An Optimal Algorithm for Jointly Scheduling Sporadic
and Periodic Tasks

Houssine Chetto

Institut Universitaire de Technologie de Nantes
Département d’Organisation et Gestion de la Production
La Chantrerie CP 3003

44087 Nantes Cedex 03

FRANCE

Abstract: In this paper, we describe an optimal approach for
Jointly scheduling periodic critical tasks and sporadic tasks, The
problem is to schedule the tasks so that all the hard deadlines of
periodic tasks are met and the response times for sporadic tasks
are minimized. We show how optimal responsiveness can be
attained by exploiting specific properties of the Earliest
Deadline scheduling algorithm, in particular, how every
occurring soft sporadic task is changing to a critical one by the
adequate computation of a fictive deadline. Finally, to illustrate
the performance of our approach, we provide a comparative
study with other approaches and we report on simulation
results.

Keywords: Dynamic Scheduling, Earliest Deadline, Periodic
Critical Tasks, Real-time systems, Sporadic Tasks, Response
Time.

Houssine Chetto was bomn in Berkane, Morrocco, in
December 1952. He received the Maitrise d' Electronique et
d’ Automatique from the University of Orléans, Francein 1978,
the degree of Docteur de 32me Cycle in Concurrent Computing,
in October 1981 and the degree of Docteur d'Etat in Scheduling
in hard-real time systems, in December 1990,

Between 1981 and 1985 he was an Assistant Professor in the
Department of Physics of the University of Fes, Morrocco.
From 1985 to September 1988 he was employed by Ecole
National Supérieure de Mecanique de Nantes, France, as an
Assistant Professor at the Department of Automatic Control.
Since 1988 he has been working as Assistant Professor at the
Department of Production Management, Institut Universitaire
de Technologie de Nantes. His fields of interest are concurrent
computing, fault-tolerance and scheduling,

1. Introduction

For many computer applications such as
automated manufacturing systems, nuclear
power plants, robot arm control, etc., programs
(generally called tasks) must satisfy specific
timing constraints which are imposed by the
physical process being controlled in order to
avoid catastrophic results. We call such tasks
which are required to respond to external and
internal stimuli within a specified deadline,
critical tasks, and when all the tasks are critical,
the application is said to be hard real-time. In
this paper, the critical tasks of interest run on a

single processor machine that may be any node
of a distributed system. This machine has its
own private memory which is supplied with an
operating system and the application software. It
works in the feedback loop of the controlled
system. Its goal is to derive inputs from sensors
and then, its outputs are sent to control actuators
or to update displays. To perform this control
function which is initially well-defined, the
computer has to run a set of tasks, cyclically, in
an indefinite loop. Values of task periods then
depend on the dynamics of the physical process
associated with them. To ensure a correct
exccution of these tasks (i.e adherence with all
their timing requircments), it appears that an
efficient use of the processor by a careful
scheduling is necessary.

Furthermore, the computer system has to cope
with unpredictable changes in the environment
whose effects can result in a sudden and
lemporary increase in processor workload. This
means that there exist additional tasks which are
non-periodic and lie dormant until they are
activated. These so-called sporadic tasks
represent application services such as
maintenance, bookkeeping and alarm processing
but also result from system activities such as
bidding in a distributed system [1][2]. Although
they are not necessarily critical, they can affect
al a certain point in time the scheduling of
critical periodic tasks since they share the
processor with them. We call such a system in
which only a subset of tasks is critical, a semi-
hard real-time system.

An important topic in real-time systems research
is the design of scheduling strategies with a view
at meeting all the timing constraints of critical
tasks while optimizing a performance criterion

Studies in Informatics and Control,Vol.4, No.2, June 1995 167

for soft tasks. Our goal here is to present a new
approach that provides an optimal solution to
this scheduling problem. The work described
here is an extension of our own work that was
initially reported in [3] on scheduling critical
periodic tasks in presence of critical sporadic
tasks. Clearly, this paper focuses on scheduling
in a dynamic system where no a priori
information on the arrival time or exccution
time of sporadic tasks, i1s known. We¢ assume
that sporadic tasks have the same priority and
consequently, the arrival time will be used to
break the competition tie on First Come First
Serve (FCFS) basis. We will be precisely
concerned with the problem of jointly scheduling
the periodic and sporadic tasks so that the
deadlines of periodic tasks are met and the
response times for sporadic tasks are minimized.
Our strategy is built upon the prcemptive
Earliest Deadline algorithm [4] which features
ease of implementation and the best performance
among the scheduling algorithms for critical
tasks. We will show that our approach enables
us to determine the response time of every
sporadic task, as soon as it arrives.

The paper is organized as follows: Section 2
provides some background material about
dynamic real-time scheduling. In Section 3, we
recall basic results, instrumental in the
resolution of the scheduling problem. Section 4
describes the theoretical foundation of the
proposed approach and provides an illustrative
example. An outline of the scheduler is given in
Section 5. This is followed by a comparative
study involving Background, Polling and
Deferral approaches in Section 6. Section 7
summarizes the significant features of our
approach to dynamic task scheduling.

2.Problem Description

2.1 Scheduling Periodic Tasks

A periodic task sct can be denoted as follows:
T ={7, (C, R, P), i=1 to n}. In this
characterization, every task Z7; makes its initial
request at time zero and its subsequent requests
at time kP, k=1,2,... The execution time nceded
by each request of 7; is C; time units and a
dcadline for 7; occurs R; units after each request

by which 7; must have completed its execution.
Throughout our discussion, we assume that a
preemptive scheduling discipline is employed.
Thus, a request for C; units of execution time
can be satisfied by one or more quanta which
sum to C;.

