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Abstract: It has been demonstrated
through past research that point contact
is required between the robot arm and an
object for effective modelling and control
of manipulation. In this work we investi-
gate sufficient conditions in order that the
end effector of the robot and the object
have point contact. Both the end effector
and the object are rigid surfaces described
by smooth equations in the 3-dimensional
space. The analysis is built on the ba-
sic knowledge of Differential Geometry and
particularly on the concept of the principal
curvatures of a surface.
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1 Introduction

There is definitely a need for modelling
of contact as well as for a description of
the dynamics involved in problems of ob-
ject manipulation by robotic arms. An
appropriate model of these problems will
result in more effective control schemes
with many applications. There is a lot
of research effort made towards this di-
rection in a number of related fields like
constrained dynamics, robotic hands and
robotic control. One of the assumptions
for the construction of a model of ob-
ject manipulation is that the surfaces of
the end effector of the manipulator and
the object are rigid surfaces and point
contact comes between the two surfaces
(Figure 1).

In the present work we reduce the
problem to that of point contact be-
tween two rigid surfaces. Thus we inves-
tigate for conditions which are sufficient
that two smooth surfaces come into point
contact. Qur investigation is based on

Studies in Informatics and Control, Vol 4. No.2. June. 1995 107



Figure 1: Object Manipulation by
a Robot Arm with Point Contact

early results by H. W. Guggenheimer [3]
which include conditions for point con-
tact of two smooth plane curves using
their curvature. We will attempt to ex-
tend those results using similar criteria
for smooth surfaces. The key concept
will be that of the principal curvatures
of the surfaces. We extend our results
to areas of points on the surface of the
object which may come into point con-
tact with areas on the surface of the end
effector of the robot arm. This will allow
us to get a clear view on the model of
the constrained dynamics of the object
and to construct an appropriate control
algorithm in future work. In this work
we require that the surfaces lie in R3,
and are defined by a function of the form
f(z,y,z) =0 at least locally.

2 Contact between
Objects and Surfaces

Two surfaces are in point contact if they
have one common point which is not a

point of intersection. Throughout this
work we will mean point contact when-
ever we talk about contact unless it is
explicitly mentioned. It is noted that we
will not investigate cases where we have
multiple points of contact or parts of the
surfaces in contact; we leave these cases
for future research. An intersection point
cannot be considered as a contact point.
A simple way of excluding such points is
to require that the two surfaces share a
common tangent plane at each common
point, Figure 2(a).

However, the condition of tangency
does not exclude undesirable cases, see
for example cases (b) and (c) in Figure
2. Even though the surfaces are tangent
at the common point, because of the rel-
ative curvature of the surfaces they can
intersect each other in a neighbourhood
of the point of contact (b). In case (c) of
Figure 2, contact occurs in the interior
of the body (or surface) without violat-
ing the tangency condition. This is not
physically meaningful since we are deal-
ing with rigid bodies. These situations
can be avoided by defining an orient-
ation of the surfaces of the bodies, and by
requiring, in addition to tangency, that
each body (or surface) be in the exterior
of each other. This added assumption is
equivalent to requiring that the bodies
and the surfaces are smooth orientable
embedded manifolds in $3.
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Figure 2: Condition for Tangency Does Not Guarantee Contact

Figure 3: Embedded Surface in 3
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3 Curvature of Sur-
faces Embedded in
§R3

The curvature of two surfaces, at two
particular points (one on each surface),
can be used to determine if the surfaces
can come in contact at these points. We
need define criteria which involve the cur-
vature of surfaces in order to be able to
decide in each case whether contact is
possible. It is easy to determine curv-
ature for surfaces which are embedded
submanifolds in R°.

Consider a surface M embedded in R?,
and a chart (U, ¢) as shown in Figure
3, the map ¢ is continuous, and W =
$(U) C R?, where U is an open subset
of M. Consider a point p € M then for
every point p we can find a pair of vec-
tors Ey,, g, such that Fyp, Fy, are tan-
gent to the surface M and orthonormal.
The vectors Ep, E2p also span the tan-
gent space of M at the point p, and T},
is considered as a subspace of T,R>. We
assign to each point p € M of the surface
the Gauss vector N, which is the unit
normal vector field of the surface M i.e.
N, LT,M. The vectors Ey,, E;, and N,
are chosen so that the triplet £y, £y, IV,
is an orthonormal frame for 7,%* and N,
is consistent with the orientation of the
surface M. The orientation of the sur-
face coincides with the orientation of the
solid body. This means that the internal
part of the solid body is the same with
the internal part of the surface. Since NV,
is defined for all the points p € M, we
can consider the unit normal vector field
N defined over M.

