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Abstract: This paper describes a data based technique for
on-line process fault detection and diagnosis. The only
knowledge required in this approach is process measurement
data covering the events of various faults. The data can be
obtained from the recorded operating history of a process or
from simulation studies. They are usually the easiest available
knowledge about a process since various process variables are
measured during operations and those measurements can be
easily collected and stored by a computer. Through
multi-variable statistical data analysis, the features of various
faults can be discovered and used in fault detection and
diagnosis. In the technique presented here, principal
component analysis is performed for the data corresponding
to each fault and the loading vector of the first principal
component is taken as the direction of the associated fault in
the measurement space. During process supervision, principal
component analysis is performed for the current on-line
measurements whose direction is taken as the loading vector
of the first principal component. Fault diagnosis is performed
by comparing the direction of the current on-line
measurements with that of various faults. The fault whose
direction is very aligned with the current data dircction is a
plausible fault and is taken as the diagnosis result. The
technique is very easy to implement and can be used to
complement current fault diagnosis techniques. Applications
of the proposed technique to the on-line fault diagnosis of a
CSTR (continuous stirred tank reactor) system demonstrate
that the technique is robust to measurement noise and
effective in diagnosing faults.
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1. Introduction

Process equipments are subject to failures during
operation. Failures could reduce production
elliciency, damage equipment, lead to plant shut
downs, or even result in hazards. Prompt
detection and diagnosis of faults is becoming
more and more important due to the increasing
economic and environmental demands. As a
result, fault detection and diagnosis is becoming
a vast research subjeci atiracting a huge number
of rescarchers from different areas. Various
approaches have been proposed, tackling this
issuc from diflcrent angles. These can be broadly
divided into modcl based approaches and
knowledge based approaches (Patton ct al, 1989).
Model bascd approaches gencrally utilise results
from the ficld of control theory. Isermann (1984)
describes a fault diagnosis approach based on
paramcter estimation. The approach is based on
the fact that a fault will cause changes in certain
physical parameters which in turn will lead to
changes in some model paramecters. It is then
possible to detect and diagnosc faults by
monitoring the estimated model parameters.
When using this approach, it is ¢sscntial to have
the knowledge about the relations between faults
and model paramcters. Frank (1990) gives a
survey of fault diagnosis approaches based on
state estimation. Estimatcd states provide
redundantinformation about the system and fault
diagnosis can be performed by analysing this
redundant information. When using this
approach, a fairly accuratc state space model of
the system should be developed.

Knowledge based approaches generally utilise
results from the ficld of Artificial Intelligence.
The carly knowledge based diagnosis systems
usually usc expert system techniques and the
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knowledge employed is often the experience of
process operators (Nelson, 1982). Such knowledge
is often referred to as "shallow knowledge" since it
does not contain any first principles about the
system under consideration. Shallow knowledge
based diagnosis systems could face problems when
dealing with infrequent occurring faults since
knowledge about such incidents is generally lacking.
Furthermore, the knowledge acquisition procedure
is generally tedious and time consuming though
some researchers have attempted to develop
diagnostic rules through machine learning
techniques (Gupta and Ali, 1988; Zhang and
Roberts, 1992b).

Many of the recent knowledge based diagnosis
systems are based on deep knowledge. The most
common deep knowledge based diagnosis
approaches include causal search and hypothesis
testing (Moorand Kramer, 1986). In the causal search
approach, faults are diagnosed by ~ausally tracing
symptoms backward along their propagation paths.
The knowledge used includes functions of individual
components and their connections. A mcthod for
formulating diagnostic rules from such knowledge is
described in Zhang and Roberts (1991). In the
hypothesis testing approach, the knowledge
employed contains modcls of the process under
normal operating conditions and under various faulty
conditions. These modcls are used to predict the
behaviour of the process under the normal operating
condition and various faulty conditions. Fault
detection and diagnosis is then performed by
comparing the predicted behaviour with the actual
observations. Usually the models used are qualitative
models of the process. Scveral researchers have
successfully attempted this approach (Zhang et al,
1990a; 1990b; 1991; Montmain and Gentil, 1991a;
1991b). Deep knowledge based diagnosis systems can
providereliable diagnosis since the reasoning is based
on the first principles governing the process under
consideration. However, considerable effort is
usually required for building these diagnosis systems.