Many researchers have developed efficient
scheduling algorithms specifically for periodic
tasks. Liu and Layland [4] developed the Rate
Monotonic (RM) algorithm which is a static
priority driven algorithm. Under RM, higher
prioritics are assigned to tasks with shorter
periods. They showed that this scheme was
optimal among fixed priority schemes. However,
they assumed that the relative deadline of a
periodic task was equal to the period of the task.
Under this hypothesis, they proved that RM had
a worst case scheduling bound of In2. That is,
this algorithm guarantces that n periodic tasks
can always be scheduled to meet deadlines if the
proccssor utilization is less than n2'"™ - 1)
which converges to 0.69 for large n. We recall
that the processor utilization of the task set 7 is

1
given by Z C; / P; and will be denoted by
i=1
U.This scheduling bound can be increased by
using a dynamic algorithm such as the Earliest
Decadline (ED) algorithm. ED schedules at each
instant of time t, the ready request (i.e. the
request that may be processed and has not been
completed yet) whose deadline is closest to t. It
was proved to be the optimum preemptive
scheduling algorithm [5][6]. That is, it produces
a valid schedule (i.c. a schedule in which all the
deadlines are met) for every schedulable task set.
Furthermore, condition U<I (1) is necessary and
sufficient to guarantee a valid schedule for 7 if
the rclative deadline R, of every task 7; is equal
to its period P,. Else, condition CH<1 (2) where

n
CH= ZcifRi has been proved to be
i=]

sulficicnt. In all these studies, it is assumed that
there is no time loss in preemption which means
that thc overhead originating from the task
precmption (i.e. context switching) must not
account for in the performance evaluation. The
fundamental property of the schedule produced
on T by any preemptive scheduling

168 Studics in Informatics and Control, Vol.4, No.2, June 1995

algorithm and in particular ED, is its
cyclicity [7]. Let P= LCM (P,, P,,..., P,)
the base period be equal to the least
common multiple of the periods P,, P,, ...
P.. This property means that the processor
does exactly the same thing at time (>0 as
at time t+kP (k=1, 2,...). So, studying the
form of the schedule produced over an
infinite length by ED amounts to studying
the form of the schedule on the intervals
[kP, (k+1)P], k=1, 2 ..., each of them being
called a window.

2.2 Scheduling Sporadic Tasks

Typically, a sporadic task is a non-periodic task
that occurs and requires to be run just once,
dynamically. Consequently, sporadic tasks
scheduling requires a dynamic approach which
permits to determine schedules for tasks on the
fly and can easily adapt to an unpredictable
change in the processor workload. The problem
of scheduling periodic tasks together with
critical sporadic tasks has been extensively
studied. In such a context, we say that 4 new
occurring task is accepted if the scheduling
algorithm can find a schedule for all the periodic
tasks and the previously accepted sporadic tasks
such that each task finishes by its deadline,
Consequently, a scheduling algorithm is said o
be optimal if any occurring task is accepted
whenever possible. Mok [8] showed that ED was
optimal for scheduling preemptable non-periodic
tasks with arbitrary arrival times and hard
deadlines. Mok also showed that the Least Slack
time algorithm was optimal as well. The slack
time is the time remaining until the task
deadline reduces by the remaining task
execution time. Ramamritham and Stankovic
[1] described an acceptance test which was
based on the non-preemptive Earliest Deadline
algorithm and consequently provided a sub-
optimal solution to the scheduling problem. An
optimal solution was given in [3] which was
based upon ED. Its extension as to taking into
account precedence constraints is described in
[9]. Schwan and Zhou [10] developed a dynamic
scheduling algorithm for hard periodic and
sporadic tasks, based upon ED. Its main
advantage lies in its cfficicnt implementation
since its worst case complexity is O(nlogn).

Two basic approaches for processing soft
sporadic tasks together with periodic tasks are
Polling and Background. Polling consists in
initially creating a periodic task for processing
sporadic tasks. At rcgular intervals, the polling
task (also called the server task) is requested to
process the ready sporadic tasks. However, if no
sporadic tasks are rcady to be processed, the
server task suspends itself until its next period
and the time originally allocated for sporadic
tasks are used instcad by periodic tasks. In such
a context, a sporadic task which occurs just after
the scrver task has got suspended, must wait for
the next request of the server task. Under
Background technique, sporadic tasks are
processed whenever the processor is idle i.c. all
the ready periodic tasks are completed. When
using these two approaches, periodic tasks can
be scheduled by any priority driven algorithm,
Simulations of these algorithms were reported in
[11] in order to compare their performance with
other heuristics. Here, performance is measured
in terms of average response time. We refer the
response time of a sporadic task to be the time
clapsed from its occurring time to its complction
time.

New algorithms have been proposcd in [12]
which provide better performance than Polling
and Background: Priority Exchange (PE) and
Deferrable Scrver (DS). These algorithms are
built upon RM for scheduling periodic tasks and
assume that a high priority periodic task can be
dedicated to servicing sporadic tasks. They are
called bandwidth preserving algorithms because
they provide a mcchanism for preserving the
processor bandwidth allocated for sporadic tasks
if, upon becoming available, the bandwidth is
not immediately nceded. More recently
sophisticated approaches on static priority and
on -linc computation processor idle time, have
been proposed [13] [14][15][16].