Let ¢ : I — M be a smooth curve,

and assume that p = ¢(0), where p € M,
with tangent vector ¢(0) = X, € T,M.
We restrict the unit normal vector field
N to the curve ¢(t) such that N(¢) =
N |y, then N(t) is a vector field de-
fined on ¢(t). Since ¢(t) is also a curve in
3, the derivative of the vector field N(t)
along ¢(1) can be easily computed. We
denote this by -dd‘—f [2,p.298] , and the fol-
lowing theorem results for & [2,p.367):

Theorem: The vector %~ |i=o is in-
dependent of ¢(¢) and depends only on
X,. Let S(X,) = -4 |, then
X, — S(X,) is a linear map from
T.M to T,M. A

Using an analogy from linear algebra,
we define a bilinear form:

(X, Y) = (5(X),Y)

where (-,-) is the metrics on T'M, con-
sidered as a subspace of TR3, and ¥ is
a co-variant tensor of order 2. The bi-
lincar form W has very useful properties
which are apparent from the following
two theorems, [2,p.368] and [2,p.370] :

Theorem: S(X) is a symmetric op-
erator on the tangent space TM and
U(X,Y) is a symmetric covariant tensor
of order 2. The components of S and
¥ are C* if M is a C* submanifold in
® . A

Theorem: At each point p € M, the
eigenvalues of the linear transformation
S are real numbers k; and ky, and we
assume that Ay > ko If ky # kg, then
the associated cigenvectors are orthogon-
al. If by = ks = & at p, thei $(X,) =
kX, for every vector X, € T,M. The
numbers k; and k; are, respectively, the
maximum and the minimum values of
U(X,,X,) = (S(X,),Xp), over all unit
vectors X, € TL,M. A
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The two numbers %k, and k;, are the
principal curvatures along the orthogonal
directions F,, F,, tangent to the surface,
which are called principal directions, see
Figure 4. The triad Fy,, F3,, N, is an or-
thonormal coordinate frame which con-
forms with the orientation of the surface.
The meaning of the principal curvatures,
at a point p, can be grasped by consider-
ing the plane Fi,, N,, see Figure 4. This
plane intersects the surface M along a
curve ¥;(t). The curvature of a plane
curve is a well- defined quantity and k,
is the curvature of the curve v,(t) at p,
considered as a planar curve on the plane
Fip, Np. In a similar way, k, is the curva-
ture of the curve +4(¢) at p on the plane
Fa,, N,. Any curve which is the inter-
section of an embedded surface M and
a plane spanned by a tangent vector X,
and the normal vector N,, at a point
p € M, is called a normal section. Thus
71 and 2 are normal sections.

A
R

Figure 4: A normal Section on a
Surface M in R3

For a plane curve, the curvature at a
point is defined as the rate of change of
the tangent vector to the curve at the

point. Any tangent vector at the point
p can be written as a combination of Fy,
and F3,. Thus, the principal curvatures
at a point p on a surface can be used to
characterize the curvature of any normal
section passing through this point. Let
X, € T,M be a unit tangent vector,
and assume that it is oriented to a di-
rection which forms an angle 0 with F,,
see Figure 5.

