SPP-OL: An Object Library for Software Performance
Engineering within SSADM1

Balint Molnar

Information Technology Foundation
of Hungarian Academy of Sciences
29-33 Konkony-Thege Road,
H-1525 Budapest 114

HUNGARY

Abstract: Although, the structured methodologies are widely
used in information systems applications, the performance
prediction methods and algorithms are rarely used by system
analysts and designers in their evaluation of the design
alternatives. It is the intent of this paper to outline a
comprehensive framework in the form of an appropriate
methodology and to create an object library to support the
decision making process.

The proposed methodology is interfaced to the SSADM
(Structured Systems Analysis and Design Method) and has
detailed instructions on what data should be collected and
which source to set up a performance model from. Based on
these facts, the design alternatives can be defined in the form of
objects.

An object library and the related methods are developed to
support the performance modelling of design options. The
methods of the objects incorporate the best concepts from
existing performance prediction algorithms and computational
methods. The various objects provide ways for analysing
distinct aspects of information systems as software service
demand, transactions resource requirement depending on the
data distribution, the average response time of the system based
on pattens of functions usage. The object-oriented
programming environment in which the object library is
implemented, yields the opportunity for re-usability and
enhancement to fit into some

particular requirements. A proposal for knowledge-based
approach is outlined as well.

Keywords: Software Engineering, Information Engineering,
SSADM, Performance Engineering, Capacity Planning, CASE

Bilint Molnar was born in 1956. He got his M.Sc. degree in
Mathematics from the Lorand E&tvds University in Budapest.
In 1981 after graduating, he started work at the Central
Research Institute for Physics of Hungarian Academy of
Sciences (MTA-KFKI), the Institute for Measurement and
Computing Techniques. From 1981 to 1984 he participated in
and led the development team for the Hungarian ADA
compiler project. From 1985 to 1992 he was concerned with
designing information systems for the Hungarian Government.

1

He also started be interested in the Artificial Intelligence field,
co-operating in this very direction with a Romanian research
group. The use of Al in software engineering, more precisely in
information engineering, has been paid special attention.

From 1988 on he has delivered special courses on Al and
Information Systems Design at the Lorand Eétvds University,
and partook in a regular software engineering course for
informatics students at the Technical University of Budapest
(TUB), and at the University of Economics in Budapest.
Currently, he is a principal consultant at the Information
Technology Foundation of Hungarian Academy of Sciences,
and Senior Lecturer at the Budapest University.

He is a member of the Board of the Specialist Group on
Knowledge-Based Systems of John von Neumann Society for
Computing Science. He represents his country in the Advisory
Board of Al Communications , the European Journal on
Artificial Intelligence. He is also a member of International
Association of Knowledge Engineers (IAKE).

He acts as a referee for the “ Software and Information
Technology” Journal.

In 1989 and 1992 respectively, he got “Certificates of
Proficiency in SSADM Version 3 and Version 4” from the
Information Systems Examinations Board of British Computer
Society . For the work carried out on software technology and
artificial intelligence, in 1992 he was granted the Laszlo
Kalmér Award from John von Neumann Society for Computing
Science.

Early 1993 he benefited a three-month grant from Commission
of the European Communities for “Applying Al Techniques in
Supporting Tools for the Development of Responsive
Information System”.

Currently he prepares his Ph.D thesis on capacity planning,
software performance engineering and SSADM. He participates
in a joint research project -PEKADS- for developing and
verifying an Integrated Knowledge Modelling Environment,
carried out under the EC COPERNICUS Programme.

He has published several research papers.

This research was partially supported by the European Communities under the Community Action in Science and Technology with
Central and Eastern Europe in the form of Individual Fellowship N* 7955. A part of the work was carried out under the PEKADS

project within the COPERNICUS programme (CP 93: 7599 PEKADS).

Studies in Informatics and Control, Vol.4, No.2, June 1995

129

1. Introduction

The software performance engineering can be
considered as "lost knowledge" in the system
analyst and designer community who works in
the information systems field As the
performance of the hardware improved, the
performance engineering and modelling did not
pay enough attention just to those fields where
the strict performance requirements made it
cost-effective (e.g. flight-control, mission critical
embedded systems).

In the information systems engineering field, the
system tuning or ‘“fix-it-later" approach
proliferated; the early structured systems
analysis and design methods (e.g. [Yourdon75],
[Longworth86], [Brodie82], [Cameron83],
[Jackson82], ctc.) deferred the performance
considerations to the technical and physical
design or implementation stage. Claim can be
made that to carry out a performance evaluation
or a prediction exercise, more performance
rclated data are needed and that at an early stage
of the analysis they are not available with the
required precision.

Responsive information systems can be defined
as systems that meet the performance objectives
regarding the response time and throughput
following [Smith90]. With the real-time systems
or reactive systems, the critical performance
factor is the time required for responding to a
stimulus or event, and fulfilling the performance
requirement is absolutely necessary, so that this
parameter strongly influences the quality of the
end-product. With various information systems,
there are not so strict demands, nevertheless
there is a trade-off between the amount of
processes executed and the response time, so that
it bears on the effectiveness and the efficiency of
users.

The other side of the problem is that relatively
few experts are available and many analysts and
designers who need their services; these services
can be considered especially valuable in a
country with an ageing equipment base and
shortage of capital to renew that base or to
procure the most sophisticated and advanced
equipment, and with a shortage of the necessary
expertise.

130

However, nowadays there are sophisticated
information system analysis and design
methodologies (¢. g. [CCTA90A],[Matheron90],
[Turner90]) that provide tools for collecting the
non-functional requirements and, thereby, for
supplying data for performance calculations.
Although the performance of the required
systems is of great interest to analysts and users,
little research has been conducted in the field of
the performance prediction of information
systems of which design is being made in a
structured analysis environment,

An appropriate programming environment, or
supporting system would be an enormous
helping hand for the analysts to evaluate the
design alternatives. Such an environment can
exchange data with various CASE (Computer
Aided Software/System Engineering) tools, more
exactly with their data dictionaries or
repositories. As the variety and service level of
the CASE tools differ, the supporting
environment should have a stable, well-defined
interface in that the necessary and available data
can be flexibly imported. Furthermore, the
CASE tools are evolving very rapidly so that a
feasible solution for an appropriate environment
fulfilling the above described requirement is an
object library that provides the re-usability
feature and relatively easy portability and
customisation. Thus a fairly general facility
would be available for the analysts to describe
the technical environment in a primitive
"language" and supply the parameters of the
would-be software system.

However, before such a system can be devised, a
methodology should be created to precisely
define the data gathering and processing
activities; furthermore, to fight the danger of
generality, a particular systems analysis and
engineering methodology should be chosen, and
also a specific set of performance and capacity
engineering methods to create a well-defined
interface between them, for this reason the
SSADM (Structured Systems Analysis and
Design Method) (CCTA90A) is selected, and
several theoretically well-grounded computing
methods for performance evaluation have been
chosen. So the description of the method can be
fairly concrete (see [Molnar95]).