3. Basic Results

3.1 Motivations for ED

The scheduler of next gencration real-time
systems must be designed so as to guarantee
rcal-time constraints of critical tasks, to
minimize response time of soft tasks and

Studies in Informatics and Control,Vol.4, No.2, June 1995 169

moreover to support fault-tolerance [17]. Indeed,
such real-time systems are very complex
because of being distributed across a network
and being capable of exhibiting adaptive and
highly dynamic bchaviour. The problem of
designing a scheduling algorithm is then much
more complicated than in classical centralized
systems. Schedulers for these systems often
consist of two components, namely a local
scheduler and a distributed scheduler. The local
scheduler first decides on whether critical tasks
which arrive at a node can be scheduled on that
node, and second attempts to schedule soft tasks
as fast as possible. A distributed scheduler
dynamically decides on where in the network, a
soft task should be transfcrred to so as to
minimize its response time, or a critical task that
cannot be scheduled at a node should be
transferred so as to meet its timing recquircments.
When the periodic workload of a node is static
i.e. it consists of a fixed sct of tasks whose
characteristics are well- known before the system
starts operate, it is ofien possible to usc a static
priority driven scheduler (such as RM) since
adhcrence to timing requircments only depends
on timing paramcters of tasks which are
assigned to that node. However, let us recall that
one primary mcasurc of a scheduling algorithm
is its associated processor utilization level below
which the dcadlines of all tasks can be met. It
has been proved that, from this point of view,
ED is far morc cfficicnt than RM. Conscquently,
it permits to deal with a larger class of
applications and is morc suitable for highly
dynamic systems. Furthcrmore, although RM is
ellicicnt to implement, the priority assignment
obtaincd by it is not optimal for the general task
model studicd in this paper. Stalic priorily
driven algorithms generally involve smaller
overhead in their implementation than the
dynamic oncs do. But this is no longer true
under the assumption that the processor
workload is composed of a mixed sct of periodic
and sporadic tasks. In such a context, obtaining
a good solution to the scheduling problem will
rcquire priority exchanges in large numbers and
conscquently will involve as large overhead as a
dynamic priority driven algorithm. Morcover,
when there arc more distinet task periods than
available priority levels, some tasks with

different periods must be assigned the same
priority level. This insufficiency of priority
levels then lecads to a reduction of processor
scheduling potential. This phenomenon s
particularly true for rcconfigurable distributed
systems in which a node can be transiently
overloaded. Indeced, the failure of one or several
nodes will provoke the migration of periodic
tasks on the remaining safcty nodes for which a
static allocation of priority is no longer
appropriate. Now, let us review bricfly the
fundamental properties of ED which were stated
in [3] and [18] and arc the foundation of our
approach for scheduling a mixed set of periodic
and sporadic tasks.

3.2 Off-line Computations

If a uniprocessor systcm solely supports periodic
tasks. it is casy to know cxactly what is done by
the processor at any moment since the schedule
which is 1o be exccuted can be determined at
system initialization time and is not modificd
during the lifctime of the system. In particular, it
is interesting to determine the localization and
the duration of time intervals (called idle times)
during which the processor is not busy executing
a periodic task. Naturally, we assume that tasks
are exccuted as soon as possible i.e. as soon as
the processor is idle and all the tasks considered
1o be more urgent have been processed.

We can imagine an implementation of ED
(denoted EDL) that amounts to exccuting tasks
as lalc as possible. Indeed, it was proved in [3]
that such implementation of ED led to
maximizing processor idle time as soon as
possible. Then the schedule so constructed can
be described by:

- K= (ko ki. ki ki, k) with i<k, ko=0 and
kq=P-inf {x;1<1<n} where x= P- R, for all
1<1 < n. K is called the deadline vector and is
obtained from the distinct decadlines of requests
within [0, PJ.

- D= (R Bpsnaliaiigy sevg Do)l dsicalled. the
idle time vector under DL and A, dcnotes the
length of the idle time that follows time k; in the
schedule produced by EDL for 7 within [0,P]. It
was proved that A, is given by the following
recurrent formulae:

AFinf{x,1<i<n} 3)

170 Studies in Informatics and Control, Vol.4, No.2, June 1995

N [P-x;-k;
A= sup (0, (P - k) - Z{—#]
PRI

q

C- D 4;i=0,1,.., ¢l).
k=i+]

where fx-] denotes the smallest integer greater

than or equal to x. From definition of D, we

q
immediately deduce that ZAi =@ where @
i=0
denotes the quantity of processor idle time
within any window and is given by P(1-U) (5).
Description of the schedule produced by EDL
for 7 is then madcin O(N) operations thanks to
recurrent formulae (3) and (4). Here, N denotes
the total number of requests within [0,P).

3.3 Dynamic Scheduling

Now, let us describe the dynamic workload
imposed on the machine at any current time t by
7T It is composed of the current requests which
have occurred at or before T and have not been
completed at T and future requests which have
not started their exccution at 1. The set of all
these requests (denoted by T{(t)) can be
assimilated to a set of non-periodic tasks, the
dynamic parameters of which are deduced from
those of periodic tasks. In what follows, it will
be denoted by C,(t) and d; the dynamic exccution
time and current deadline of task T, al time 1. In
[3], it has becn stated that applying EDL to 7{1)
results in the maximization of total idle time
within any interval [1.t], Tt while maintaining
adhcrence with all the timing requirements. This
fundamental property is formalized in the
following theorem:

Theorem 1: (For the proof, see [3])

For any scheduling algorithm X and any instant
1 such that 12,

OF (o (t) s QEPk (1) ©)

where Qﬁ(,r)(t,l) denotes the quantity of
processor idle time between t and t for the
schedule produced by algorithm X on task set
7(7). From this theorcm, we may conclude that
applying EDL 1o any sct of hard decadline tasks

will result in maximizing total idle time within
any time interval [t,1], 0<t<P.

We will show in the next section that, in
allowing for the arrival of soft tasks and in
scheduling them so as to minimize response
times. we need follow a similar approach. In

order to compute the quantity Qg?rlj(r,d), we

nced construct the schedule produced by EDL on
the task set Z(t) from the current time 7. It was
proved that such a schedule can be described by
a dvnamic deadline vector and a dynamic idle
time vector as follows:

- Kv= (k. kps..., ky) with k=t and k.=
min{k,€K; k>t}. (1) is obtained from the
distinct deadlines of requests posterior to t in the
current window plus the time instant 1. We
assume that all these dynamic paramecters are
measured from the beginning of the window
which can be considered as a new time zero.