Figure 5: A Tangent Vector at
Point p Forming an Angle 0 with F,

Then, X, = Fpcos(0) + Fypsin(8),
since f,, F3, is an orthonormal frame
which spans T,M. Since k;, k; are the
eigenvalues, and [, Fy, are the corre-
sponding eigenvectors of the linear map
S, then:

ki(Fip, ) = (S(Fy), Fip)

kg(ng, FZp) = (F?Pa S(F2P))

Let 4(t) be the normal section of the
tangent vector X, and the normal vector
Ny, see Figure 5. Assume that y(0) = p
and 4(0) = X,, then the curvature of
the normal scction 4(t), as a plane curve
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at the poiznt p, is given by the quan-
tity (Np,%t% |,), where N, is the unit
normal vector at the point p. Since

d e s B
(N, 21,) =0, then (& |, & |,) =

—(Ny, % |p), and at the point p = ~(0)

of the curve %(t) the curvature is k =
"(% lp» Xp) = (5(X5;), X;). The unit
normal vector field N, is constrained to
the curve 4(t), N(t) = N |,(), such that
¢ is well- defined. The curvature at
the point p of the normal section v(t), is
determined by the tangent vector X,, is
given by k = (5(X;), X,) = ¥(X,, X;),
and can be expressed as a function of
if we use the relation X, = Ficos(0) +

Fasin(0):
k(0) = kycos®(0) + kosin®(9).

This formula is also known as Euler’s for-
mula.

4 Curvature as a Con-
tact Criterion

In the previous section we have analysed
how the principal curvatures define the
curvature of any normal section on a
smooth surface. Next, we are going to
see how the curvature of two plane curves
can be used to define conditions in or-
der that two surfaces ( or bodies ) are
brought in point contact. Consider first
two curves in R?, namely ¢;(t) and ¢,(t),
which can be used to represent the sur-
faces of two plane rigid objects. We give
an orientation to the two curves, such
that the unit normal vector points to the
exterior of the object, see Figure 6.

We want to find out conditions in or-
der that the two curves should be in con-
tact at the points ¢;(0) and ¢2(0), with-

out intersecting the interior of each other.
Contact means that the two curves have
a common point, and that the tangents
to the curves at this point coincide. Let
the curvatures of ¢;(t) and ¢;(¢) be k., (0)
and k., (0) at the points ¢;(0) and ¢;(0),
respectively. Given the orientation of
the curve ¢;(t) for example, at the point
c1(0) 1t has negative curvature since it
is bending away from the normal. If
it were bending towards the normal it
would have been positive. The follow-
ing theorem [3,p. 28] gives a condition
for the two plane curves ¢;(t) and cy(t)
so as to be in contact at ¢;(0) and ¢2(0):

Theorem: Let ¢;(t) and c2(t) be two
curves in R%. Then ¢;(t) and c;(t) can
be in (exterior) contact at ¢ = 0, if one
of the following conditions holds:

1) —k,(0) > k., (0).
if) —key(0) = ket (0),

and there is an interval I C R with I =
(—¢, €), € is a small positive number, such
that —k.,(t) > k., (t) for t € I and t # 0.
A

This theorem states that contact with-
out intersection can occur if the sign of
the dillerence (—k.,(t) — k., (t)) does not
change at the point ¢ = 0. Using this
theorem we can avoid cases like (a) in
Figure 7, where there is a discontinuity of
the curvatures at the point ¢ = 0 in both
curves and as a result the curves inter-
sect or as in case (b) in Figure 7, where
k.,(0) = k., (0), and the curves coincide
for an interval ¢ € [ around ¢ = 0, and
they might intersect at a point ¢t # 0.
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Figure 6: Two Plane Curves which Can Be in Contact

(a) (b)

Figure 7: Intersection between Curves which Are Tangent
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Figure 8: Surface B, and a Normal Section at a Point b,
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Let the surfaces B; and B, be smooth
manifolds associated with two rigid
bodies, and let b, and b, be two points
on each surface, respectively. Sometimes,
we use B; and B, to label the rigid
bodies besides their surfaces. The princi-
pal curvatures at the points b; and b, can
be used in checking if contact is possi-
ble between the surfaces at these points.
Select one of the bodies as a reference
and compare the curvature of the two
bodies, let the reference surface be B;.
Initially, consider a normal section ~(t)
generated by a plane N, X;, at by, on
the body B, such that 4(0) = b,. We
want to investigate if v(¢) can be in con-
tact with an arbitrary oriented planar
curve ¢(t) at the points ¢; = ¢(0) and
by, such that their interiors do not inter-
sect. The interiors of the curves 4(¢) and
c(t) are defined by their orientation, for
the curve 4(t) it coincides with the inte-
rior of the body B;. By contact in this
case we require, of course, that the curve
c(t) lies on the same plane as ~(1).