Studies in Informatics and Control, Vol.4, No.2, June 1995

Fisistionts Bt Modelling the major
functions of the system

Requirements by the user behaviour graph
(Menu hierachy and control)

N #

File Distribution Modelling the classes

of functions on
the configuration
(Dialogue Control Table)

N /

Dataitem distribution Operations resource
Transaction/operation requirements (sw/hw)

average data usage

\/ within a Function

Performance measures of

Hardware resources

Figure 1. Structural Model for the Proposed
Detailed Methodology

2. Description of SPP-OL:
A Comprehensive Performance
Modelling Library

In this section, we present and briefly refer to
several algorithms that can be used to calculate
the expected performance of an application
system designed in SSADM, as these algorithms
have already proved their capabilities and
applicability. Then we describe the tool set, the
relevant objects that implement and contain the
algorithm depicted previously, and some
examples for creating the objects and sending
the messages to execute the required
computation (a more detailed description and
further references can be found in [Molnar93c],
[Molnar95]). The examples demonstrate that
this object library can be used as a language
extension of an object-oriented language that
makes the performance modelling and the
alternatives description and evaluation fairly
flexible. A user- friendly interface can be built
above it to assist the parameter gathering but in
this case we lose a part of the flexibility. We
built as a demonstration prototype, a simple
window-based, interactive data-gathering
interface for the exact mean value analysis. for
one of the facilities of the object library. But
otherwise, we kept the more flexible

Studies in Informatics and Control, Vol.4, No.2, June 1995

programming interface. In further development,
the alternative interfaces can be defined for each
object and the end-user analysts may alternate
among them depending on the requirement and
on personal capability and knowledge.

Our main purpose is to demonstrate the
feasibility and viability of this approach in a
structured method environment,

2.1 Questions To Be Answered

At the Business System Options and the
Technical System Options (SSADM concepts)
several performance and capacity related
questions should be answered. The Project Board
(CCTAO91) needs estimate how much will the
application cost, whether it will meet the service
level agreements. which hardware and software
configuration fits to the requirements at the best.
The database designer and the database
administrator are interested in how large disk
space a database will use, what the optimal or
sub-optimal data distribution will be. The
capacity planner during the operation of the
system - which is already beyond the scope of
the SSADM - would like to know how much
growth in transaction volume can be sustained,
how an increase in database size will affect the
performance, what the impact will be if we
upgrade the CPU, buy more disks, enhance the
network., whether it is worth buying more
memory, and how the new application will affect
the existing systems.

The modelling tool allows analysts and
designers to clearly see the effect on
performance of each option. So we can call this
tool as SSADM PERFORMANCE PREDICTOR
OBJECT LIBRARY (SPP-OL).

2.2 A Structural Model for the Proposed
Detailed Methodology

Those who are unfamiliar with the notion of
SSADM and the related Capacity Planning
proposal are referred to (CCTA90, CCTA90A,
David92), because of lack of space we cannot
undertake to presenting them here. In this
section, we summarise the most important steps
of the proposed techniques, the proposed order
and the interrelationship between them. The

131

following sections will describe the algorithm
and the coupled objects in more detail.

The coreconcept for describing the data
processing activities in SSADM is the function
and there exists a "Universal Function Model" to
depict the main components or fragments of the
function. The update or enquiry process within a
function is represented in a Jackson or Jackson-
like diagram.

Function's Data Resource Requirement. The
available Jackson-like diagrams (Effect
Correspondence Diagram and Enquiry Access
Path) associated with the specific function
explicitly show the data resource requirements
through the entities referred in the diagrams,
Entities (represented in the Logical Data
Structure) have volumetrics containing static
and dynamic aspects. The main goal of this step
is to collect basic information on the function
what and how many data items, records are
needed from the affected or retrieved entities,
and to prepare a recommendation for data
distribution among the available secondary
storage devices.

File Distribution. If there are several available
disks within a centralised environment we
should decide where to place records of a
particular entity depending on the function data
requirements. A similar question arises in a
distributed environment (e. g. client-server
architecture) and the communication costs all
through the interconnection network should be
taken into account, not only the costs of the
secondary storage. There is a heuristic algorithm
that provides a sub-optimal answer and does not
require too much computing (Motzkin90,
Motzkin90b). This calculation is cost-conscious,
that means it cares for the real cost factors but
can only concentrate on the response time
optimisation with suitable parameters. This
procedure provides more exact answers for data
optimisation than the rough optimisation
recommended in SSADM Version 4 and even
takes into consideration the distributed
environment, if necessary. The subtlety of the
distributed data design can be found in more
detail in (Martin81).

Average Usage of Distributed Data Items of a
Function. If the technical environment is a
distributed one we need analyse not only the file

132

distribution but also determine the usage pattern,
the frequency of usage of the data items by the
database transactions belonging to a particular
function. The distribution of the data item has
been established in the previous step by defining
the file/relation distribution. The data item
required by a function can be deduced from the
functional requirements, ie. Effect
Correspondence Diagrams, Enquiry Access Path
(Jackson-like) and Update Process Model,
Enquiry Process Model (Jackson diagrams). The
transactions are the logical success units or
atomic success units within a function. The
necessary input into this analysis is the data item
distribution and grouping related to the nodes
and the data item demand by a transaction of
function or by the entire function.

Performance ~Metrics of Hardware

Configuration. In order to create simple

spreadsheets for trivial calculations (see

CCTA90A, Molnar95, Smith90), we have to

collect the basic performance parameters of the

given configuration. The source could be the

Technical Environment Description (SSADM

product), the hardware vendors' data, and data

from experimental measurement.

We have to decide on how to map the given

hardware architecture to the concept of queueing

network modelling:

e disks, secondary storage devices can be
modelled as queueing service centers,

e (CPU, FESC (Flow Equivalent Service
Center) can be modelled as load-dependent
service centers, (see Lazowska84)

® terminal stations, hardware elements
causing delay (e.g interconnection network),
as delay centers.

After the modelling decision, the relevant

performance metrics should be determined to

~ .
) Pl
input Pincticn Triggers u:d. —_ process L
Media srrors] Syntax efrors Integrity w';"‘.';' s
o &
[Pmeu dmuj

Figure 2. Universal Function Model
(CCTA90A)

Studies in Informatics and Control, Vol.4, No.2, June 1995

conclude the average service time for operations,
tasks, transactions, functions, etc.

The parameters are the service times, think times
at terminal stations, chain-independent capacity
Junction for load-dependent station. At load-
dependent service centers, the average service
time depends on the loading level of the center,
that can be given by a function or table showing
the dependency between the number of jobs
awaiting the service and the actual service time.
For example, this formula can be valid for a
CPU, C(n) =1/(0,95+0,051) where n is the
Job number or total population waiting for the
service.