- D)= (A1), Apa(T)...., Ay(1)). A(1) denotes
the length of the idle time that follows time k; in
the schedule produced by EDL for 7{1). Let M=
max {d; T€7(v)}. M dcnotes the latest
deadline among those of current requests of
periodic tasks. Let index / be such that k; = min
{k, / ki= M}. Finally, it was proved that:

Aty =4 fori=1 toq. @)
A(t)=sup(0.(P-k,)-

1 anf.\;‘—Sup(k',d‘)
2 G- |~ =L e
=1 o]

dj)k‘

4
> Ag (@) for i=h to /-1)
k=1+1

3.4 Hustration

Let 7= {T|(5, 25. 30).Tx(10, 40, 50), T5(20, 55,
75)}. T'is a schedulable periodic task scl since
CH = 0.813 and verifics (2). From construction
of K and thanks to formulac (3) and) , we
deduce the length of every idle time within [0, P)
where P = 150, for the schedules produced by
EDL (sce Table 1), respectively.

Results described in Table 1 arc casily verifiable
by constructing the schedules produced by EDL
(sce Figurc 1). The corresponding schedule
produccd by ED is reported in Figure 2.

Studies in Informatics and Control,Vol.4, No.2, June 1995 171

i 0 1 2 3 4 5 6 7 8 9
k. 0 25 | 40 | 55 85 90 | 115 | 135 [140 | 145
A 15 0 0 20 0 151 0 0 0 5

Table 1. Valucs ofK andD

i 4 5 6 7 3 9
ki 85 90 1S 135 140 145
Ai(t) 3 20 5 0 0 S

Table 2. Values of K(‘E) and D (1)

T, nibh 1T Ayt gyt gl
T, — L7 — 7 — 7
L2 o T % T
——— >
0 30 60 90 120 150 T

B :Processor idle time T :request 4 :deadline

Figure 1. Schedule Produced by EDL on T

r A4t B B 4h 1T
il M = = i1
T .l [—Jn L 1
0 0 0 120 150 1

Figure 2. Schedule Produced by ED on T

e 4Tn 4B 4T AT [T
T ! LT — T
L s B R it

_'_T—v—-—r—_—r—'——. T '.. >
0 30 60 % 120 150

—

Figure 3. Schedule Produced by EDL at time T=85

172 Studies in Informatics and Control, Vol. 4, No.2, June 1995

Now, let us consider the current time instant
=85 and assume that tasks in 7" are scheduled
by ED from 0 to 85. From construction of K(x)
and thanks to formulae (7) and (8), we deduce
the length of every idle time within the current
window for the schedule produced by EDL on

T=85the task set T(r) (see Table 2).
Chronogram of Figure 3 enables us to verify
values of Table 2 and provides an illustration of
Theorem 1.

4. Dynamic Scheduling of Sporadic
and Periodic Tasks

4.1 Problem Statement

In this section, we will be concerned with the
problem of finding an optimal scheduling
algorithm for a mixed set of critical periodic
tasks and soft sporadic tasks. By optimality, we
mean that the algorithm produces a schedule in
which all the sporadic tasks are executed as fast
as possible and dcadlines of periodic tasks are
met. As mentioned in Section 1, sporadic tasks
are assumed to have the same importance
relating to the application and conscquently they
are scrved in FCFS order. Qur objective then
amounts to dctermining how to schedule
sporadic tasks with respect to periodic tasks,
As ED is optimal for scheduling periodic and
non-periodic tasks with hard deadlines, the basic
idea of our approach is to change a sct of soft
sporadic tasks to a set of critical sporadic tasks.
Then, we will deal with the problem of finding,
for each occurring sporadic task, the minimal
deadline that can be associated with it so that
this task is executed with a minimal response
time. This work method presents the following
advantages:
= A unique scheduler employing the Earliest

Deadline strategy may be used to schedule

sporadic tasks and periodic tasks without

discrimination.

= Minimization of the response time of any

sporadic task is obtained due to the

computation of an adequate ficlive

deadline.

So, we present an algorithm consisting of two
basic parts. In the first part, fictive deadlines are
computed for the sporadic tasks and, in the
second part, they are used to construct a priority
list where requests for periodic tasks and
sporadic tasks arc ordered by decreasing
deadlines.

4.2 Theoretical Foundation of the Approach

Let T be the current time which coincides with
the arrival time of a soft sporadic task R. Upon
its arrival, R is characterized by its execution
time C. First, let us assume that there are no
other sporadic tasks available on the machine at
time t. Let us prove that the problem of
determining deadline d of task R amounts to the
problem of determining the time instant t (tz1)

that verifies QEI()TI; (T =1,

Theorem 2;
By assigning a fictive deadline d to R that

verifies Q?()le (t,d)= C (9) . R is executed

within a minimum response time while ensuring
deadlines of periodic tasks

Proof: From Theorem 1, QE-I(JTI;(t,d)

represents the maximum processor idle time that
can be rccovered to process additional tasks
within [z, d]. Since this quantity is equal to the
exccution time of task R, we are sure that R
cannol finish its exccution before time d. If we
denote by I the completion time of R, we have
f=d (10). Valuc (d-t) then provides a lower
bound on the response time of task R.
Morcover, we know that R is feasibly scheduled
when assigned deadline d. This means that £< d
(11). From (10) and (11), we deduce that f=d
and conscquently R will be executed with a
minimal response time equal to (d-t).00

By Thcorem 2, cquality (9) cnables us to
guarantce that task R with a fictive deadline d,is
processed as soon as possible while producing a
valid schedule for periodic tasks.

Now, let us assume that other sporaaic tasks are
available on the machine at . This means that
such tasks have occurred before t and are not
completed at t. Let us denote by T(x) this
sporadic task sct and described as follows: T)=

Studies in Informatics and Control,Vol.4, No.2, June 1995 173

{R{(Ci(x),d), i=1 to m(r)}. In this
characterization, task R, is ready to be processed
at t. Value Cj(t) represents the dynamic
execution time of R; at T (i.e. its remaining
exccution time). d, is the fictive deadline of R;
which has been associated with it upon its
arrival. 'We assume that T(t) is ordercd such
that i<j implies d,<d;.