Let k,(t) and k.(¢) be the curvatures
of 4(t) and c(t), respectively. Then, the
curves can be in contact at the points
by and ¢; according to the theorem if
k+(0) < —k.(0), or if k,(0) = —k.(0) and
ky(t) < —k(t) for t € I and ¢ # 0. This
illustrates how curvature can be used
to construct criteria in order to invest-
igate whether two smooth surfaces can
be in contact at a given point. Con-
sider an open neighbourhood U C B,
of a point b, such that all the normal
sections v(t), satisfying v(0) = b;, also
satisfy y(t) € U for t € I = (—¢,¢), for
some small positive number €. Let k;(u)
and ky(u) denote the maximum and the
minimum curvatures, respectively, at a

point u € Y. Notice that the maximum
and the minimum curvatures at the point
u, ki(u) and ky(u), are functions of the
point u regardless of any passing curve
through this point on the surface. In-
stead the curvature along a curve is a
function of the parameter of the curve
like k(). Assume that k() < —k.(0)
or if k1(by) = —k.(0) then Lr;agf(kl(u)) %
—ke(t) for t € I and t # 0; then the
curve ¢(¢) can be in contact with any
normal section ({) through the point
by, since k,(0) < (ki(by)) < —k(0).
If ky(b1) = —k:(0) then either k,(0) <
ki(b1) and thus we are covered by the
first case or k,(0) = ki(b;) and &, (t) <
IJ;E};II-\'(Afl(lt)) < —k(t)fort € Iand t # 0.

Next, consider the point b, on the sur-
face B3;, and a normal section 6(t) satis-
fying 6(0) = b,. If we bring the surface
B, into contact with the surface B, such
that b; and b, coincide, then there can
be an infinite number of common norm-
al sections on both of the surfaces B,
and B, see Figure 9. The contact of
the two bodies is physically feasible if all
pairs (v,6) of common normal sections
on cach body, have curvatures satisfying
ka(0) < —A5(0) or if k,(0) = —X5(0) then
ky(l) < =As(t) for t € [ and t # 0. If
this is possible for a certain position of
the body B, velative to the body By, it
mecans not that it applies to every rel-
ative configuration. In particular, if we
rotate the body £y around the common
normal at the point of the contact, it is
possible to encounter a relative configur-
ation where the interiors of certain com-
mon normal sections intersect.
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Figure 9: Corresponding Normal Sections on Two Bodies in Contact

Figure 10: Position of the Tangent Vectors X;, and Y,
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From the analysis, it is apparent that
in order to investigate if two bodies B;
and B; can be in contact at the points
by € By and b; € B;, we have to initially
check if the condition k,(0) < —As(0)
holds. Let k;,k; and A, A\; denote the
maximum and the minimum curvatures
at the points & € B; and b, € B,,
respectively. Consider a normal sec-
tion along the direction of X, , where
Xy, = Ficos(0) + Fysin(8), then the cur-
vature at the point b is given by k(0) =
k1cos?*(0) + kysin?(6). Here F}, Fy !
are the principal directions at the point
bi. In a similar way, let us consider a di-
rection Y;, = Jicos(¢) + Josin(@) at the
point b, € B,, where J; and J; are the
principal directions, see Figure 10. Then
the curvature at the point b, of the nor-
mal section, along the direction Yj,, is
given by A(¢) = Ajcos?(@) + Azsin?(4).

From the analysis, if k; < —\;, then
it is possible that the two bodies are in
contact at the points b; and b, in any rel-
ative configuration of the body B,, with
respect to By. If k; < —Aq, then £(0) <
—A(¢) since k(0) < ky < =\, < =\(9),
and this happens for any 0 < 0,¢ < 5
If &y = =Xy, then k(0) < k) = =), <
—AM¢)if0 #0and ¢ # 0. When 0 =0
and ¢ = 0, the worst case happens when
for a given relative configuration the di-
rection of the vector F} in B; coincides
with the direction of J; in B, and the pair
of the corresponding normal sections in
these directions, includes the curves with
the maximum curvature at b; € B, and
b, € B,. We can denote these curves
by 1(t) and é1(¢), respectively. Since
ki = k,(0) and Ay = As(0), then ac-

"Here we dropped the subscript b, for salle of
simplicity

cording to the theorem since k; = =)\,
we have to check if the curvatures satisfy
the condition k,, (t) < =X, (), for t € I
and t # 0; this determines point contact
at the pair of points by, b,. Further re-
finements might be necessary if the con-
ditions k; = k; and A, = X; hold simul-
taneously.