Resource Requirements per Function.
SSADM Version 4 (and the new Version 4.2)
generates several important diagrams that
contain significant characteristics of the
designed software and the concept of operations,
some logical database primitives, and plays
crucial roles in this step. Using the results of the
previous steps, to fill in spreadsheets, firstly for
operations as they require the DBMS or File
Handler services, then later on we try to
determine the other software resource
requirements and deduce the hardware resource
requirements, finally concluding the hardware
resource demand of each operation associated
with a Jackson diagram and with the related
function and thereby the function's. After this
data gathering, we can decorate the Jackson-like
or the rigorous Jackson structures with the
hardware resource requirements coupled to
operations. The Jackson-like structures reflect
the non-procedural aspects of the software
execution, the rigorous Jackson structures
mirror rather procedural aspects. Anyway, the
diagrams enhanced by the resource requirements
will be subject to an algorithm to get an overall
resource requirement for the associated function.
The algorithm is an amended and adapted
version of Smith's original one (Smith90). The
enhanced diagram can be analysed and
modified using Smith's heuristic design rules.
An extra parameter that we need for this
computation is the probability of the selection
branches. There are facilities in SPP-OL to carry
out the calculation.

Modelling the Classes of Functions. If we want
to analyse the performance behaviour of

Studies in Informatics and Control, Vol.4, No.2, June 1995

particular functions in a multi-programmed
environment or where there is contention for
resources, we can start on the Dialogue Design
coupled to the function. We can transform the
Dialogue Control Table (SSADM product) into
User Behaviour Graph that represents the calling
sequences within a function and the conditional
probability invoking one single command after
another, with various functions being modelled
by different User Behaviour Graphs. The danger
is that too many classes of functions is are
defined and they become computationally
unmanageable,

Modelling the Critical Functions. After
selection of the critical functions, we have
already the basic performance parameters and
resource requirements for the entire function of
the previous steps. If we want to evaluate the
response time of the critical functions we have to
build up a suitable User Behaviour Graph based
on the menu structure of application (SSADM
product) and to collect the necessary
probabilities describing the users' usage patterns
concentrating on the critical functions. We have
implemented the facilities based on Calzarossa's
model in the SPP-OL (Calzarossa86,
Calzarossa90). There are an exact mean value
analysis for single-chain, an algorithm for
multiple-chain queueing network, for supporting
Calzarossa's algorithm.

Modelling Impact of the New Application
System. We have to carry out a similar data
gathering exercise as in the previous step and set
up User Behaviour Graphs depicting the users'
behaviour when they use several application
systems on the same platform. The available
algorithms and objects can be used the same way
as we did before.

2.3 File Distribution

Motzkin's algorithm provides a tool for creating
a sub-optimal proposal for data distribution with
some restricting assumptions (Motzkin90,
Motzkin90b). In the design phase, we need an
algorithm in the initial state of the design for
data distribution in order to evaluate the
performance and responsiveness of the system,
while the data distribution should obey some
constraints and get close to the requirements.

133

site

segment

function

ApplicationFunction

‘ Segment

Site

Relation

} FileDlIstribution

Figure 3. Structure of Cost Optimisation of File Distribution

2.3.1 Algorithm for Proposing a
File/Relation Distribution (Data Perspective)

The structure of the implemented objects for
Motzkin's algorithm can be seen in Figure 3.
(The OMT notation is used [Rumbaugh91]). In
the following section, we summarise the main
steps and demonstrate the use of the objects, the
parameter assignment mechanism and the
message calling pattern.

In an SSADM environment, we can assume that
a global relational database for the distributed
environment is fully defined since we have the
logical and physical database design. We
concentrate on the relational databases as they
are very popular, commercially available and
they are based on a sound mathematical
background. The entity descriptions can be
transformed into relations using the rules of
methodology. We can assume that at each node
there are functions that plan to use the DDBMS
(distributed database management system) and
cach application is assumed to have a home site
where it is run and where it can access the
DDBMS from. A function can be denoted by j}

134

Motzkin defines the following concepts needed

for the algorithm:

— fragment is a portion of a global relation
that is allocated one or more nodes, only
horizontal fragmentation is considered since
it has practical relevance

— a horizontal fragment consists of a subset of
records of a relation (or tuples of relation).

Data allocation to the nodes in a distributed

database happens in two phases, (1) the

Jfragment definition phase, (2) the fragment

allocation phase.

An auxiliary notion:

— segments, a subset of records in a relation
that is required by some function or part of
the function but not necessarily disjointed.

Definition of scgment:

— Let]} an application function or a part of it
that requires data from the database; all the
tuples (or records) arc needed by the j}
function,

— Let us denote by SEGw(rj j}) the segment
being part of the ¥ relation, used by the f;
function; and no record in » I\SEGw(rj jﬁ
(set theoretical difference) is required by fj

Studies in Informatics and Control, Vol.4, No.2, June 1995

As it can be seen from the definition, a segment
is the smallest subset of records of a particular
relation r; that are used by a given application
function f We can assume that every f function
is associated with one relation since - as we have
seen in the Universal Function Model - we can
decompose the function into enquiry and update
parts. Both parts can further be decomposed
into more elementary operations, into logical
success units, and can be considered as
elementary application functions (transactions).
The relations used by such an application
function can be linked to each other by the
relational operators that formally describe the
data requirements of each application function.
The fragment can be determined using a simple
algerithm based on set theory and implemented
in SPP-OL.

The Motzkin cost optimisation algorithm can be
applied for minimizing the response time of the
system if we are interested in the responsiveness
of our interactive system in a DDBMS
environment. In this case, we should use unit of
time instead of unit of costs in dollars, pounds
sterling or Forints. The time unit at a node or
server can be gained from the mean service time
for update and retrieval operation at a node. The
total time of retrievals and updates can be
minimized using the algorithm with zero storage
space cost so we will get a response time
minimization regarding the fragment allocation.
Naturally, conflict should be resolved if there are
contradictions between the fragment allocation
and the available storage space, however we
have a good approximation and compromise of a
response time that may be achieved and an
initial fragment configuration. On this basis, we
can refine and adjust to other requirements.