T(x) can be considered as a set of critical
sporadic tasks. Conscquently, let us introduce for
any task R; and any instant t, the quantity §(1)

defined as follows: 3(1) =
i

QE'I()TIS(T’di)_ZCj(lJ(lz)- 5(1) is called
=l

laxity of R; at t. It rcpresents the surplus
processing power within the scheduling interval
of R, such that all pericdic and sporadic tasks
with decadline less than or cqual to d; arc feasibly
scheduled. For the purpose of deducing the
fictive dcadlinc of a new occurring task, the
following propositions are of a more practical
interest:

Proposition 3:

Let R; and R; be two sporadic tasks which
respectively occur at times 7; and 7 such that
7,<t. Then, &, and IX; must be assigned fictive
deadlines d; and d, respectively, which verify
di<d;

Proof: The proof is immediate sincc we assumc
that sporadic tasks arc scrved on FCFS basis.
7,<7; then implics that R; must be served belore
R;. Since ED is uscd to schedule the tasks by
dccreasing deadline, this means that di<d,.0]
From Proposition 3, wc may immediatcly
deduce the two following results: there arc no
preemplions between sporadic tasks, and the sct
of sporadic tasks T(t) can be vicwed as a unique
critical sporadic task, (hc dynamic exccution
time of which is cqual to the sum of the
dynamic exccution times of the tasks in T(x) ,
the deadline of which is cqual to the deadline of
the task which was the last to arrive before T.
Proposition 4;

For any sporadic task R, which is ready at time
t and not completed at time t+0 with 020, we
have 6(t+0) = &.(1). (13)

Proof: First, let us assume that no sporadic task
occurs within the time interval [t, t+8]. By

1
definition, 3(1) = Qz(;(,d;)=Y Cj(t)and
j=1
EDL i
8; (t+0) = Qg(130)(1+6,d;) = Y C;(1+6)
=

EDL
Let x =Q5P5 (1,dj) -Q50G6) (1+6,d;). The

maximum available time for processing sporadic
tasks within [t, di] is given by Qp(p (,d;). At
time¢ 1+0, the dynamic workload inflicted by

periodic tasks and resulting from the processor
activity between t and (+0 , is represented by the

task sct 7{1+0). So, QEI(),I;O)(HG,di) gives the
total idle time within [t+9, d] by scheduling

according to EDL all the requests of T(t) which
are unfulfilled at time t +6. So, x represents the
total processor time within [t, t +0] which has
not becen dedicated to periodic tasks. Since all
sporadic tasks arc available from t, task R, is not
completed at t+0 and tasks are scheduled
according to EDS, it comes that x represents the
total processor time dedicated to sporadic tasks
with dcadlinc less than or equal to d; within
[L1+0].

)=l

x=y and conscquently equality (13) is verified.
Now, let us assume that task R; occurs at time
1+0 and no task occurred between t and t+8.
From what precedes, we have
3;(1+0-e)=98;(1) (16) whecrec £—>0. From
proposition 3, we have di<d, for all i {1..m()}.
Conscquently, from definition of the laxity, the
occurrence of R; at time 1+0 docs not modify
the laxity of IR, computed at time t+0-e where
e—>»0. From (14), it comes that 3,(t+0) = §,(1)
foralli {l..m()}.0

Proposition 5:

Every task IR, of T(1) is feasibly executed if
6(1)20 (15).
Proof: Let us assume that condition (15) holds
for any task R, of T(1). From Theorem 1,

1 1
Let y= X Cj(0) - ,ZICJ'(HO). It is clear that
-]2

174 Studies in Informatics and Control, Vol.4, No.2, June 1995

applying EDL to 7{t) from time t enables us to
guarantee a feasible execution of any request of
periodic task while maximizing the quantity of
processor idle time which could be recovered
within the time interval [t, d]]. This quantity is
QEDL

given by 7()

(t,d;) and assumed to be
i

greater than or equal to ZC (1), As this
j=1

quantity represents the total computation time

required by all the tasks with a deadline less

than or equal to d, and as sporadic tasks are

scheduled by decreasing deadline, we conclude

that there exists at least one schedule in which

task R, is completed before its deadline di. Such

a schedule can be obtained by applying the

optimal algorithm ED to T(1)UZ{x).00

We are now prepared to state our main result:

Theorem 6:

Every task R, of Tyt is executed with a

minimal response time if it is assigned Sictive

deadline so that &(1)=0 (16).

Proof:

Let us consider task R; at time 1 such that

8,(t)=0 and prove that R; will be exccuted in a

minimal response time.

From proposition 5, §,(t)=0 implics that R, is

feasibly scheduled, which means that fi<d, (17).

Furthermore, as in the previous

1
proof, ch(t) =Q§?§; (t,d;) implies that

j=1
R; cannot terminate before d, i.c. fi>d; (18).
From (17) and (18), it comes that the responsc
time of R;is cqual to di-t and is minimal.[J
Theorem 6 enables us to state the optimality of
the proposed approach: it guarantees that any
occurring task will be executed in a minimal
response time if this task is transformed into a
critical one, the deadline of which must render
its laxity equal to zero. Moreover, from
proposition 4, we know that the laxity of any
sporadic task remains constant for all the
lifetime of the task. Conscequently, if the laxity of
any task is equal to zcro upon its arrival, this
laxity will remain equal to zero up to its
complction date.