5 Using the Princip-
al Curvatures as A
Priori Information

Next, we develop criteria based on the
curvature condition to check if contact
is possible. Given that &y, k;, A1, X, are
real numbers satisfying the constraints,
ky < Ky and Ay < )y, there exists a finite
number of orderings. We can investigate
the possibility of contact for each case,
and we can organize the criteria for con-
tact in terms of the particular relation
among these numbers.

Before starting the investigation, we
would like to mention the following facts
as resulting from the gecometry of the
problem. Iirst, on the tangent plane to
the point by, the curvature of the normal
scctions as we move {rom the direction
along Iy (the maximum curvature direc-
tion) towards the direction of Fy (the
minimum curvature direction), decreases
monotonically. This is obvious since the
curvature of any normal section is given

by k(0) = kicos*(0) + kysin?(0). The
derivative % = (kg —ky)sin(20) is always
negative for 0 < 0 < 7y since ky —ky <0,
and always positive for —Z <0 < 0. We
can visualise the situation as illustrated

in Iigure 11, the arrows show the direc-
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tion of motion such that the curvature
of the corresponding normal sections, in-
creases.

Fo A

s,
" A

Figure 11: The Directions of In-
crease of Curvature

When the two bodies come into con-
tact, then the tangent planes at the
points b; and b, coincide. Recall that
both pairs of vectors (Fy, F2) and (J;, J2)
are orthonormal, see Figure 12. Assume
that when there is contact between the
two bodies at the points b; € B; and
b, € B,, the vector Jy is at an angle
from the vector Fj, see Figure 12.

Fy
TblBl_:szBz

Figure 12: Relative Position of the
Two Frames at Contact

The graph of the function k(0) is illus-
trated in Figure 13.

3 e

Figure 13: Curvature of a Normal
Section as a Function of

In this graph the angle 0 ranges be-
tween 0 < 0 < 7, and k() is the curv-
ature of the normal sections correspond-
ing to each 0 at the point &, € B;. A
similar graph of the function A(¢) gives
the curvatures of the normal sections for
0 < ¢ < m, at the point b, € B,.
When the two bodies are in contact at
the points by € B; and b, € B,, and the
angle between F} and J; is 9, then we can
superimpose the two graphs for compar-
ing the curvatures of the corresponding
normal sections along all the directions.
The graph of A(¢) is actually the graph
of the relative curvature (with opposite
sign) since we are comparing with refer-
ence to the surface B;.

In Figure 14, the curvature function
Al@) is given as a function of 8 = ¢ +
Y. As we can see from the graph in
Figure 14, the upper curve represents the
graph of A(¢) shifted by ¢. In the follow-
ing graphs the intervals of @ of the curve
A(8) where the curvature of the normal
sections, at by € By, is less than the curv-
ature of the corresponding normal sec-
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Figure 14: The Curvature Func-
tions Superimposed

tions at b; € B, correspond to situations
where the two bodies B, and B, inter-
sect and cannot physically be in contact.
For example in Figure 14, in the inter-
val §, and #,, there cannot be contact.
Next, we investigate all possible cases of
ordering of ki, ky, A, A;. We begin with
the case where —\; = —)\; and k; = k,.
This corresponds to the case where all
the normal sections have the same cur-
vature and the graphs of k() and X(0)
are straight lines. There are three possi-
ble cases :

1) f by = k1 < =X = =)y, we always
have contact. We refer to this case
as “completely contactable”.

ii) If —/\1 = —/\2 < k2 = kl, then 1no
contact is possible. We refer to this
situation as “noncontactable”.

ii) If =\; = =Xy = k; = ky, consider
any pair of corresponding normal
sections y(t) € B, and §(t) € B,
with 4(0) = b, and §(0) = b,. Then
ky(0) = by = by = =X = =), =

—As(0) and we need investigate if
k) < —As(t) for ¢t in some non-
empty interval 1, ¢ # 0, then contact
is possible. If we check on one pair
of normal sections, it does not neces-
sarily imply that the same happens
to all other possible pairs. Thus, we
need check on all the possible pairs
of normal sections because in the
neighbourhood of the points k(0)
and 6(0) the curvatures can change
sufficiently. In general, the investig-
ation of all possible pairs of normal
sections not being possible, we refer
to this situation as “undetermined”.

