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Abstract: This paper surveys the research work in the areas of
intelligent control, telemanipulation and microtelemanipula-
tion at Tampere University of Technology. Neural networks
are applied in static and dynamic fault diagnosis, and control.
In fuzzy control the main research has been in the area of
tuning. This includes tuning of multivariable fuzzy controllers
and autotuning of fuzzy controllers. In telemanipulation the
design of controllers for force reflection is discussed. A mini-
telemanipulator has been implemented.
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1. Introduction

Research work at Tampere University of
Technology is surveyed. The paper first discusses
intelligent control, which is divided into static
fault detection with an application to paper
machine web breaks, dynamic fault diagnosis,
real-time neural network control and fuzzy
control. Neural network results in the literature
are mostly based on simulation and applications
have been few. Here practical side of neural
networks use is emphasized. Finally
telemanipulation and microtelemanipulation are
briefly discussed.

2. Static Fault Detection

The use of ANNs in automation, especially in
fault diagnosis and control, becomes more and
more common (Miller et al, 1990; White and
Sofge, 1992). Conventional fault detection and
diagnosis uses static and dynamic models of the
process (Willsky, 1976; Himmelblau 1978;
Isermann, 1984; Frank, 1990). In real industrial
processes it is often very troublesome to obtain
fairly accurate models for reliable fault detection
and diagnosis.

Rule-based expert systems have been investigated
intensively for fault detection and diagnosis
problem (Patton et al, 1989). Fault diagnosis
using rule-based expert systems needs an
extensive database of rules and the accuracy of
diagnosis depends on the rules. Also the
updating of the rules and the uniqueness of the
knowledge are problems when large industrial
plants are concerned.
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The research applying neural networks in fault
diagnosis has been very active in the last six years.
Inputs of the neural networks have been both
binary (McDuff and Simpson, 1990) and
continuous (Watanabe et al, 1989; Kramer and
Leonard, 1990; Sorsa et al, 1991).

The classification of process data can be carried
out with the information about different classes.
Then we know that certain measurement patterns
correspond to normal operation and other
measurement patterns correspond to faulty
operations. The training of neural networks using
this kind of information is called supervised.
Perceptron and radial basis function networks are
typical examples of supervised trained network
architectures. If a neural network classifies the
data autonomously, the training is unsupervised.
Kohonen feature maps are examples of networks
exhibiting this property. Especially in industrial
applications it is not always straightforward what
causes the fault (Sorsa et al, 1992). Then a natural
approach is to use unsupervised networks.

The simulations with the data of the test process
have shown (Sorsa et al, 1991, Sorsa and Koivo,
1993) that the multilayer perceptron network can
classify the measurements very reliably. The
radial basis function neural network is not as easy
to use as the perceptron networks but the
knowledge about measurement data and classes
can be employed in training radial basis function
networks. The most critical phase in training is
the search for the centres of the Gaussian
functions and if this is done successfully the
performance of the network is usually very good.

The Kohonen feature map, which is trained
unsupervised, is not always able to classify even
the training data correctly. However, its ability of
classifying the measurement data autonomously
is very interesting and useful, particularly when
real industrial processes are considered (Sorsa et
al, 1992).

3. Paper Machine Web Breaks

Although there have been many promising
simulation examples about neural networks in
fault diagnosis in the literature, real applications
are still quite rare. Here the capabilities of neural
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networks to detect breaks in a paper machine are
reported. Typically, a break costs about $ 10.000
/hour, so any headway made is economically
significant.

Dryer stioom P o=

- =

Figurel. Simplified Schema of a Paper Machine

A paper machine consists of wet end and dry end
(Figure 1). The width ofa modern paper machine
can be 9 meters and speed of 1200 meters/min is
not unusual. Typically, a modern paper machine
can produce about 20 tons paper per hour. Breaks
occur as a result of a high load and a low strength
of a web, Typical sources of web load variations
can be poorly tuned tension systems or out-of-
round rolls. Web strength variations can be a
consequence of fluctuations in stock
manufacturing process. A break takes place when
a transient high load coincides with a weak spot
on a web.

The breaks of a production paper machine in
Finland have been investigated (Sorsa et al,
.1992). The aim has been to search for features
that increasc the risk of a break and should
therefore be avoided. The machine has quite
normal break statistics, having about 20 breaks
per week. The continuous measurements of the
process variables that could have something to do
with the breaks, have been selected in
consultation with the paper machine staff.

