., Phung, C. V., Dizdarević, J. & Jukan, A.
(2018). On HTTP Performance in IoT Applications:
An Analysis of Latency and Throughput. In 2018
41st International Convention on Information
and Communication Technology, Electronics and
Microelectronics (MIPRO), Opatija, Croatia (pp.
0350-0355). DOI: 10.23919/MIPRO.2018.8400067.

Chiang, M. & Zhang, T. (2016). Fog and IoT: An
Overview of Research Opportunities, IEEE Internet
of Things Journal, 3(6), 854-864. DOI: 10.1109/
JIOT.2016.2584538

Čolaković, A. & Hadžialić, M. (2018). Internet of
Things (IoT): A review of enabling technologies,
challenges, and open research questions,
Computer Networks, 144, 17-39. DOI: 10.1016/j.
comnet.2018.07.017

Cornwell, P. (2018). A question of timing, The Cloudflare
Blog. Available at: <https://blog.cloudflare.com/a-
question-of-timing/>, last accessed: 30th Mar. 2021.

Dizdarević, J., Carpio, F., Jukan, A. & Masip-Bruin,
X. (2019). A survey of communication protocols
for internet of things and related challenges of fog
and cloud computing integration, ACM Computing
Surveys 51, 1-30. DOI: 10.1145/3292674

Eggert, L. (2020). Towards Securing the Internet
of Things with QUIC. In Network and Distributed
Systems Security (NDSS) Symposium, 23-26 February,
San Diego, CA, USA. Available at: <https://easychair.
org/publications/preprint_download/68D2>, last
accessed: 30th Mar. 2020.

Elmangoush, A. (2017). Evaluating the Features of
HTTP/2 for the Internet of Things. In 1st Conference
of Industrial Technology (CIT2017), Misurata, Libya
(pp. 202-207).

Hasslinger, G. & Hohlfeld, O. (2008). The Gilbert-
Elliott Model for Packet Loss in Real Time Services
on the Internet. In 14th GI/ITG Conference -
Measurement, Modelling and Evaluation of Computer
and Communication Systems, Dortmund, Germany
(pp. 1-15).

https://www.sic.ici.ro

84 Marjan Milošević, Vladimir Mladenović, Uroš Pešović

IETF (2018). Identifying our deliverables, IETF Mail
Archive. Available at: <https://mailarchive.ietf.org/
arch/msg/quic/RLRs4nB1lwFCZ_7k0iuz0ZBa35s/>,
last accessed: 1st Apr. 2021.

IETF (2021). Hypertext Transfer Protocol Version 3
(HTTP/3). Available at: <https://tools.ietf.org/html/
draft-ietf-quic-http-34>, last accessed: 1st Apr. 2021.

Kumar, P. & Dezfouli, B. (2019). Implementation and
Analysis of QUIC for MQTT, Computer Networks,
150, 28-45. DOI: 10.1016/j.comnet.2018.12.012

Liri, E., Singh, P. K., Rabiah, A. B., Kar, K., Makhijani,
K. & Ramakrishnan, K. K. (2018). Robustness of IoT
Application Protocols to Network Impairments. In
2018 IEEE International Symposium on Local and
Metropolitan Area Networks (LANMAN), (pp. 97-
103). DOI: 10.1109/LANMAN.2018.8475048

LiteSpeed Technologies Inc. (2021). QUIC Support in
LiteSpeed. Available at: <https://www.litespeedtech.
com/http3-solutions>, last accessed: 1st Apr. 2021.

Mahmoud, R., Yousuf, T., Aloul, F. & Zualkernan,
I. (2016). Internet of things (IoT) security: Current
status, challenges and prospective measures. In 10th
International Conference for Internet Technology and
Secured Transactions, ICITST 2015 (pp. 336 -341).

Milošević, M., Četić, N., Kovačević, J. & Anđelić, T.
(2019). Lighting Control Using Raspberry Pi and Oblo
Living Home Automation System, Serbian Journal of
Electrical Engineering, 16(1), 45-54. DOI: 10.2298/
SJEE1901045M

Mocnej, J., Pekar, A., Seah, W. K. G. & Zolotova,
I. (2018). Network Traffic Characteristics of the IoT
Application Use Cases. School of Engineering and
Computer Science, Victoria University of Wellington.

Naik, N. (2017). Choice of effective messaging
protocols for IoT systems: MQTT, CoAP, AMQP
and HTTP. In 2017 IEEE International Systems
Engineering Symposium (ISSE), (pp. 1-7). DOI:
10.1109/syseng.2017.8088251

Oda, N. & Yamaguchi, S. (2018). HTTP/2 performance
evaluation with latency and packet losses. In 2018
15th IEEE Annual Consumer Communications &
Networking Conference (CCNC), Las Vegas, USA
(pp. 1-2). DOI: 10.1109/CCNC.2018.8319285.

Pekar, A., Mocnej, J., Seah, W. K. G. & Zolotova, I.
(2020). Application Domain-Based Overview of IoT
Network Traffic Characteristics, ACM Computing
Surveys, 53(4), 1-33.

Polese M., Chiariotti, F., Bonetto, E., Rigotto, F.,
Zanella, A. & Zorzi, M. (2019). A Survey on Recent
Advances in Transport Layer Protocols, IEEE
Communications Surveys & Tutorials, 21(4), 3584-
3608. DOI: 10.1109/COMST.2019.2932905

Shelby, Z., Hartke, K. & Bormann, C. (2014). The
Constrained Application Protocol (CoAP). Available
at: <https://tools.ietf.org/html/rfc7252>, last accessed:
12th Dec. 2020.

Silva, D., Carvalho, L. I., Soares, J. & Sofia, R. C.
(2021). A Performance Analysis of Internet of Things
Networking Protocols: Evaluating MQTT, CoAP,
OPC UA, Applied Sciences, 11, 4879. DOI: 10.3390/
app11114879

Stojmenovic, I. & Wen, S. (2014). The Fog
computing paradigm: Scenarios and security issues.
In Federated Conference on Computer Science and
Information Systems, Warsaw, Poland (pp 1 - 8). DOI:
10.15439/2014F503

The Linux Fondation. (2021). NetEM. Available
at: <http://www.linuxfoundation.org/collaborate/
workgroups/networking/netem>, last accessed: 30th
Mar. 2021.

Xia, F., Yang, L. T., Wang, L. & Vinel, A. (2012).
Internet of Things, International Journal of
Communication Systems, 25, 1101-1102. DOI:
10.1002/dac.2417

Yokotani, T. & Sasaki, Y. (2016). Comparison with
HTTP and MQTT on required network resources
for IoT. In 2016 International Conference on
Control, Electronics, Renewable Energy and
Communications (ICCEREC), (pp. 1-6). DOI:
10.1109/ICCEREC.2016.7814989

Yong C., Tianxiang, L. & Cong, L. (2017). Innovating
Transport with QUIC: Design Approaches and
Research Challenges, IEEE Internet Computing 21(2),
72-76. DOI: 10.1109/MIC.2017.44