To reduce the development efforts in building
knowledge based diagnosis systcms, ncural
networks bascd diagnosis systems have been
developed (Venkatasubramanian and Chan,
1989; Watanabe et al, 1989; Zhang and Robcrts,
1992a). In this approach, the only knowledge
required is training data which contain faults and
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their symptoms. Through training, the relations
between faults and their symptoms can be
discovered and stored as network weights. The
traincd network can then be used to diagnose
faults in that it can associate the observed
abnormalities with their corresponding faults.

For industrial processes, the most easily
obtainable knowledge is usually the process
mecasurement data. During operations, a large
number of process variables are measured and
these measurement data could be easily collected
and stored by a computer. For some processes
where the first principles governing these
processes are not clear or too complicated, then
measurement data could be the prime knowledge
about the processes. In this paper, we propose a
data based approach, which utilises the most
easily available knowledge about a process, for
on-line process fault detection and diagnosis.

The proposed approach is similar to neural
network based approaches but is easier to
implement. The only knowledge required is the
mcasurcment data covering the normal operating
condition and various faulty conditions. The data
could be obtained from the operating history of a
process and/or from simulation studies. The data
can be analysed using multivariable statistical
data analysis techniques and features associated
with various faults can be discovered. The
proposed approach can also diagnose and learn
diagnostic knowledge about novel faults.

The paper is structured as follows. The next
section details the data based diagnosis approach.
Discovering fault features from principal
component analysis (PCA) is then described.
Section 3 presents an application to the fault
diagnosis of a CSTR system. The last section
contains some concluding remarks.

2. Fault Diagnosis by the Principal
Component Analysis of Data

2.1. Principal Component Analysis

Principal component analysis (PCA) is one of the
widely used multivariable statistical techniques
which considers all the noisy and highly
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correlated measurements on a process, but
projects the information down onto low
dimensional subspaces which contain all the
relevant information about the process. PCA is a
procedure used to explain the variance in a single
data matrix, X. The principal component
decomposition of X can be represented as follows

T T T (1)

X—tlp1 +t2p2 +...+tkpk +E
In the above equation, t; and p; are the ith score
vector and the ith loading vector, tipiT is the ith

principal component, and E is a matrix of
residuals. Score vectors ate orthogonal and so are
loading vectors which are of unit length. Principal
components are arranged in a decreasing order of
importance. A rank n matrix X can be
decomposed as the sum of n rank 1 principal
components. However, if there exist correlations
and noise in the data, then the first a few principal
components are usually sufficient to describe the
major variances in the data. The remaining
principal components usually describe the
variances of the noise and, by discarding them,
noise filtering effects are achieved. For example,
in principal component regression, the first few
principal components, instead of the raw data, are
used in modelling the relations between input and
output data to reduce the effects of correlations
and noise in data.

PCA is generally used to reduce the dimension of
correlated multivariable data. In process
supervision, a small number of principal
components, instead of a large number of
measurements, can be monitored. Wise and
Ricker (1989) describe such applications in a
liquid fed ceramic melter process. Here, we are
interested in using PCA to find fault directions,
which are represented by the first loading vectors
of sets of process data to the considered faults.

2.2. Fault Diagnosis Through PCA

A set of process data covering a fault event is
collected. The nominal means of measurements
are then subtracted from the corresponding
variables. Next, the data are scaled such that
different measurements should have similar
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signiflicances. Supposc that there are n measured
variables and m samples of measurcments are
collected. The measurcment data can then be
represented as

X= [xlxz...xn] 2)
where x; Xy, ..., x, € R™1 Let the means and
standard deviations of measurements be

M= [mlmz...mn] e RI" 3)

B [Slsz...sn] eR™ (4)

then the measurement data can be mean centred
and scaled as follows.