Figure 2a presents some paper machine
measurement values by the first and the second
principal components. The original
measurement space is 35-dimensional and the
points in Figure 2a present the projected
measurement values.

The data in Figure 2a are composed of three
different running periods of roughly the same
length (10 hours). During these periods the paper
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Figure 2. Three Different Periods of Paper Machine Measurements Presented by the First and the
Second Principal Components (left) and A Kohonen Self-organizing Map (right), when the Basis
Weight is the Same 37g/m2. Each Measurement Vector is Originally 35- dimensional

machine was producing the paper of basis weight
37g/m? In two cases, there were no breaks, but
during the third run there were three breaks.
Figure 2a shows how the normal runs produced
clusters in the area of clock 3 (run 1), and clock 7
(run 2). The cluster in the position of clock 11 is
sensitive to breaks (run 3). The break points are
indicated with little circles.

Next, Kohonen self-organizing feature maps are
used to cluster the paper machine measurements.
Figure 2b shows a feature map for the same data
that were used in the principal component
analysis in Figure 2a. The feature map is
composed of 144 elements and the elements are
fully connected to the inputs. The input layer is
left out. The training data are classified
unsupervised and the labels shown in Figure 2b
are written after the training,

In Figure 2b the data concerning the situations
where no breaks occurred (the first and the
second clusters in Figure 2b) are classified into
the elements denoted by asterisk (*). The data
concerning the break sensitive situations (the
third cluster in Figure 2b) are classified into the
elements denoted by cross (+). The mapping
elements indicated by numbers (1, 2, 3) are
activated by the measurement patterns where the
breaks occurred but also by some other patterns
of the third running period (the third cluster).

[t is very difficult, if not impossible, to classify
every break but the best suggestion is to classify
operation runs and operating points according to
break frequencies. The approach has been to
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examine methods in order to help operators
notice different operating points and running
styles.

4. Fault Diagnosis of Dynamic Systems

One problem with the static classification
methods is that the dynamic behaviour of the
process is not taken into account. There are two
main approaches to using models in fault
detection and diagnosis, namely parameter
estimation and state estimation approaches
(Isermann, 1984). The parameter cstimation
approach requires exact knowledge about the
process model and the values of the real physical
parameters must be known quite accurately. In
practice, this knowledge may be difficult to
acquire. The state estimation methods of fault
detection and diagnosis employ observers o
generate state estimates. Then the residuals are
calculated and the decision of a fault is made with
the aid of the residuals. Usually models are
supposed to e linear. Some results for nonlinear
models are also presented (Frank, 1992) but the
studies have considered only certain classes of
nonlinear systems.

In the traditional model-based fault diagnosis, the
idea of a model bank or an observer bank is very
familiar (Isermann, 1984; Patton ct al, 1989;
Frank, 1992). In a similar way, when appropriate
process data are available, the bank of ncural
network models can be generated in the nonlinear
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case. The bank contains beth the model for
normal operating process and the models for the
fault situations. Every possible fault must be
known beforehand in order to make accurate
diagnosis. When the model bank is complete, the
next step is to design the decision making
procedure, which selects the best matching
model. The most common method is a Bayes
classifier.

Neural networks provide a very useful tool for
nonlinear system modelling. When neural
networks are used to model the behaviour of a
practical system, the most appropriate model
structure is the discrete-time nonlinear model
(Chen et al, 1990), which in multivariable
stochastic case can be presented as follows

y(t)=f(y(t-—1),...,y (t—ny) u(t=1),..,u (t—nu) -
1)
cne(t=1),...,e (t—-ne)) +e(t)

where y, u and e are the output, input and noise
vectors with the maximum lags of n,, n, and n_
respectively and f is a vector-valued nonlinear
function, which in this case is implemented with
neural networks.

Instead of the general multivariable model
structure, a separate neural network model for
every measurement is constructed. In this way
several small neural network models are made
and the decision of the dimensions (the delays and
the number of terms) is easier to make than in the
case of one large neural network model.
Therefore the following model structure is used

(0= (= 1)y (t=ny)su(t= 1) (t=y))
@)
i=12.

where the functions f; are implemented with the
radial basis function neural networks.

In Suontausta et al (1993) the idea for dynamic
fault detection is proposed.