4.3 Computation of Fictive Deadlines

Now, Iet us derive the value of d defined as the
deadline of the new occurring task R. For this
purpose, we will have to make use of I(t) and
A(1) respectively, defined as the remainin g idle
time and the total computation time required by
sporadic tasks, from the beginning of the current
window up to . We note that the remaining idle
time from time 7 up to the end of this window is
given by ®-A(r)-I(1) and denoted by @(1). Let
C(r)= ZC j(t) and dcnote the total
R, €T(1)U{R}

exccution time required by sporadic tasks from
time 1. We nced distinguish between the two
following cascs:

—Case I: &d(r) > C(1)

This means that deadline d occurs in the current
window. Then, we have to determine the earliest

.
deadline k which occurs in [T, P P] that
verifies QE:—RIj(t,k)zC(T). This amounts to
computing the smallest index j in D(x) that

]
verilies ZA;(I)?C(T). It follows that

1=h

(] 3
d=kj+LZAi(T)—C(t)J (19).
i=h
—Case 2: Else

We nced determine the most imminent window
that contains time d and the carliest deadline in
that window which is greater than or cqual to d.
This amounts to computing first, the smallest
integer x that verifics ®(t) +x.d> C(t) and
then, the smallest index j in D that verifics D(1)

]
tX.® +3°A;2C(1). x will rcpresent the

i=h
number of successive windows between the
current window and the window in which d
occurs. Time k; rcpresents the deadline of a
periodic request in that window which _is
followed by an idlc time interval containing the
deadline d. It comes that

d= (x+1).P +kiH(D(1) +x.D +i A; - C(1)) (20).
i=h

Studies in Informatics and Control,Vol.4, No.2, June 1995 175

In case 1, deadline d is computed from the
dynamic idle time vector D(t) and in case 2
from the static idle time vector D which is
assumed to be available from the initialization
time.

4.4 Example

Let 7 be the task set shown in the example of
Section 3. First, let us assume that R, arrives at
time 1, =85 with execution time C,=25. We note
that ®= 55 and ®(1))= 35. Values of K(t,) and

S = 11m L. 14 1B U = N
T; Lt/ ! 1 e 2 L
Ty I 1 L .l i
R, o B
T d
—— . . >
0 30 60 a0 120 150 t
Figure 4. Schedule Produced on T w {R}
Lo S O Y Y N 2 e N i O 0 PO 1
1, | L — Ll e T s I M s G e
LY | & fm! ™ T — i —
R,] i
R, T = = ——
o do
0 30 () 50 126 150 180 210 240 270

Figure 5. Schedule Producedon 7 U {R, R}

176

Studies in Informatics and Control, Vol.4, No.2, June 1995

D(t)) are given in Figure 4 and Figure 5,
respectively. Since @(1))2 C, we know that d,
belongs to the current window and consequently
is less than or equal to time 150. The smallest
index j in D(y) that verifies

iﬂi(‘tl) 2 Cj corresponds to k;=90. Thanks to
i=h

formula (20), we obtain d,=110. Figure 4
displays the effective schedule which would be
produced within the entire window [0,150]. Both
periodic tasks and R, with a fictive deadline d,
are jointly scheduled according to EDS.

Now let us consider the occurrence of R, at time
1,=100 with execution time C,= 50.We have
A(12)=10, I(1,)=20 , Ci(1)=18. It follows that
C(r2)= 68 and ®(t,)=25. Since D(12)<C(1y), we
have to determine the smallest integer x and the
smallest index j in D that verifies ®(1;) +x.@

+i‘3i 2 C(t3). Finally, we obtain x=0 and
i=h

k=90. It follows that d,=248. Figure 5 displays
the schedule effectively produced by EDS on the
task set TU{R;,R;} within [0,300]. On this
example, we can make the following remarks:
there is no idle time from the arrival of a
sporadic task until its completion time, the
number of preemptions of sporadic tasks is
minimized and all deadlincs of periodic tasks arc
met. This enables us to state that response times
of sporadic tasks are minimized, and shows the
optimality of the stratcgy for this example and
the minimal overhcad involved by its
implementation,

S. Implementation Considerations

The procedure that implements the acceptance
of a new occurring task and its insertion at the
scheduler level will nced use several data
structures. The static deadline vector K and the
static idle time vector D are maintained in the
Static Deadline Table (SDT) and the Static Idle
Time Table (SIT) respectively. The dynamic
deadline vector K(t) and the dynamic idle time
vector D(t) are maintained in the Dynamic
Deadline Table (DDT) and the Dynamic Idle
time Table (DIT) respectively. Information on
sporadic tasks such as fictive deadlines and

dynamic exccution times, is maintained in a data
structure called the Sporadic Task Table (STT).
During the opcration of the system, the
procedure uses the STT in conjunction with the
Periodic Task Table (PTT). Each entry in the
PTT contains a period, a dynamic execution
time and a deadline. Tasks in PTT and STT are
ordered by their deadlines. Dynamic values A1)
and I(t) which are re-initialized to zero at the
beginning of every window, must be available
for the procedure described in Figure 6.

Clearly, the algorithm described in Figure 6 runs
in 0 (N) time in the worst case where N
represents the number of distinct requests within
a window. In the best case, the routine only
needs the static idle time vector which has been
computed at system initialization and conse-
quently runs in O(l) time. This makes the
proposed approach be an efficient one in the
sense that overhcad induced whenever a
sporadic task arrives, is low.