Xp=(X=(11... nT™) diag{l/sl Vs, ... l/sn}
®

The data covering the incidence of a fault are
generally polarised such that variances in the data
are mainly represented by the first principal
componcnt. Through-PCA, the first loading
vector of the data can be calculated and it can be
uscd to represent the direction of a fault in the
mcasurement space. Here, it should be realised
that scorc vectors and loading vectors are not
unique. For cxample, the firstscore vector and the
first loading vector can be either t; and p,,
respectively, or -t; and -p,, respectively. When
using the first loading vector to represent the
direction of a fault, it is therefore necessary to
compare it with the actual data. If the directions
of process variables oppose those suggested by
the first loading vector, then a negative sign
should be multiplied to the first loading vector.
By putting the directions of various faults
together, a fault direction library can be formed
and represented by a matrix

F= [DIDZ...DH] (6)
where Di is the fault direction of the ith fault.

The currently monitored process measurements
can also be analysed through PCA. The first
loading vector can be taken as the direction of the
current data. Denote it by Mpy, then the alignment
between My, and the direction of the ith fault, D;,

can be measured by M[T)Di , which is the cosine of
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the angle between M and D;. When MEDi is very
close to one, then My and D, are very close in
their directions. If MEDi is zero, then My and D,

arec orthogonal.

If My and D, are very closely aligned, then it is
very likely that the itk fault has occurred. Fault
diagnosis can then be performed by comparing
the alignment between the current data dircction
and the library of fault directions. The fault whose
direction is very close to the current data
direction is a plausible fault that occurred and can
be taken as the diagnosis result.

A diagnostic threshold, 7, is defined such that
when

MpD, > 7 M

it is indicative that the irh fault has occurred.
Generally, 7 is quite close to 1, for example, 0.98.

In process fault diagnosis, there is a problem of
fault diagnosibility, i.e. whether a fault can be
distinguished from other faults bascd on the
available on-line measurements. To distinguish
the irh fault from others, angles between the
direction of the ith fault and those of other faults
should be greater than twice the threshold angle,
cos'lz. Equivalently, cosines of these angles
should be less than the cosine of twice the
threshold angle. That is

D?Dj‘:cos (Zcos_lr) =2°~1 )
Mj,j#i

Eq (8) ensures that any data directions classificd
as representing the ith fault will not be classificd
as representing any other faults and, hence, it can
be used as a criterion to test fault diagnosibility.
If a fault cannot be distinguished from other
faults, then certain additional process variables
should be measured to increase the dimension of
the data space, so that the angles among fault
dircctions in this new data space could be wide
enough to distinguish between the various [aults.

Given the directions of a set of considered faults,
the diagnostic threshold, 7, can be selected as
follows to ensure diagnosibility among the
considered faults.
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T>C0S lcos'_1 maxD.TD. =
2 I,J ! J

:\/(1 + maxDiTDJ/Z
i

j=i

®)

A diagnostic threshold selected according to Eq
(9) will ensure that angles among fault directions
arc greater than twice the threshold angle and,
hence, it will guarantee diagnosibility among
these faults. Itshould be realised that a diagnostic
threshold satisfying the above condition can
ensure fault diagnosibility among the considered
faults, but it cannot guarantee fault diagnosibility
when novel faults present. In the latter case, ©
should gencrally be quite close to one to maintain
diagnosibility.

2.3 Learning New Diagnostic Knowledge

The approach presented here can also deal with
novel faults which are not included in the fault
library. During diagnosis, knowledge about novel
faults can be learnt and stored in the fault library.

When abnormalitics in on-line mecasurements
have been detected but the current data direction
is not very well aligned with any fault directions
in the fault library, it is very likely that a novel
fault occurred. Once the occurrence of a novel
fault is conlirmed, the current data direction can
bestored in the fault library as the direction of the
novel fault. Using this technique, diagnostic
knowledge about novel faults is Iearnt. When
adding this newly Icarnt diagnostic knowledge to
the fault library, existing diagnostic knowledge is
not affected.