The proposed diagnosis method is studied with
the simulations of the jacked reactor presented in
Figure 3. In the continuously stirred tank reactor
a first order irreversible, exothermic reaction
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A->B takes place. The heat of the reaction is

c‘ﬂ Fo TO - _._2."—’
F, T - 4
c, ¢y FT

Figure 3. Example Process

removed with the cooling jacket which is really a
heat exchanger around the reactor. The system
has two control loops with discrete PI controllers.

In fault diagnosis simulations four fault situations
are studied. In the first fault situation the input
flow rate to the tank is too high, 10% over the
normal flow rate, and in the second fault it is too
low, 10% under the normal flow rate. In faults
three and four, the input concentration of Ais 5%
too high or low, respectively. A model has been
constructed for the normal operation and for
every fault situation. Each model consists of four
single-output radial basis function networks - one
network per one measured process variable. The
parameters of the radial basis function networks
have been estimated off-line with the orthogonal
least squares algorithm.

The test example of the constructed diagnosis
system is presented in Figure 4, which shows the
situation where the process works normally at
first and then fault number two (input flow rate
100 low) occurs at the time 2500 minutes. There
have been several operating-point changes during
the simulation. The outputs of the radial basis
function network models are shown by dashed
lines (--) and the process measurements by solid
lines (-). The Bayes classifier indicates quite rapid
and reliable fault diagnosis. In Figure 5 a slow
fault, fault number three (input concentration A
too high) occurs at 4167 minutes. The operation
point changes rapidly and the model estimates of
the normal situation have significant error after
the fault. Model estimates of fault no.3, on the
other hand, pick up the situation, but slowly,
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because of reactor dynamics. This can be clearly
seen in the Bayes classifier.
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Figure 4. Fault no.2 occurs at 2500 minutes.
Above the nominal model (temperature and
concentration Cg) following at first normal
operation, but at 2500 creating significant
error. In the middle, the corresponding fault
model first does not follow the output, but after
the fault, tracks the output very well, Below, the
behaviour of the Bayes classifier as a furnction
of time

The simulation studies of the jacked reactor show
that the proposed method works reliably with
nonlinear processes even when the ranges of
several operating points are considered.

5. Real-time Neural Network Control

Much of the current research effort in the control
literature is focussed on developing nonlinear
control methods which give good performance in
the presence of disturbances and unmodelled or
time-varying dynamics. At the same time, many
papers indicate that neural networks have a lot of
atiractive properties required in nonlinear
time-series modelling and in nonlinear control
(Bhat and McAvoy, 1990;Koivisto, 1990;
Narendra and Parthasarathy, 1990; Psichogios
and Ungar, 1991). In this context, nonlinear
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Figure 5. Fault no.3 occurs at 4167 minutes.
Above the nominal model, in the middle, the
corresponding fault model and helow, the Bayes
classifier as a function of time

internal model control (IMC), realized by neural
networks, provides a flexible and practical tool to
treat nonlinear control problems.

The linear IMC has been studied extensively in
the literature (Morari and Zafiriou, 1989). The
main principle of the IMCis that for an open loop
stable process one can find a perfect controller by
inverting the "minimum phase" part of the
process model. In (Hunt and Sbarbaro, 1991,
Koivisto et al, 1992) it is shown that ncural
networks can also he applied straightforwardly in
the IMC framework. Here the IMC strategy
discussed in ( Economou ct al, 1986) for
time-discrete,  nonlincar  single-input
single-output (SISO) systems, is applied to the
control of a laboratory heating process. Unlike
existing nonlinear control design technigues that
incorporate IMC concepts, the new design
method relaxes the assumption ahout the stability
of the system inverse (Hunt and Sharbaro, 1991)
by using an optimal controller within the IMC
architecture and paramelter projection 1o cnsurc
the stability of the controller.

The development of a general nonlincar
extension of IMC poses scrious difficultics due to
the inherent complexity of nonlincar systems. For
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instance, the linear process model can be
factorized so that the part containing all the time
delays and unstable zeroes is separated and left
uninverted. Consequently, the controller is stable
and realizable with a suitably chosen IMC filter.
Unfortunately, the IMC factorization has no
general nonlinear analogy. Thus previous results
based on (Economou et al, 1986) have been
restricted to refer only open-loop stable
nonlinear systems with stable inverse, that is, the
assumption about the existence of the model
inverse must be made. This can be relaxed.