For the case where k) = k; and -\, <
— Az, there are the following possibilities:

iV) II & = ky < -A1 < —A,, In
Iigure 15, the points &, and b, are
“completely contactable”,

4 A(B)

(%]

x(0)
|

'y

0 0.5 1 1.5 2 25

Figure 15: Comparative Graph of
the Curvatures for the Case iv

v) Il ks = by = =X} < =)y, generally
the investigation of all possible cases
being out of question, this is an “un-
determined” situation.
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Vi) If —Al < k = kz < —'Az, in
Figure 16 the points are “noncon-
tactable”.

| N -

Figure 16: Comparative Graph of
the Curvatures for the Case vi

vil) If =\ < =X < by = kg, i
Figure 17 the points are again “non-

contactable”.
5 -
4 K(0)
3t
2 +
A0)

1
0 i e — e

0 0.5 1 1.5 2 2.5 3

Figure 17: Comparative Graph of
the Curvatures for the Case vii

For the cases where k; < ky and =), =
— A4, we have the following combinations:

Viii) If kg < 1\71 C-o —)\1 = —/\2, then the
points are “completely contactable”,
see Figure 18.

5
4 A(©)
3
2
x(0)

1 ]
0 " " a A A

0 0.5 1 1.5 2 25 3

Figure 18: Comparative Graph of
the Curvatures for the Case viil

ix) If ky < ky = —A; = —A,, this case 1s
“undetermined”.

x) Ik < =A1 = —=A; < kyq, in Figure 19
this is a “noncontactable” case.

e A(®) o

2
K(e)\/

0 0.5 1 1.5 2 25 3

Figure 19: Comparative Graph of
the Curvatures for the Case x

xi) Hhy ==X ==X <k, 0r
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Xii) if =M = —-/\2 < ky < kl, in
Figure 20 such cases are “noncon-

tactable”.
5 e o
4
x(8)
3
2 L
A(B)
1+ =
0
0 0.5 I 1.5 2 25 3

Figure 20: Comparative Graph of
the Curvatures for the Cases xi and
xii

When k; < k; and —X; < =)y, the

following combinations result:

Xiii) If kz < kl < =M < —)\2, in
Figure 21 this is a “completely con-
tactable” case.

5
4
A(8)
3
2
x(0)
] t
0 .
0 0.5 1 1.5 2 2.5 3

Figure 21: Comparative Graph of
the Curvatures for the Case xiii

XiV) If by < ky = - < — A2, the case
1s “undetermined”.
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xv) If by < =A1 < =Xy < Ky, see
Figure 22, or

4t
A(8)
3 ra
2
X(0
1
0 0 0.5 1 1.5 2 25 3

Figure 22: Comparative Graph of
the Curvatures for the Case xv

xvi) if =X < ky < =Xy < ky, see
Figure 23, or

5
4
k(0)

3
2
1 AB)
0 . o i

0 0.5 1 1.5 2 25 3

Figure 23: Comparative Graph of
the Curvatures for the Case xvi
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XVii) if —Al < kg < —)\2 = kl, see
Figure 24, or

A6)

x(8)

A(8)

w b

0 0.5 ] 15 2 25

Figure 24: Comparative Graph of
the Curvatures for the Case xvii

XViii) if —Al = ICQ = —/\2 e !“'11 sce
Figure 25, or

x(8)

0.5 1 1.5 2 2.5 3

Figure 26: Comparative Graph of
the Curvatures for the Case xix

xx) Il kb, = =X\ < bk < =)y, in

[Figure 27, then we have the “non-
contactable” case except for the con-
figuration in which the direction of
the maximum curvature A; is to-
wards the minimum curvature k,,
which is “undetermined”. We opt
[or classifying this case as “noncon-
tactable” since the situation where
contact is isolated to a single config-
uration is of no general interest.