2.4 The NIPALS Algorithm

There are scveral ways to calculate principal
components and one of them is the nonlinear
iterative partial least squarcs (NIPALS) method

(Geladi and Kowalski, 1986). The NIPALS
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algorithm calculates principal components
individually. It calculates t; and p; from the X

matrix. Then the outer product, tlp;r, is
subtracted from X and the residual El is

calculated. This residual can be used to calculate
t, and p,:

T
E1=X—t1p1

T
E,=E,-tp,

Since we are only interested in the first principal
component, NIPALS will be a very efficient
algorithm to employ and computation can be
terminated once the first principal component is
calculated.

The NIPALS algorithm can be summarised as
follows:

(1) take a vector x; from X and call it iy =x;

(2) calculate py:pT=tTxTt ;

(3) normalise p'lr length to 1:p?=PT/| [Pl
(4) calculate t;:t, =Xp/pTp,;

(5) compare the t; used in step 2 with that
obtained in step 4. If they are the same, stop (the
iteration has converged). If they still differ, go to
step 2.

3. Fault Diagnosis of a CSTR System

3.1 The CSTR System

The proposed fault diagnosis method has been
applied to a simulated CSTR system. The CSTR
system is presented in Figure 1, where an
irreversible heterogencous catalytic exothermic
reaction [rom reactant A to product B takes place
in the reactor vessel. The process objective is to
indircetly maintain the product concentration at
a desired level by controlling temperature,
residence time and mixing conditions in the

Figure 1. The CSTR System
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CSTR. To provide temperature control, part of
the reactor outlet stream is recycled to the reactor
through a heat exchanger (HTX). The
temperature in the reactor is controlled by
manipulating the flow rate of the cold water fed
to the heat exchanger via a cascade control
system. The residence time is controlled by
maintaining the level in the reactor, and the
mixing condition is controlled by maintaining the
recycle flow rate. Constant physical properties
and constant boundary pressures of all input and
output streams are assumed. A dynamic model of
the system has been developed and it is capable of
investigating the operations of the process under
normal conditions as well as under various faulty
conditions (Zhang, 1991).

3.2 Fault Diagnosis

There are 11 measurements and three controller
outputs (to the manipulated valves) in the CSTR
system. When developing a fault diagnosis
system, 11 possible faults are considered and they
are listed in Table 1. The effects of these faults are
analysed through simulation studies. During
simulation, random noises are added to
measurements and controller outputs. When
adding a fault to the process, the resulting
measurcments and controller outputs are
collected. The data are then mean centred by
subtracting the normal means of process variables
and they are scaled such that the process variables
will have similar significances.
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Table 1. Fault List

Fault Faults
No.

1 Pipe 1 blockage
2 Extcrnal fced-reactant flow rate too high
3 Pipe2or3isblocked or pump fails

4 Pipe 10 or 11 is blocked or control valve
1 fails low

5  External feed-reactant temperature
abnormal

6  Control valve 2 fails high

7  Pipe 7,8, or 9 is blocked or control
valve 2 fails low

8  Control valve 1 fails high

9  Pipe 4,5 or 6 is blocked or control valve
3 fails low

10 Control valve 3 fails high

11 Extcrnal [ecd-reactant concentration
100 low

Principal componcent analysis is then performed
for each set of data to determine the
corresponding fault directions. By putting fault
directions together, a library of fault directions is
formulated. In this case, the library of fault
directions is a 14x11 matrix where each column is
the direction of a particular fault.

For the 11 considered faults,
maxDiTDJ:O.SS
i
j=i
and, according to Eq(9), r should be selected
greater than 0.9618 to ensure diagnosibility.

Here, the diagnostic threshold, 7, is selected as
0.97.

During opcrations, mcasurcments and controller
outputs arc collected. Limits for the measured
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variables and their rates of changes are set to
detect abnormalities in the process. If any
variables or their rates of changes exit the
corresponding limits, then it is detected that
abnormalities present in the process and the fault
diagnosis system begins to diagnose the
associated faults. The direction of the current
data is calculated and compared with the library
of fault directions. If the current data direction is
very aligned with the direction of a particular
fault, then it is very likely that fault has occurred
and a diagnosis result is issued.