Assume that a deterministic discrete-time
nonlinear model of the process is available. This
model can be any physical 'pmcess model or an
experimental one. In the case of an experimental
model, the model should have the d-step ahead
predictor form

§\(I+d)w—~f((p(l)) (3)

p(1)= [ﬁwd— 1 ),...,{‘(Hd—nﬂ) A(L),...,u (1—nh+ 1)]

Here ¢ is the data vector, ﬁl+d) is the d-step
ahcad prediction of the measurement, u is the
input of the process and f is a differentiable
function. The predictor (11) is a nonlinear
cxtension of lincar d-step ahead output error
predictor (Ljung and Soderstrom, 1983) and is
named a nonlinear output error (NOE)
predictor. In this paper, the function fis realized
with a multilayer perceptron network. The
identification of the neural nctwork NOE
predictor with recursive prediction error method
(RPEM) is presented in Koivisto et al (1992).

The problems related to the model-inverse-based
IMC design can partially be avoided by designing
the nonlinear controller

P (t+0) =1 (p(0)

o(1)= [y*(l+d—1),.. " (thd=m,) f+d=1),...

(4)
,...,f(t+d~—ma) Ju(t),...u (l—mh+ I)]

where f is the data vector, g is the parameter
vector of the controller, y * (1) is the setpoint and
h is a differentiable function, which minimizes a
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quadratic cost function (Economod et al, 1986).

The controller can be effectively realized with a
multilayer perceptron network, which represents
a special form of parametric function (3). In this
case, the structure of the parametric nonlinearity
is fixed and the parameters, i.e. the weights of the
multilayer perceptron network, are obtained by
minimizing the cost function.

5.1. Real-Time Experiments

The neural network IMC controller described in
the previous sections, is tested in real-time
experiments with a laboratory scaled heating
process (Figure 6a). The water flows from the
domestic water network into an uninsulated (.4
litre tank through a multidelay pipe and is heated
by a resistor. The aim of the control is to drive the
temperature of the outlet flow to the desired
value. The process has four important
characteristics for control design: 1) The
time-delay is 15 seconds and the dominating time
constant is about 30 seconds. 2) The dynamics is
sensitive to the flow changes. 3) Noise is a
function of the temperature and the inlet flow. 4)
The process has extremely slow modes due 1o the
lack of insulation.

Figure 6 (a) Schema of the Heating Process
and (b) Software Configuration.

The software of the control workstation
HPY000/425T, Figure 6b, consists of the
commercial process simulator, Simnon (1991),
communicating through tep/ip sockets with the
Planet/XNet neural network software {Miyata,
1990), which provides a flexible software tool for
neural network computation. Here Simnon is
used to store the measurement data to a file and
to communicate with the unit controller. The
control signal itself is computed in XNet. Both

Studies in Informatics and Control. Vol.4. No.3.Sept. 1995



software packages are modified by adding
necessary procedures to tcp/ip communication
and RS 232 serial bus protocol. The combination
of Simnon and XNet provides a flexible and
practical research tool for real-time experiments
and simulation studies when the Simnon is used
to solve differential or difference equations of the
simulated process.

The NOE model structure with na=nb=2 and
d=5, and the controller structure with
ma=mb=] and mc=2 are used. The model
network consists of two hidden layers with five
hyperbolic tangent nodes and an one-output node
with linear activation function. The controller has
the same network structure, except that the
hidden layers have ten nodes and the activation
function of the output node is hyperbolic tangent.

The NOE predictor is fitted in 3000 iterations to
the input- output data collected by driving the
process through the whole operation range from
10 to 50° C. After the model identification the
controller (4) is designed by minimizing a cost
function using a similar setpoint sequence as in
modelling. Moreover, the pole of the controller is
limited to [0.8, 1.0] by projecting the parameters
of the controller into the stable region. This not
only ensures the stability of the controller but also
considerably reduces the possible oscillations of
the control signal. After 2000 iterations, the
parameters were fixed and the prediction error
feedback with the filter was added to the feedback
path. -

Six weeks after the model identification the
performance of the control system is tested in
real-time experiments. This results in significant
modelling error. The behaviour of the control
system and the controller/model loop are shown
in Figure 7. The setpoint responses show that in
spite of the mismatch between the process and the
model, the overshoot is very small and the
response is fast and robust.