6. Experiments and Results

6.1 Simulation Model

To rciterate, the purpose of these studies was to
bring to light the advantages of our approach
over the techniques that have already been
proposcd. Clearly, this asks for generating
representative task sets and then for evaluating
cach strategy with respect to the task sets. For
this experiment, we have developed a task set
gencrator. The task generation procedure has
been parameterized so that it produces task sets
having different degrees of scheduling difTiculty
and conscquently allows us to provide an
objective cvaluation of our strategy. The
generator is used to produce a task set from the
following inpul parameters:

= the number of periodic tasks (n),

— the least common multiple of periods (P),

— the periodic task load (U,),

— the avcrage exccution time of sporadic

tasks (C,.er.),
—the average inter-arrival interval of
sporadic tasks (la...), and

— the duration of simulation.
The output parameters of this genecrator are
timing parameters of the tasks (i.e. period (P)),

Studies in Informatics and Control,Vol.4, No.2, June 1995 177

Let .P be the least common multiple of the periods
.U be the utilization factor of periodic tasks
.E=P(1-U)
.t be the current clock time :
.C(t) be the total remaining execution time of sporadic tasks
.A(t) be the time used by sporadic tasks in the current window up to t
.I(t) be the remaining idle time in the current window up to t

begin

.Insert task R with execution time C after the last entry of the STT

.C{t):=C(L)+C

JE(E):=f~ A(L)— I(Lt)

.if f(t)2C(t) then

begin (* Case 1%*)

(* Determination of the Dynamic idle time vector?®*)
find the last entry h in SDT such that kp<t

initialize DDT with the h first entries of SDT
for each entry i from the last one down to the first one

of DDT do compute Di(t) thanks to () end do

(*Computation of deadline d4d¥*)
Som: =0
for each entry i from the first one of DIT

repeat Som:=Som+ D ,1 (t) yptil Som> C{t)
d:= kj +(Som - C{(t))
end (* Case 1%*)
else
begin (*Case 2%*)
(* Computation of the window which contains d*)
Xi=0; si1= £(B)

Iepeat
s:=s5+f
X:i=xX+1

until s>C(t)
(*Computation of deadline d*)
Som:=s
for each entry i from the first one of SIT
repeat Som:=Som+ Dj until Som2 C(t)
d:= (x+1) P + ky +(Som - C(t))
end (*Case 2%*)

.Assign deadline 4 to task R
end.

Figure 6. Description of the Scheduler

178 Studies in Informatics and Control, Vol.4, No.2, June 1995

Execution time

i Pi Ri |8 8 & s 8 S 8 83

1 84 70 1 1 2 2 4 4 4 5

2 105 98 1 2 Z 3 4 5 6 7

3 112 90 1 2 3 4 4 6 5 6

4 120 115 1 2 3 4 4 5 6 8

5 140 118 1 2 3 4 6 7 6 8

6 168 152 1 2 3 3 6 9 9 11

7 210 24 | 1 3 4 6 7 9 11 13

8 240 240 | 2 4 4 8 7 12 12 16

9 286 271 | 2 3 6 9 9 14 14 17

10 336 3201 2 6 7 11 12 18 16 19

11 420 405 3 6 8 13 16 18 20 22

12 560 553 | 4 9 12 17 17 26 32 35

13 840 790 | 6 14 17 24 38 41 52 49
Utilization factor Uy 0.11 021 027 039 047 0.62 0.66 0.78

Table 3. Periodic Task Sets

of Tasks | Cpim Cmax__ Caver Imin Tmax Taver. Us
1 196 54 107 399 262 10.21
Table 4. Sporadic Task Set Characterization
BG PO DS EDL
U, RT % of Preem. RT %ofPreem. | RT % of Preem. | RT % of Proem.

0.11 65 0.68 4 0.64 61 0.78 60 0.43
0.21 74 241 129 0.88 76 0.80 61 0.56
0.27 81 252 187 1.08 89 0.96 61 0.52
0.39 120 2.72 265 1.72 108 1.52 63 0.56
0.47 133 2.96 433 2.44 113 1.92 67 0.56
0.62 229 3.26 3394 7.72 206 3.64 86 0.72
0.66 258 3.52 5738 13.38 243 3.64 92 0.76
0.78 574 3.44 9834 53.68 562 5.32 180 1.12

Table 5. Response Time (RT) and Preemption Ratio (% of preem.)

Studies in Informatics and Control,Vol.4, No.2, June 1995

179

critical delay (R), execution time (C) for
periodic tasks, and the arrival time and
execution time for sporadic tasks). In
simulations reported here, parameters n and P
take constant values of 13 and 3360 respectively.
We have considered 8 periodic task sects (denoted
S) for Up that uniformly varies from 0.11 to
0.78 and one set of 25 sporadic tasks with the
utilization factor (denoted U, given by
Cover-/Taver.) €qual to 0.21. More precisely, for a
givenpeﬁodictaskloadUp,Ciisdmentobc
proportional to P, with a minimal value equal to 1.
Parameters of periodic and sporadic tasks arc
respectively reported in Table 3 and Table 4.
Crins Conaes Tmin and L respectively, denote the
minimum and the maximum execution time, the
minimum and the maximum inter-arrival
intcrval of sporadic tasks.

6.2 Performance Comparison

The task sets resuling from different
combinations of Up and Us have been
successively scheduled according 1o the
following strategies: BackGround (BG), Polling
(PO), Deferral Server (DS) and EDL. Let remind
of PO and DS as based on Dcadline Monotonic
which is an optimal static priority driven
algorithm and schedules the tasks by the
increasing order of their critical delay.

Two criteria have been applied in performance
evaluation: the average response time (RT) and
the preemption ratio (% of Preem.). This ratio is
defined as the total number of preemptions of
sporadic tasks per number of tasks. The
preemption ratio provides us an indication about
the timing overhcad incurred by context-
switching. Indeed, the efficiency of a scheduling
algorithm dcpends on the complexity of this
algorithm and on the number of involved
prcemptions.

Table 5 shows the average response time and the
precmption ratio. Based on simulation results,
the following rcmarks arc to be made:

— As expected, EDL performs the best on all
accounts and for any system load. The
main reason for its better performance is
that it dynamically recovers the maximum
available processor idle time as soon as
possible.

— As such an approach is based on the
Earliest Decadline first algorithm, the
number of preemptions is minimized.

— Under light load, the diffcrence is not very
significant. For systems with medium
load, the performances of EDL strategy
arc significantly higher than those of other
strategics. We can note that for U,=0.47,
the average response time provided by
EDL is less than half that provided by any
other strategy.