2.3.1.1 Cost and Benefit Calculation of
Fragment Allocation

After the Logical Design and Physical Design
we know how much storage space is available at
each node, and if the storage space is not
limited, practically we can consider it as infinite
and denote it as . Firstly, all the nodes are
examined whether they have enough storage
space to store all the fragments allocated to
them. If a node does not have sufficient storage

Studies in Informatics and Control, Vol.4, No.2, June 1995

space, all its fragments are arranged by
calculated benefits in an ascending order,
beginning with the least beneficial fragment and
cycling through all the fragments until none of
them has remained, in the following way: if the
fragment is allocated elsewhere, its allocation to
node n; is cancelled. If the fragment is not
allocated elsewhere for all the nodes, the benefit
of the fragment should be reviewed in a
descending order and the fragment should be
allocated to the first node »; that has enough
storage space and the allocation to node »; is
obliterated. If the space constraint cannot be
met, an error message is generated. The
algorithm has two parts after the determination
of fragments;

1. Allocate fragments to all sites

where the benefit of allocating
Jragment to the node >0

2. Adjust to meet space requirements
The details of the algorithm can be found in
(Motzkin90, Motzkin90b, Molnar93c) and the
explanation of the necessary formulas and
computation methods.
At the Physical Design Stage in SSADM, there
are some obscure references that the
reconciliation between various non-functional
requirements should be carried out in a loop, this
algorithm makes that procedure a little more
precise.
The communication cost for a function, or its
appropriate tasks can be estimated from the
local node to the remote node participating in
the transaction. If we know exactly which node
will be accessed, we can calculate these values
more precisely for a given transaction. However,
when we have an update and retrieval
mechanism, we can further refine that
estimation using Mukkamala's algorithm
([Mukkamala90]), we also have the tool to
(Mukkamala90), we also have the tool to
estimate the average accessed nodes and data
items in SPP-OL.

2.4 Transaction Evaluation in a
Distributed Environment

The next step is to create an estimation for the

transactions in the case of distributed data. The
problem can be formulated mathematically and

135

there is a so-called closed formula with some
very specific presumptions, and with more
general presumptions there is an algorithm for
calculating the number of participating nodes
and the data items accessed at each of these
nodes. These data can provide a sound basis to
determine the communication overhead, the
impact of the number of copies of data items on
transaction performance. The results produced
by the algorithm can be used to assist in the
approximation of a transaction execution time,
of the probability that a transaction requires data
items from the co-ordinating node and the
average number of data items accessed (locally)
by the co-ordinating node. We briefly summarise
the presumptions and the procedure of
Mukkamala's algorithm (Mukkamala90), a
detailed interpretation in the SSADM
environment can be found in (Molndr93c),
(Molnar95). The placement of each data element
and the file distribution can be concluded from
the Requirement Catalogue and from the results
of the previous steps calculating the costs of the
file distribution regarding the functional
requirements and the space constraints for each
node.

When the distributed database contains
replications of data items, the number of copics
of a particular data item may be dctermined by
the application environment or by the analysis of
the enquiry access paths in the distributed
environment. The presumption that all data
items have the same number of copics does not
hold, nevertheless the decision, in practice, is
not arbitrary and the data item copy distribution
is not a random choice at all. There arc several
clustering and de-clustcring techniques to assist
the designer in decision making on the
application system (Martin81).

We bring together the elements with the same
number of replicas into a data group and cach
data group Gy (vk:|Gk|lhe number of data
items in the group) is allocated to a set of nodcs
O (xk=|Qk|, the number of replicas of each
data item), containing the replicas of data items
belonging to Gy and they are disjoint sets of data
items. The number of data groups in a database
with the general data distribution is determined
by the number of replicas and the distribution of

136

the copies among nodes. We can indicate this
number by ng.
We introduce the concept of the group access

vector, GA=<gi,g2,...,gng> where gj

represents the number of data items references
by a transaction from group Gy.

Given the general data distribution assumption,
the grouping of the data items and the
distribution of the groups are arbitrary so that a
closed-form mathematical formula is not to be

derived for 17, and ES (the average number of
nodes accessed and the average data size).

The data grouping (GI=G2""ang) and the s
value (number of data items accessed by a
transaction) given, the algorithm generates all
possible values for GA = (gl,gz,,,_,g”g) S0

that 0<g; <yj, Z?:glg-, =s, the generated vectors

are marked as G4 ;,GA5,..., GAyp, i.e.

(D={GA1, GA,, --~sGAd'}’ d':l(D]. For each

GA, the corresponding node access vector J is
determined, where J = (a,,az,...,an),Zaj =85, a;
jeN

represents the number of data 1temsjaccessed by
the transaction at the jth node. To understand
the algorithm. we should keep in mind that for
all Gy, there is an associated Oy containing the
nodes that have one copy of all data items in Gy,
and the query transaction follows the read-
anyone policy, i.e. it reads the first copy of data
item because the consistency of the database is
always maintained. With a simple program, we
can determine the associated access vector (it is
implemented in SPP-OL). Using that algorithm,
we may compute the value of J; for the
corresponding GAy, and calculate the value of
Ay (the index sct of nodes accessed in the
transaction), |,‘1 k | = ngG4k represents the
number of nodes accessed by a particular query
depicted by the given GAj. the average number
of data items accessed per node in the set 4y is
denoted by d4p(=sing4x). The probability of
the occurrence of a given GA can be computed
following Mukkamala's mathcmatical analysis,

Studies in Informatics and Control, Vol.4, No.2, June 1995

[~ Algorithm for computing the averages
Given s, n, ng, and { x K’ k=l,....ng
[~ Generate a GA vector
Compute the probability of GA
Generate the access vector J to the vector GA
Determine the index set of accessed nodes (A) from the access vector
Determine n ai = I A I corresponding to GA vector
Calculate
d
- GA -
Calculate the averages using equation
n d
i s , s

Figure 4. The Main Structure of Mukkamala's Algorithm

So, the average number of accessed nodes and
data items can be calculated for each particular
transaction, thereby the transaction
communication costs and the average resource
requirements (hardware/software) can be
estimated.

The estimation can be re-used in Motzkin's
algorithm in a following cycle of refinement, i.e.
there is a clear synergy between the two
algorithms and thus we gain a more precise
picture of the required system, on the data
storage requirement side and the
interdependency with.

2.5 A Graph Reduction of Diagrams
Representing Software Design

There is an algorithm defined on the so -called
software execution graphs (Smith86b, Smith90)
which associates a concrete numerical value
with each diagram. The problem with this
procedure is that it is dedicated to certain types
of graphs that are not generally used and not too
many tools and software development
environments support it. In information systems
development, the -state- of -the -art is

Studies in Informatics and Control, Vol.4, No.2, June 1995

represented by the structured methods and the
object-oriented technology in the analysis and
design stage.
A lot of varieties of structured methodologies
obtained significant support from the CASE
tools that made the structured
methodology/technology feasible and practically
usable. A majority of these methodologies use
Jackson diagrams, methods and/or Jackson-like
notations, especially SSADM:
® ELH (Entity Life History) (Jackson-like
diagrams),
¢ Diagrams coupled to functions:
e ECD (Effect Correspondence
Diagram), EAP (Enquiry Access
Path) (Jackson-like diagrams),
e UPM (Update Process Model),
EPM (Enquiry Process Model)
(standard Jackson structure).
It is worth investigating how we can apply
Smith's reduction algorithm to such an
environment and adjust it to the given
circumstances, furthermore to alleviate the
analyst/designer work, an implementation is
made in SPP-OL for various Jackson structures
that are strictly coupled to functions since we are
interested in the performance prediction of

137

critical functions. Our approach is conform with
the latest version of SSADM making it possible
to use the proposed procedure in this case as
well (Hedges94, Slater94)