6. Fuzzy Control

In fuzzy control the major contributions have
been in the area of tuning. This is a very important
area in fuzzy control. New methods for tuning of
multivariable fuzzy logic controller have been
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developed (Makkonen and Koivo, 1995a:
Viljamaa and Koivo, 1995). A new, relay
autotuning method for scalar fuzzy PID
controllers is reported in Makkonen and Koivo
(1995 b).

Fuzzy control has been applied to a very difficult
servoproblem, which includes all practical
nonlinearities like friction, backlash and
saturation (Makkonen and Koivo, 1995 a). The
developed servo model is a good test problem for
different control methods. Conventional
approaches do notwork very well and are difficult
to tune. Here robustness properties of fuzzy
control are clearly demonstrated. Fuzzy and
self-organizing control has been tested €.g.0on an
industrial robot (Franssila and Koivo, 1992).
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Figure 7. The behaviour of the control system
and the controller/model loop. The setpoint, the
measurement, and the prediction error are
presented above, The middle picture shows the
modified setpoint, the prediction, and the
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7. Telemanipulation

Telemanipulators are widely used in many
hazardous environments - e.g. in high radiation,
undersea or space environments. They offer
better flexibility compared with conventional
manipulators due to their man-in-the-loop
property. Interaction between human and
manipulator also induces many difficulties in
control schemas (Hogan, 1989).

Servo-master-slave teleoperation system usually
consists of three subsystems: master, slave and
communication system. Master and slave are not
usually connected, but connection is artificial
through the communication system. The
communication system includes the control
systems for master and slave, transmission of
measurement and control signals, and
information system that delivers information
(e.g. vision and sound) about the environment of
the slave to the master side, where the operator
is. In addition to the actual teleoperation system,
both operator and the object to be manipulated
belong o the total system under study.

Good force reflection or tactility is of utmost
importance when manipulating objects by the
telemanipulator. It enables precise and safe
operation and hence increases the use of
telemanipulator. Many control strategies
suggested in the literature for master-slave
control, are based on the modelling of the system
using basic principles (e.g. Bobgan and
Kazerooni, 1991; Furuta et al 1987; Lec and Lee,
1992). At Tampere University of Technology a
procedure for quick design and tuning of
controllers was developed based on on-site
measurements (Rauhala and Koivo, 1994). The
approach is different, since no physical or
parametric models of the system are nceded, but
the tuning of controllers is based on the frequency
response analysis. Therefore the scheme is easily
implemented for different kinds of manipulators.

8. Microtelemanipulation
Electronics has developed very fast in recent
decades. The sizes of microchips have been

reduced from centimeters to micrometers and
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very high component densities have been
achieved. In the future, the
microelectromechanical systems are expected to
develop in the same way. Consequently,
microsystems are expected to have prominent
impact on technological development.
Manipulators capable of operating with an
accuracy of micrometers can be applied to the
assembly of microelectromechanical systems, the
test and assembly operations of microchips,
microsurgery and biotechnological operations.
Micromanipulators can be, depending on the
application, either micro-sized or normal-sized.
All of them can handle micro-sized objects and
are called micromanipulators in the literature. At
Tampere University of Technology an one degree
of freedom test bench for control experiments has
been implemented (Kallio and Koivo, 1995 a and
b). The master-slave type of manipulator moves
minute objects having size of few millimeters. A
voice-coil actuator drives the slave, which is
controlled using an one degree of freedom lever.
The end effector of the slave - a thin aluminium
link - is mounted on the voice-coil motor
detached from a 3.5" hard disk drive of a PC as
shown in Figure 8.

Figure 8. An Overview of the Mini-
telemanipulator

When the slave comes into contact with an object
the force exerted on the slave is magnified and
reflected to the master. The force is sensed by
strain gages and a laser sensor measures the
positions of the link. A bilateral control method
which has been used in the normal-size
telemanipulator is used also for the
minitelemanipulator.

Studies in Informatics and Control.Vol.4. No.3.Sept. 1995



A joint project with Mechanical Engineering
Laboratory of MITI, Tsukuba, Japan, is also in
progress. Here a Stewart-type micromanipulator
has been designed and implemented. Extension
of its workspace and control design has been
reported in Ojala et al (1994). The next phase in
the project is to apply micromanipulation to
biological cell manipulation.

9. Conclusion

A brief summary of the research activities of
Control Engineering Laboratory in the areas of
intelligent control, telemanipulation and
microtelemanipulation, has been produced.
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