0 0.5 1 1.5 2 2.5 3

Figure 25: Comparative Graph of
the Curvatures for the Case xviii

XiX) if —Al < kg < —)\2 < k], see
Figure 26, all these cases are “non-
contactable”.

x(6)

AB)

0

0.5 1 1.5 2 2.5 3

Figure 27: Comparative Graph of
the Curvatures for the Case xx

xx1) Il ky = =X < ky = =), the points

122 Studies in Informatics and Control, Vol.4, No.2, June, 1995




are “noncontactable” except for one
configuration, which is an“undeter-
mined” case, see Figure 28.

5
4
x(8)

3

2 b

e

1

0

0 0.5 I 1.5 2 2:5 3

Figure 28: Comparative Graph of
the Curvatures for the Case xxi

xxii) If by < =X < ky = — A, this case
is, in general, “noncontactable”, sce

Figure 29.
5
4 b

K(8)

3
2 A(8)
|
0% 0.5 1 15 2 25 3

Figure 29: Comparative Graph of
the Curvatures for the Case xxii

Finally,

XXlli) If kz < —Al < kl < —)\2, there
1s a certain angle 1o such that if the
angle 1 is in the interval (=0, v0),

then every normal section at b, € B,
is greater than the curvature of the
corresponding normal section at the
point by € By, see Figure 30. This
situation is referred to as “partially
contactable™ since contact depends
on the orientation of the bodies ac-
cording to the value of angle 1.

S
al -
: AB)
3 [
[
2 ]
1
|
1 I K(0)
|
w0,
O i
0 0.5 1 1.5 2 25

Figure 30: Comparative Graph of
the Curvatures for the Case xxiii

5
4 L
AB)

3
2
| x(6)
0 i

0 0.5 I 1.5 2 2.5 3

Figure 31: Comparative Graph for
the Case xxiii when 3 > vy

The following examples illustrate for
simple surfaces embedded in R2, the ap-
plication of criteria for “contactability™.
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Example 1. Assume that the body
B is a hyperboloid with surface equa-

tion —z? + 22 + z3 = 1. The Gauss
vector at a point b = (z1,%2,23) is
given by N(b) = (ﬁﬁ,”—iﬁi,“—ifﬂ) Let

b, = (0,0,1), then N(b;) = (0,0,1) and
the principal directions are F; = (1,0,0)
and F, = (0,1, 0), and the principal curv-
atures are k; = 1 and k; = —1, see
Figure 32.

Figure 32: A Spherical End Effector
and Hyperboloid Object Investi-
gated

Let the end effector of the manipula-
tor By be a regular sphere, the surface
equation is z? + 22 + 23 = r% The
Gauss vector at a point b, = (z, 22, 23)
on the sphere is given by N(b) =
(”—‘g;ﬁ,”—‘ggﬁ,“—ﬁﬂ), and the principz.a,l curv-
atures are the same at each point and
along any direction, i.e. A} = A, = ——%.
If we choose a point b, on the sphere and
r < 1, the point b on B, and the point
b, on B, are “completely contactable”.
Since 1 < 1, this corresponds to the case
where ky < k1 < =A1 = =Xy, If r =1,
case k; < ky = —A; = —A; this is “unde-
termined” since we need investigate the
curvature of all possible pairs of normal

sections. In this particular case, since
all the normal sections on the sphere are
circles, it is easy to check if the condi-
tion k,(t) < —As(t) holds for ¢ in some
interval I and ¢ # 0, and the points b
and b, are contactable for r = 1. In
the case where r > 1, the points b; and
b, are “noncontactable”. In this case,
—Ai < ky < =Xy < kg since —1 < ;_1— <1,
see Figure 33.