After allocating the operations to the appropriate
node within the structure, we have to determine
the resource requirements, first the software,
secondly the hardware resource requirements for
each operation. At this point, we have to define
the service centers from the hardware
specification and to take into account the
characteristics of the data distribution. The
result of previous steps of the method can be
used to determine the number of visits or
resource requests to a particular service center
regarding the file and data distribution and the
implication for the data usage pattern of
transactions. Thus, we have a vector for each
operation, representing the average service time
and the number of visits for each resource.
Without going into detail, we provide an
illustrative ~ example for the Effect
Correspondence Diagram in Figure 5, to give a
feeling of the algorithm, and the computation
procedure. Having associated with each logical
database operation (SSADM concept) the
aforementioned tuple, every single node in the
diagram has the set of the related operations so

that we can associate a tuple or an accumulated
value with each of them. On computing the
performance parameter for the whole diagram,
we take into account the elements of a sequence
by adding them together, the iferation by
multiplying the average number of cycling, and
the selection by regarding the probabilities of the
appropriate selection paths. The algorithm is
also valid, naturally, for the rigorous Jackson
structure (represented as an inverted tree) and
decorated with the operations (Update and
Enquiry Process Model are described in this
form within SSADM).

The result of the algorithm is a tuple for the
entire function representing for each modelled
hardware resource the number of visits and the
average required service time. The average
service demand can be gained with a simple
multiplication per each resource, and summing
them we can get an overall resource requirement
for the function. That detailed analysis provided
the opportunity to apply Smith's heuristic rules
for software performance design (Smith90).
Thercby, we deduced a stand-alone resource
requirement for each function and when
necessary, we could investigate certain parts of
the function in detail as well and improve the
performance characteristics.

Event data
nt 1

pt 2+(1-p) t 3

Structure box
Structure box

average iterajion n

probability p

Structure box

Iteration box
Selection box

o 4

g —b Simultaneous effect box
Selection box 3
A 9 3 t

5

¢ :
Structure box N
Structure box
tg

t

7

s
Structure box.

’ Simultaneous effect box

te

Figure 5. Reduction of the Effect Correspondence Arrows on Effect Correspondence Diagram

138

Studies in Informatics and Control, Vol.4, No.2, June 1995

Logical Occurrences Default Alternating Pathways
Grouping Pathway
of Dialogue
Elements
D

Min Max. Ave Altl Alt2 Alt3
LGDE1 1 1 1 x x X P
LGDE2 1 1 1 X X x X
LGDE3 0 10 2 X x
LGDE4 0 10 3 X X
Y% Path 70 5 5 20
usage

Table 1. A Dialogue Control Table

2.6 Analysing the Impact of User Behaviour
on the Performance of the System

2.6.1 The Concept of User Behaviour Graph

The workload of an on-line, interactive system
can be represented in the form of user behaviour
graphs, so it can be used as a basis for creating
workload models. A user behaviour graph (ubg)
consists of a set of commands or command types
represented by nodes or vertices, the switching
from one node to another (from one command to
another) being represented by the arcs linking
the nodes together; self-referencing of a node is
allowed. The probability of issuing the next
command is determined by the transition
probabilities of wbg attached to the arcs. The

Studies in Informatics and Control, Vol.4, No.2, June 1995

sojourn time that a user spends with a command
at a node in wbg is the sum of typing or selecting
the conmand, the response time of the system,
and the user think time.

This type of information is collected in SSADM
in the form of Dialogue Control Table linked to
each Function Definition and in the User
Role/Function Matrix (Table 1). The 'User Role'
is a sct of uscrs carrying out tasks in common,
the dialogues used by one User Role are
represented in the User Role/Function Matrix as
an intersection or cross (x) between rows and
columns. These dialogues are depicted by a
Jackson-like diagram (Figure 6) representing the
data items manipulated during the terminal
session; the volumetric information, frequencies,
and path usage collected in the Dialogue Control
Table (Table 1).

139

Function
Name

X

Figure 6. A Dialogue Structure

We have acquired an overall picture of the
stand-alone resource requirements of critical
functions in the form of a tuple associated with
the relevant Jackson diagram. The fragments or
tasks of functions represented by a Jackson
diagram can be mapped onto the logical
dialogue element, i. e. the processes carrying out
some well-defined database transactions and the
necessary input and output activities can be
associated. Depending on the granularity of the
analysis, the analyst/designer can decide what
level of the performance data is required, i. e.
function level or task level associated with the
fitting logical dialogue elements. The trade-off is
between the granularity and the computational
complexity. If we are interested in the detailed
behaviour of some functions we should have a
rough estimation of other functions and
applications, and we should model in this
environment by approximating the real-life
situation so that a prediction of the response
time of definite part of the functions, should
exist. This is a detail of modelling either the

™

~ P

Legend The frequency The transition probabilities

of path usage
—— 20% 1-4 T5h
— T70% 12 e
N 5% - T
. 2-4 75%
sn 5% 3.4 75%

Figure 7. A User Behavior Graph for the
Dialogue Control Table

140

decision of the project management or the

analyst.

Menus are tools that provide access to the

permitted on-line application functions for users

(representing certain User Roles). Generally

menus are hierarchically structured devices

where dialogues, application functions, common
functions, other menus can be called from. With
the assistance of Menu Structures, we can create
the appropriate wbgs, the nodes representing
commands (menu, function, dialogue call, etc.),
but we have to collect statistical data about the
function, menu, and dialogue usage or directly
the transitional probabilities between the nodes;
in SSADM, it is not prescribed to gather the
transitional frequencies from one command to
another, but these data are required in

Calzarossa's model, so we have to complete our

information base with these data as well

Summarizing, the SSADM analysis and design

stages are able to supply the data that are

suitable for defining the appropriate ubgs at
function or dialogue level as well as at

application level .

The detail of the model, the theoretical and

mathematical background can be found in

(Calzarossa86, Calzarossa90).

Having reduced the complexity of the problem

using Calzarossa's model, we can feed the

reduced model parameters into the appropriate
object of SPP-OL, namely:

- the transition probability matrix,

- the population vector signifying the
expected multi-programming level, the
maximum number of functions for a
type of ubg cycling in the system at the
same time,

- the service demand and number of visits
to each resource providing these tuples
for different types of service centers,
namely, for the queueing centers
(secondary storage devices, disks), load-
dependent centers (e. g. CPU), delay
centers (. g. terminal)

- the capacity functions associated with
load-dependent centers,

- the number of the ubg used in common.