When abnormalities are detected but the
direction of the current data is not very well
aligned with any fault directions, it is then
indicative that a novel fault has occurred. The
direction of the current data is stored as the
direction of the novel fault and will be used in
future diagnosis.

3.3 Performance of the Fault Diagnosis System

All the 11 possible faults are tested during
simulation studies. They were initiated at various
levels of severity and they were all diagnosed
successfully. Several case studies are presented
below.

3.3.1 Case Study 1

In this case, the fault tested is Fault No.1: "Pipe 1
blockage". This fault is simulated by reducin gthe
feed reactant flow rate to 90% of its nominal
value. This fault is quite a slight fault in that the
pipe is only partially blocked (10% blockage).
The data length considered here is only 1 and the
current data direction is simply obtained by mean
centring and scaling the currently sampled data.
Alignments of the current data direction and the
library of fault directions are plotted in Figure 2
and it is clearly indicated that the current data
directions is very aligned with the direction of
Fault No.1, "Pipe 1 blockage". In Figures 2 to 5,y
axes represent the inner products of the current
data direction and various fault directions, i.e. the
cosines of angles between these directions. The
fault is initiated at 0 seconds and Figure 2
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indicates that it could be diagnosed after only 20
seconds (5 samples). Therefore, even for a very
slight fault, the diagnosis method presented here
can diagnose it very quickly.

3.3.2 Case Study 2

Fault No.8, "Control valve 1 fails and gives high
outputs®, is simulated. Alignments between the
current data direction and the library of fault
directions are shown in Figure 3 where the fault
is initiated at 0 seconds. Figure 3 shows that 20
scconds aliler the initiation of the fault, the
current data direction becomes closely aligned
with the direction of Fault No.8. Apgain, the
correct diagnosis is obtained soon after the fault
occurred.

3.3.3 Case Study 3

Novel faults are considered in this case. Fault
No.11 is deleted from the library of fault
directions so that it becomes a novel fault. Fault
No.11 is then simulated and alignments between
the current data direction and the library of fault
directions are compared. It can be seen from
Figurc 4 that the current data direction is notvery
wellaligned with any of the ten fault directions. A
novel faultis then indicated and other techniques
should be used to diagnose this fault. Suppose
that, later, it is found that this fault is "Feed
reactant concentration low". The current data
covering this cvent is then analysed through PCA
and the loading vector of the first principal
component is then taken as the direction of this
fault and the library of fault directions is
augmented.

Alter the library of fault directions has been
augmented, the same fault is initiated again with
different severities. Alignments between the
current data direction and the library of fault
directions are shown in Figure 5. The fault is
initiated at 0 seconds and Figure § indicates that
it can be diagnosed after 16 seconds.
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Figure 2. Alignments of the Current Data Direction with Fault Directions (Case Study 1)
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Figure 3. Alignments of the Current Data Direction with Fault Directions (Case Study 2)
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4. Conclusions

Measurement data are usually the most easily
available form of knowledge about a process.
Fault diagnosis systems based on such knowledge
could be easy to develop and maintain. Through
multivariable statistical data analysis, features
associated with different faults can be discovered
and used in fault diagnosis. In the technique
presented here, the features are fault directions
in the measurement space and those directions
are taken as the loading vector of the first
principal component of the corresponding
measurement data. Fault diagnosis can then be
performed by comparing the alignments of the
current measurement data direction and various
fault directions.

The proposed method can also deal with novel
faults and learn diagnostic knowledge about novel
faults. Learnt knowledge about novel faults can be
simply added to the fault library without affecting
previously obtained knowledge. Thus, diagnostic
knowledge can be accumulated gradually.

The proposed technique is very easy to develop
and utilizes the most easily available information
about a process. It can be used to supplement
other fault diagnosis methods.
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