Example 2. Let the body B; be a
hyperboloid as in Example 1, and the
end effector B, be a cylinder, with sur-
face equation zf + 2 = 1. At a point
b, € B,, the Gauss vector is N(b;) =
(e “—f;’ﬂ,O). Let the point b, = (0,1,0),
then N(b,) = (0,1,0), and the principal
curvatures are A\; = 0 and A = —2 along
the principal directions J; = (0,0,1) and
Jo = (1,0,0), see Figure 34. If we con-
sider the point b; = (0,0,1) on By, k2 <
-\ < k; < —)\; and the points by, by
are “partially contactable”. In case (a),
Figure 34, contact is possible because of
the particular configuration of the body
B, relative to the body B;. This does
not happen for the configuration of the
end cffector B; in case (b), as shown in

Figure 34.
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=

Figure 33: A Case where the Two Surfaces are Contactable at No Point

t

/@4
!; t*-—t\. S
. \J/NCLM

(a) (b)

Figure 34: A Case with Partially Contactable Points
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6 A Graphical Re-
presentation of the
Criteria for Contact

In order o systematically represent the
results obtained in the paragraph above,
we consider the plane with co-ordinates
ki, ks as shown in Figure 35. The line
k1 = ky separates the plane into two
half planes, and we are interested in the
half plane below the line k; = ks, since
ki > k;. For a point by € B;, con-
sider the principal curvatures &y, kg; this
corresponds to a point k,, on the plane
ki, ky. Then consider the principal curv-
atures A;, Ay at a point by € By and let
Ay, denote the point Ay, = (—A2,—A1) in
the plane &, k2. This point also belongs
to the same half plane since —Ay > —A;.

Figure 35: Graphical Representa-
tion of the Contact Criteria

We can decompose the half plane into
five regions as shown in Figure 35, and
these regions correspond to the following
cases:

Region 1: k, <k < —-A € =X

Region 2: ky < =X <k <=\,

Region 3: ky < A <=M <k

Region 4: -\ < —XA; < ky € Kk
—MShkh<-<k

Region 5: —A; <k, <k < =X

If combining this decomposition of the
plane (A1, k;) with the previous results
we can summarize the results of the con-
tactability analysis:

I) It kz S kl < —/‘\1 S ——)\2 then the
points are “completely contactable”.

ii) If kz S kl = —)\1 S —)\2 then the
points are “undetermined”.

ii) IM &, < =X < k1 < —A; then the
points are “partially contactable”.

iv) Otherwise the points are “noncon-
tactable”.

Let B; and By be two rigid bodies, and
choose a point by € B; with principal
curvatures ky, by, this separates the plane
into five regions. Then a point b; on B;
with principal curvatures Ay, Az, 1s:

1) “completely contactable” if X, =
(—Az, —A;) belongs to the interior of
region 1

i1) “undetermined” if it belongs to a
boundary separating regions 1 and 2

iil) “partially contactable” if X, =
(—A2, —A;) belongs to the interior of
region 2

iv)
“noncontactable” if Ay, = (=2, —A;)
belongs to region 3, region 4 or re-
gion 5.
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We will only consider pairs of con-
tact points which are “completely con-
tactable”. Actually isolated “com-
pletely contactable” points are not al-
lowed either, and we need contact on
an open neighbourhood of the surface of
each body. In this situation, controlled
motion is possible in which the bodies
keep in contact.

7 Conclusions

The main task of this work was to inves-
tigate the conditions which are sufficient
in order to have point contact between
the surface of the end effector of a robot
arm and the surface of an object un-
der manipulation. Such an investigation
was part of the on- going research in
the area of constrained dynamics, robotic
hands, robot control and object manip-
ulation. Past discussions demonstrated
that effective control schemes could re-
sult if the surfaces of robot arm and the
object were considered rigid surfaces in-
teracting through point contact. In the
above areas there is a need for modelling
of contact and its consequences on the
modelling of the dynamics and control of
a body. We also extended these results
to areas of "contactable” points thus al-
lowing the object to move. Related work
has been published by D.J. Montana
[4]. An appropriate model of the con-
strained configuration space will be the
basis for a more accurate description of
the dynamics of the constrained body.
Within this context we used the prin-
cipal curvatures of surfaces which were
described by smooth equations. This is
basic knowledge in Differential Geome-

try. We conducted our research on re-
sults related to sufficient conditions for
point contact between two smooth plane
curves where curvature was used as a cri-
terion. We investigated how this work
could be naturally extended to smooth
surfaces using as criteria the principal
curvatures of the surfaces. This has fi-
nally led to the development of a dia-
gram that can be used for the graphic
application of our results. In an applica-
tions environment the analysis done can
result in a classification of objects which
are "manipulatable” by the end effector
of a robot.
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