Studies in Informatics and Coatrol, Vol.4, No.2, June 1995

I]

. Data i v
File Distribution i . Relation Site
cost D’;"::p’“:.‘m < MyASingls bytesPerRecords 2 eSpace
st Wdata-items e fame
m—mw avg-datasize- ncustomers
ﬁ'lgrnmw' query queu.elen
relations B e o
gty update sysrestime
H‘D-:'lm Hdata-group “"_W’!-‘[P“l
unitcommunication 8l °T"1Di'"? b yhileesoon
itretriaval utionMatrix
7 #node
wnitspace ent
unitupdate [avg-nodes-qu)\ allocatedSite
wid benefit
"'3'“:::'“1’ MVAMultipls || cost-space “/k
2 nchains function
Mdata-items populationVector relation
/k throughputPerChain site Calzarows
space meanNumberOfCommandPerChamn
multiProgrammingLavel
response TimePerChain
Uneven Dats responseTime PerCommand
Distribution sharedUbg thinkTimeForUbg
data-groups throughputPerCommand
Hgroup

Figure 8. Structure of the Performance Modeclling Object Library

Having carried out the performance calculation,
the average response time and the expected
throughput per wbgs are provided, and
furthermore for each command (or function call)
within a particular ubg, the same parameters
are yielded.

Summing up, the modelling granularity should
be decided, then the wbgs and the commands
within the wbg should be determined. The
performance indices computed in the previous
steps of the methods can be used for the
commands (function calls), performance
parameters of Jackson diagrams can be mapped
onto the resource requirements of commands.
An ubg can be a cluster of interdependent
functions, or represent separate applications
running on the same platform. If we used correct
data the difference between the real situation and
the predicted one would be at most 10-30%. This
provides a good chance to comparing different
Technical Design Options that influence the
average service time and the average number of
visits to resources. The above described
procedures of the method make the evaluation
more precise, measurable, documentable and
yield a good opportunity of discussion and

Studies in Informatics and Control, Vol.4, No.2, June 1995

conflict resolution in a clear environment and
the arguments can be underpinned.

3. The Structure of the SSP-OL

In this section, we furnish the structural
description of the object library containing the
algorithms previously presented in the style of
OMT (Object Modelling Technique) notation
(Rumbaugh9l) .

There are objects defined for each important
performance calculation and for an entity of the
performance modelling. There are some objects
that have not been described in detail since their
facilities (variables and messages) are used by
some others and the use of them will be allowed
only for 'knowledgeable-user' (analyst/designer),
and some of them represent simpler versions or
requires several restrictions.

In Figures 8 and 9, all the objects can be seen
that are to be applied for performance
calculation in the proposed method, and have
been described previously in a brief form.

A part of the input parameters may be
transferred automatically from a data dictionary
or repository of CASE systems, but some of
them should be collected independently and fed

141

NetworkNode
Network name
connections position
T i
i \
| JacksonNode
| AL TR TR RSN SR
JacksonStructure |multiphicationFactor
nodeCollection . structureBox
successor
time
type

Figure 9. Description of the Jackson
Structures in SPP-OL

into the performance modelling library.
Nevertheless, the stable interface of object
library offers the chance to be interfaced to
repositories storing at least a part of the
necessary input parameters, and specifies
precisely the parameters that are requested for.
Correct Jackson diagrams may be stored in
repositories and basic data can be delivered,
however, some essential parameters needed for
the software performance calculation, for the
graph reduction should be collected (the average
number of iterations, the probability of selection
paths).
The present implementation language is
Smalltalk-80 or more precisely one of the
dialects Smalltalk/V of Digitalk Inc
(Digitalk86).
The object library serves as versatile and flexible
tool for performance evaluation of information
systems in an SSADM environment. As the
examples demonstrated, it is easy-to-use. The
difficult part is to find the input parameters and
model the hardware and software environments
but the proposed method provides clues and rule
of thumb how to use the facts collected by
SSADM and request for further data.

4. Analysing the Performance Prediction for
Information Systems Using KADS

We use the diagram techniques of KADS
(Schreiber93, Wielinga92) to depict a part of the
inference mechanism and knowledge base that
may provide further help for analyst/designer. At
the present stage of the research, we cover only a
little part of the whole cognitive and knowledge
intensive activity but the purpose is to cover as
much as possible and to operationalize that
knowledge through the specification in CML

142

language of KADS and later on transform it into
an appropriate programming language
(PROLOG, Smalltalk, etc) by a structure
preserving design. Now, the assessment part, i.
e. the comparison between the design options, is
analysed and implemented using the available
object library (SPP-OL) and the object-oriented
environment (Smalltalk/V of Digitalk Inc.
[Digitalk86]).

4.1 Application of the KADS Method for
Analysing the Knowledge Structure of
Software Performance and Capacity
Engineering

The goal of the performance evaluation is to
support the selection process among the design
options. Each of the design options has to
conform to some resource requirements as
response time, throughput and perhaps
utilisation specified in the non-functional
requirements.

4.2 Proposals for a Knowledge Based
Approach

An integrated system that would support the
analysts/designers would consist of several parts.
We need a database about the available
technology and about the required system
functional and non-functional specification. The
knowledge base would comprise rules for
assessing the design options, proposing solution,
rules for designing and configuring, methods for
problem-solving and among them conflict
resolution methods.

In our research, we have taken only the first

Performance
Time Space
Response Throughput Main Secondary
Time Memory Storage

Figure10. Nixon's Taxonomy for the
Performance Goals (sorts)

Studies in Informatics and Control, Vol.4, No.2, June 1995

domain for modslling [

\pplicat " @ it

Figure 11. The Sub-Domain Structure of
an SPE Knowledge Base.

steps towards such a system so that we tackle
some simple inference and tasks mechanisms
supporting the assessment of design options
regarding the requirements. In future research
we plan to enhance it with more complex ones
using the CommonKADS Library.

We have to split up the domain knowledge into
three large sub-domains and we should define
some databases or object-bases to be interfaced
to the knowledge base (Figure 11.). We have to
enhance SPP-OL with some extra objects,

however, several already defined objects fit into
or can be mapped onto the domain ontology.
Nixon proposed a goal taxonomy that can be
used to define the goal structure and the
associated task structure. (see Figure 10,
[Nixon94]).

The global aim of the knowledge-based system
will be to provide active assistance for the
system designer/analyst during the design option
evaluation stages and along with the logical and
physical design steps. To limit the scope to
realistic aim , firstly we tackle the evaluation or
assessment of the design option within an
information system analysis and design from the
performance perspective using SSADM,

The most important feature of the application
specific layer is described by Nixon's taxonomy
that demonstrates the hierarchy of performance
goals. The performance goals are specified in the
Function Definitions and Requirements
Catalogue for the dynamic and static aspects of
an IS.