— When the system is heavily loaded, the
performances of all strategies but EDL
degrade and become unacceptably bad.

7. Conclusion

An approach was proposed in this paper to
achicve an optimal scheduling in a semi-hard
rcal-time system. Rcal-time software was
referred 1o as a set of periodic tasks initially
assigned to a monoproccssor machine, and in
addition, as non-periodic tasks (said to be
sporadic) occurring and requiring to be run on
this machine at unpredictable times. The
problem was to schedule the periodic and
sporadic tasks so that hard dcadlincs of periodic
tasks should bc met and response times for
sporadic tasks should be minimized.

One could imagine that dynamic priority driven
scheduling algorithms are less suitable than
static priority driven ones, whose imple-
mentation is simple and involves little overhead.
However, the latter does not provide all the
flexibility and predictability which are being
increasingly required by next generation
systems. Thesc systems are highly dynamic and
imply that the scheduler has been thus designed
as to be able to cope with dynamic changes in
processor workload.

In this paper we developed a dynamic
precmptive scheduling strategy with a vicw at
achicving a high flexibility. The crux of our
approach lics in the ability of having a precise
knowledge the maximum processor time which
can be recovered and then dedicated to sporadic
tasks. Optimal responsivencss to sporadic tasks
is attained by computing fictive dcadlines and
then bny applying the famous Earliest Dcadline

180 Studies in Informatics and Control, Vol.4, No.2, June 1995

scheduling algorithm to both sporadic and 8.

periodic tasks. Such a method is efficient since it
can be implemented in linear time and optimal
since sporadic tasks are always processed as

soon as possible while maintaining a feasible 9.

execution of periodic tasks.

REFERENCES

1. RAMAMRITHAM, K. and STANKOVIC,
JA, Dynamic Task Scheduling in
Distributed Hard Real-Time Systems,
IEEE SOFTWARE , Vol.1, 1984

2. ZHAO, W. and RAMAMRITHAM, K,
Distributed Scheduling Using Bidding
and Focussed Addressing , Proc. Real
Time Systems, Symp. San Diego, CA,1985.

3. CHETTO, H. and CHETTO, M., Some
Results of the Earliest Deadline
Scheduling Algorithm. IEEE TRANS. ON
SOFTWARE ENGINEERING 15, 10
October 1989.

4. LIU, CL. and LAYLAND, J.W.
Scheduling Algorithms for Multipro-
gramming in a Hard Rcal-Time
Environment, JACM 20, 1 January 1973,

5. SERLIN, O., Scheduling of Time Critical
Processes , Proc. of the Joint Computers
Conf, 40, 1972.

6. LABETOULLE, J, Some Theorcms on
Real Time Scheduling, in E. Gelenbe and
R. Mahl (Eds.) Computer Architectures and
Networks, NORTH-HOLLAND,
Amsterdam, 1974, .

7. LEUNG, LYXK. and MERRIL, ML, A
Note on Preemptive Scheduling of
Periodic Real Time Tasks,
INFORMATION PROCESSING
LETTERS, 20, 3, 1980.

Studies in Informatics and Control,Vol.4, No.2, Junc 1995

10.

11.

12.

13.

14

15.

MOK, AK. Fundamental Design Pro-
blems of Distributed Systems for the
Hard Rcal-Time Environment, Ph. D
Thesis, MLI.T, 1983.

CHETTO, H, SILLY, M. and
BOUCHENTOUF, T Dynamic
Scheduling of Real-Time Tasks under
Precedence Constraints, THE JOURNAL
OF REAL TIME SYSTEMS, 2, 1990.

SCHWAN, K and ZHOU, H, Dynamic
Scheduling of Hard Real-Time Tasks and
Real-Time Threads, IEEE TRANS. ON
SOFTWARE ENGINEERING, 18 , 8,
August 1992 .

LEHOCZKY, JP., SHA, L. and
STROSNIDER, J.K., Enhanced Aperiodic
Responsiveness in Hard Real-Time
Environments, Proc. of Real-Time Systems
Symposium, IEEE, San Jose, CA,
December 1987 .

SPRUNT, B., LEHOCZKY, J. and SHA, L.,
Exploiting Unused Periodic Time for
Aperiodic Service Using the Extended
Priority Exchange Algorithm, Proc. Real
Time Systems, Symp. San Diego, CA,
Dccember 1988 .

BAKER, T.P., Stack-Based Scheduling of
Real-Time Processes, Proc. of IEEE Real-
Time Systems Symp., December 1990,

LEHOCZKY , J.P.and RAMOS-THUELS.,
An Optimal Algorithm for Scheduling
Soft-Aperiodic Tasks in Fixed-Priority
Preemptive Systems, Proc. of IEEE Real-
Time Systems Symp., December 1992,

AUDSLEY, N.C, BURNS, A,
RICHARDSON, M.F. and WELLINGS,
A.J, Hard Real-Time Scheduling: The
Deadline Monotonic Approach, Proc. of
8th IEEE Workshop on Rcal-Time
Opcrating Systems and Software, Atlanta,
GA May 1991,

16.

17.

DAVIS, R.I, TINDELL, K.W. and BURNS,
A., Scheduling Slack Time in Fixed Pre-
emptive Systems, Proc. of IEEE Real-Time
Systems Symp., December 1993.

CHETTO, H. and CHETTO, M., An
Adaptive Scheduling Algorithm for Fault-
Tolerant Real-Time Systems, THE
SOFTWARE ENGINEERING JOURNAL,
6, 3,May 1991.

18. SILLY, M., CHETTO, H. and ELYOUNSI,

N, An Optimal Algorithm for
Guarantecing Sporadic Tasks in Hard
Real-Time Systems, Proc. of IEEE Symp.
on Parallel and Distributed Systems, Dallas,
TXS, December 1990.

Studics in Informatics and Control, Vol.4, No.2, June 1995