The performance goals that should be attained

Perfermance Enginvoriang Life Cycle
SSADM
Datsbase of §: [~_Resuirement Specification
Logical Design
Hardware Performance Chassifl
7] Techuical System Optlons
Hardware prices
Beftware Perfermamnce Clazsifh —
(DBMS Pacformance Clarsification) Phydeal design
Seftwars prices
Workiead data - I Woerklead Charactorisation
User Bohaviewr Graph
Penctien/Event Velmmetrics
Velumetrics of Logical Data Stroctars Symem Charactortantion
Medelling and Prediction
Database of Application
Performance geaks of Punctien Medelling with SPP-OL
Fanctionsl Specification in the form of:
ECD, EAP, UPM, EPM (Jackson-like) Verificaton and Validatlon

Kaewledge Base

-

Hewristic rules for impreving the fumctions
performance

Hewristic rabes lor snhancing the capacity of

E de Analysls
& lavestment Appraizal
SPF-OL. Fie Distribution conts)

Review of Service Level

Capacily Declsion

Figure 12. Structure of an Intelligently Supported Performance Engineering and Capacity

Management Life Cycle

Studies in Informatics and Control, Vol.4, No.2, June 1995

143

Design Optien.

sysicm respease thse
sysicm Guronghpet
(site, covts, Bemellis)

Application Fumction Dais Distributen
avE respense (e (sie, cont, benefits)
Ehroughpat
| Tasks JackssaSowctmre
AV rerponse tme
Carvaghput nedeCalicction
JackssaNede
boitiplic atten ecter
tuple per resewrce O__<> stractareBax
(avg service tame *(_'
b of vislts) ype

Figure 13. IS Modelling Domain

are related to concepts of the IS modelling
domain that contains the concepts used in the
software performance modelling and
performance predicting. The static, data storage
aspect appears in the data distribution or file
placement calculations and in its end-results,
while the dynamic aspect becomes visible in the
application functions that make use of the basic
data of data (distribution) and of the parameters
of the implementation technology domain as
well, through the operations attached to the
appropriate Jackson structures (Figure 13.).

The diagram shows the significant concepts and
their interdependency, to model the performance
aspects of an IS described by SSADM concepts.
This model finds two-fold use: (1) the above-
mentioned performance goal should be
associated with the appropriate concepts
providing a 'norm' that should be achieved or
approached (2) provides the performance
prediction of a given option related to a peculiar
hardware and software configuration.
Lockenhoff's analysis of the assessment task
(Lockenhoff93) can be used. A case (the given
design option) is assessed against and in terms
of a system model (the IS modclling domain).

144

Assessment consists of two classification tasks:
(1) finding the appropriate concepts and their
attributes in the case description for assessment,
(that is the abstraction inference), (2)
classifying this new description according to the
norms of the system model (classification). A
case is a structured description which consists of
observables (the predicted performance data), in
fact an instance of the system description. A
decision is a classification or grading, that is
made about the case. The system model
comprises system description and measurement
system. System description is an abstract
description of the system, the measurement
system is described in terms of the system model
and contains possible decisions that are abstract
terms.

The most important inferences and knowledge
roles are depicted in Figure 15. The assessment
inferences are described in detail in Figure 14.
We firstly select the so-called critical functions
for performance modelling, then collect the
specification of the data processing, generally in
the form of Jackson diagrams. We apply Smith's
graph reduction algorithm and heuristic design
rules of software performance engineering.
Remember that we have prepared these steps by
the preliminary design of file distribution and
the evaluation of distributed transactions, when
necessary. On turning to the required system
specification, we have to crcate one or more
alternative hardware configurations and their
queueing network models and at the same time

case description system model

abstract case specify measurement

system

abstract maich

abstraci case measurement system

description

—@_"

decision class

Figure 14. An Inference Structure for
Assessment (Lockenhoff93)

Studies in Informatics and Control, Vol.4, No.2, June 1995

Information
System
Model

Model
of

Implementation
Technolo

abstract v

select

Queueing
Network

. Critical
P\ _abstract B Functions

Software

Performance

Model

Performance

Requirements

assess

>

Performance of
Critical

Functions

Grade of the

Design Option

Figure 15. Inference Structures for Preparing the Assessment Tasks

we should extract the non-functional
requirements from the Requirement Catalogue
and from the Function Descriptions. Finally, we
have to assess how close is a single Design

Studies in Informatics and Control, Vol.4, No.2, June 1995

Option to the Required System Non-Functional
(performance) Specification.

Some of the inferences and the assessment task
have already been implemented with the objects
in SPP-OL.

145

4.3 Future Work

By extending the expertise model and the related

tasks to cover the assessment, the configuration

and technical design tasks could lead to an
intelligent design assistant and to improved
quality and better decision making in the

Business System and Technical System Options.

@ Alternative user interfaces to each objects,
ie. enhancing the existing object library
with interactive easy to use data-gathering
windows or screens.

® Further automating the data exchange
between a repository and the object library,
creating a set of objects that would read the
relevant data from different sources , e. g.
ASCII files with predefined syntactical
rules, directly from the data dictionary, etc.

e In a (hypothetical) system the intelligent
assistant would be tightly coupled to the
data dictionary of a CASE tool and this
system would actively support the designers'
search for alternatives.

The data- or object base of the system should

consist of :

e The technical description and classification
of the available technology, performance
parameters of hardware devices, associate
prices.

e The software performance classification
(DBMS, File Handler, other tools for
implementing certain tasks or functions).

e The expected and estimated workload data.

The hypothetical knowledge base will contain

the following:

e The application system specific data:
¢ performance goals and objectives,

e functional requirements (which the
performance predictions can be derived
from).

e The knowledge for making wuse of
performance engineering tools (e. g. the
SPP-OL object library, etc.).

o The modelling knowledge of the
Information System, the way of describing
the functional requirements.

146

REFERENCES & BIBLIOGRAPHY

[Brodie82]BRODIE, M. L. and SILVA, E,
Active and Passive Component Modelling:
ACM/PCM, in T. W.Olle, HG. Sol and A.A.
Verrijn-Stuart (Eds.) Information System Design
Methodologies: A Comparative View,
ELSEVIER Science Publishers B. V. (North-
Holland), 1982, pp. 41-91.

[Calzarossa86]CALZAROSSA, M. and
TRIVEDI, K. S., Performance Analysis Using
Behavior Graphs, Proc. CMG '86, Conference
on Management and Performance Evaluation,
Las Vegas, NE, December 9-12, 1986, pp. 395-
397, Computer Measurement Group Inc., 1986.

[Calzarossa90]CALZAROSSA, M., MARIE, R.
A. and TRIVEDI, K. S, System Performance
with User Behavior Graphs, Performance
Evaluation, Vol. 11, 1990, pp. 155-164.

[Cameron83]CAMERON, J.R., JSP and JSD:
The Jackson Approach to Software
Development, IEEE COMPUTER SOC., 1983.

[CCTA90]CCTA, SSADM Version 3 and
Capacity Planning, Information Systems
Engineering Division, CCTA, Norwich, 1990.

[CCTA90A]CCTA (Central Computer and
Telecommunication Agency), SSADM Version
4 Reference Manuals, Vols 1,2,3,4 NCC
Blackwell Ltd, Manchester, Oxford, 1990.

[CCTA91]CCTA (Central Computer and
Telecommunication Agency), PRINCE,
Structured Project Management, NCC Blackwell
Ltd , Manchester, Oxford, 1991.

[David92]DAVID, A., SSADM and Capacity
Planning, Information Systems Engineering
Library, CCTA, London: HMSO, 1992.

[Digitalk86]Digitalk Inc., Smalltalk/V, Object-
Oriented Programming System (OOPS), Los
Angeles, CA, 1986.

[Hedges94]JHEDGES, M. and TURNER, P,
SSADM V4+' Hungarian SSADM Forum
Meeting, John wvon Neumann Society for
Computer Sciences, Budapest, December 1994,

Studies in Informatics and Control, Vol.4, No.2, June 1995

[Jackson82] JACKSON, M. A., System
Development, PRENTICE -HALL, Englewood
Cliffs, NJ, 1982.

[Lazowska84] LAZOWSKA, E. D,
ZAHORJAN, J., GRAHAM, G. S. and SEVCIK,
K. C, Quantitative System Performance:
Computer System Analysis Using Queueing
Network Models, PRENTICE-HALL
International Inc., Englewood Cliffs, NJ, 1984,

[Longworth86]LONGWORTH, G. and
NICHOLS, D., SSADM Manual, Vols. 1-2,
NCC Blackwell, 1986,

[Longworth88]LONGWORTH, G., NICHOLS,
D. and ABBOT, J, SSADM Developer's
Handbook, NCC Publications, Blackwell,
Manchester, 1988.

[Lockenhoff93]LOCKENHOFF, C. and
VALENTE, A, A Library of Assessment
Modelling Components, in Lockenhoff, Fensel
and Studer (Eds.) 3rd KADS Meeting, Munich,
1993,

[Martin81]MARTIN, T, Design and Strategy
for Distributed Data Processing, PRENTICE-
HALL, Englewood Cliffs, NJ, 1981.

[Matheron90]MATHERON, J. P., Comprendre
Merise, Outils Conceptucls et
Organisationnels, Editions EYROLLES, 1990,

[Molndr93a]MOLNAR, B. and SIMON, E.
Creating Responsive Information Systems
with the Help of SSADM, Austrian-Hungarian
Joint Seminar on Software Engineering,
Technical University of Budapest, Budapest, 4-5
February, 1993.

[Molnr93b]MOLNAR, B. and SIMON, E.
Responsive Information Systems and
Application of AI, Proceedings of the Third
Hungarian Conference on Artificial Intelligence,
Budapest, April 6-8, 1993, Publ. John von
Neumann Society for Computer Sciences, 1993.

[Molnr93c]MOLNAR, B., A Proposal for
Linking a Structured Methodology and the
Techniques of Performance Engincering,
Research Report, School of Computer Science
and Information Technology, University of

Studies in Informatics and Control, Vol.4, No.2, June 1995

Wolverhampton, December, 1993.(CEC,
Community Action in Science and Technology
with Central and Eastern Europe, Individual
Fellowship N° 7955).

[Molndr95]MOLNAR, B., A Methodology for
Designing Responsive Information Systems,
Integrating the Pragmatic and Theoretical
Approaches within SSADM Environment,
Ph.D Thesis, Department of Mathematics and
Computer Science; the Faculty of Electrical
Engineering and Informatics, Technical
University of Budapest, 1995,

[Motzkin90] MOTZKIN, D., Distributed
Database Design - Optimization vs Feasibility,
INFORMATION SYSTEMS, Vol. 15, No. 6,
1990, pp. 615-625.

[Motzkin90b] MOTZKIN, D., An Adaptive
Data Distribution Model for Distributed
Databases Based on Empirical Measurement
of Local and Global Database Transactions,
in P. Zunde and D. Hocking (Eds.) Empirical
Foundations of Information and Software
Systems, PLENUM PRESS, New York, 1990,
pp. 329-339.

[Mukkamala90]MUKKAMALA, R. and
BRUELL, S. C, Efficient Schemes To
Evaluate Transaction Performance in
Distributed Systems, THE COMPUTER
JOURNAL, Vol. 33, No. 1, 1990, pp. 79-89 .

[Rumbaugh91]JRUMBAUGH. J., BLAHA, M.,
PREMERLANI, W., EDDY, F. and
LORENSEN, W., Object-Oriented Modeling
and Design, PRENTICE-HALL, Englewood
Cliffs, NJ, 1991.

[Schreiber93]SCHREIBER, G., WIELINGA, B.
and BREUKER, 1J., KADS, A Principled
Approach to Knowledge-Based System
Development, ACADEMIC PRESS, London,
1993.

[Slater94]SLATER, C., 'SSADM V4.2' ISUG
Autumn Conference, UK, 1994,

[Smith86]SMITH, C. U., Independent General
Principles for Constructing Responsive
Software Systems, ACM TRANSACTIONS

147

ON COMPUTER SYSTEMS, Vol. 4, No. 1,
February 1986, pp. 1-31.

[Smith88]SMITH, C. U., Applying Synthesis
Principles To Create Responsive Software
Systems, IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING,, Vol. 14, No. 10,
1988, pp. 1394-1405.

[Smith90] SMITH, C. U, Performance
Engineering of Software Systems, ADDISON-
WESLEY, Reading, MA, 1990.

[Smith92]SMITH, C. U., Integrating New and
"Used" Modeling Tools for Performance
Engineering, in G. Balbo and G. Serazzi (Eds.)
Computer Performance Evaluation, NORTH-
HOLLAND/ELSEVIER Science Publishers,
B.V., 1992, pp. 153-163.

[Smith93]SMITH, C. U, Software
Performance Engineering: A Case Study
Including Performance Comparison with
Design Alternatives, IEEE TRANSACTIONS
ON SOFTWARE ENGINEERING, Vol 19,
No. 7, July 1993.

148

[Smith93a] SMITH, C. U, Software
Performance Engineering, in L. Donatiello and
R. Nelson (Eds.) Performance Evaluation of
Computer and Communication Systems, Joint
Tutorial Papers of Performance '93 and
Sigmetrics '93, pp. 509-536, Lecture Notes in
Computer Science 729, SPRINGER-VERLAG,
Berlin-Heidelberg, 1993.

[Turner90] TURNER, W. S., LANGENHORST,

R. P, HICE, G. F, EILERS, H B. and
UIJTTENBROEK, A. A, SDM System
Development Methodology, = ELSEVIER
Science Publishers B.V. (North-
Holland)/Pandata, 1990.

[Wielinga92] WIELINGA, B.], SCHREIBER,
A. TH. and BREUKER, J. A, KADS: A
Modelling Approach to Knowledge
Engineering, KNOWLEDGE ACQUISITION,
Vol. 4, No. 1, 1992, pp. 5-53.

[Yourdon75] YOURDON, E. and

CONSTANTINE, L. L., Structured Design,
YOQURDON PRESS, 1975.

Studies in Informatics and Control, Vol.4, No.2, June 1995

