BOOK REVIEWS

Isomorphisms of Types: from A-Calculus to Information
Retrieval and Language Design

Roberto D1 Cosmo
Birkhduser Verlag AG, Basel, 1994, 243p.
ISBN 3-7643-3763-X

Ileana Valentina Rabega was bomn in Romania in 1955. She
graduated in Mathematics from the University of Bucharest,
Faculty of Mathematics, in 1979. Since that year she has been
working at the Research Institute for Informatics in Bucharest.
Her fields of interest include formal specification / design and
correctness proving techniques, CASE systems, artificial
intelligence methods applied to sofiware engineering, She is
now a senior research worker and her published papers, in
Romanian journals or in Proceedings of international symposia,
are more than thirty.

As the author says in the preface, this is a book
about isomorphisms of types. The fact that
theoretical and implementational aspects of the
research are as well treated makes the audicnce
of this book become larger. In the revicwer's
opinion it is a chance for many readers, that
such a book could appear, because it is
conceptually very responsive to both rescarcher's
and programmer's nceds. In general, many
papers on this topic have been written, but what
is really needed for is a book putting together all
these aspects. As a consequence, there are many
potential types of readers: those who want to get
an insight into type isomorphism and have a
certain background, thosc who have no
background, and try to get familiar with this
rescarch topic, practitioners, who could enter
now theorctical details, etc. This book has a very
altractive style, that makes it intcresting for all
mentioned readership.

The book is divided into seven chapters that
crcate quite a vast panorama of the rescarch
domain.

In the introduction the importance of

polymorphic systems is explained; it lies in the

Studies in Informatics and Control, Vol.4, No.2, June 1995

fact that such systems allow to re-use the same
piece of code at different types. For example, in
Pascal programming language the type system is
strong and explicit; that is, the programmer has
to explicitly declare, before using it, the type of
each identifier, and once declared an identifier,
say, of real type, it must contain a value of this
particular type, during cxccution; it is not
possible for it to contain a valuc of some other
type. Functional and logical languages, being
more concerned with what a program is
supposed to do, were gradually endowed with
theoretical acquisitions that permitted them to
surpass rigid schemes, as those mentioned for
Pascal programs.

Concepts such as types, strong, weak, implicit
and explicit typing, monomorphic and
polymorphic type systems, static and dynamic
type checking, how to dcal with the issue of
program partial and total correctness, equality
(isomorphism) of types are both intuitively and
formally explained.

The typed calculi used in this book are given in
Natural Deduction style formalism, which makes
it cvident the connection between typed A-
calculus and proofs in Intuitionistic Logic. The
most complex calculus introduced in this book is
the second-order A-calculus with pairs and unit
type; it is presented by describing types, terms
and cqualiiy as follows:

] Types arc defined by grammar:

Tyvpe == At| Var | Tyvpe — Type
| Tvpe x Tyvpe | ¥ X. Type

199

where At are countably many atomic types
including a distinguished constant type T and
Var are countably many type variables. Usually
— is referred as the arrow type, and x as the

product type.

m] Terms (M: A means "M is a term of
type A")

. the set of terms contains a countable sct

X, ¥, ... of term variables for each type and a
constant *:T

° terms are constructed from variables
and constants via the following rules (where T
ranges over environments):

I'x:A|-M:B

(lambda abstr.)
r-xM:A->B

I'-M:A-B I'|-N:A

(applic.)
r-MN):B

T|-M:A N:B

(pairing)
I'l-aM,N>:AxB

I'-M:AxB I'-M:AxB

'-ppM:A I'l-ppM: B

{projections)

T-M:A

(univ. abstr.)
I'[-xXM: VXA
T'-M:VX.A (univ. applic.)

for any type B.

I'|l-M [B] : A[B/X]

Pairing and projections are ncw term formation
rules.

e Equality

(B) (x.M)N = M[N/x]

(M) Ax.Mx =M if x not free in M
(M) p; <M1, My>=M;
(SP)<p|M, ppM>=M

(top) M==ifM: T

200

(%) (Ax.M)[A] = M[A/X]
(n2) Ax.M[X] =M, X not free in M.

Equality is generated by B, n, n, SP, top, Bz
and nz.

Instcad of a reduction rule, the calculi
introduced in this book yield equalities between
terms, a fact that provides a more abstract and
general view.

The second Chapter puts forward some results
concerning confluence and normalization as
general properties for reduction. A reduction
system is given by mcans of reduction rules. In
general, two views of a calculus are considered
within the reduction strategy of a programming
language:

® an operational view, where terms are reduced
in order to get their values, whatever they are
dcfincd to be;

m a logical view, where the associated equality of
terms is of interest, that is, the conditions when
two terms arc equal are sought for, irrespective
of these two terms meanings.

Confluence says that any two reduction
scquences, starting from the same term, have a
common rcduct, that is, they can be prolonged in
a way that allows to rcach the same term.

Normalization treats the possibility of reaching a
normal form in a finite number of steps.

A basic theory of reduction for the typed calculi
that form the basis of the study of isomorphic
types in A-calculus, is developed. A confluent
notion of reduction is provided, that permits the
work on terms in normal form, being aware of
the fact that such a normal form is unique.

The third Chapter provides two proofs of
strong normalization for thcorems introduced in
the second Chapler.

The fourth Chapter characterizes the
isomorphisms which hold in all models of first-
order X-calculus with pairs and unit type i.e. the
tvped A-calculus with surjective pairing and

Studies in Informatics and Control, Vol.4, No.2, June 1995

"terminal object". It is also proved that it is
decidable whether two types, built from type
variables, are isomorphic in all the modcls of
this calculus (which are, in fact, the Cartesian
Closed Categories - ccc).

In fact, this chapter and the fifth Chapter
provide a finite, complete and decidable
axiomatization of the types isomorphic in every
model of all interesting subsysters (first- and
second-order) of A-calculus with pairs and unit
type, by means of purely syntactical proof
theoretic methods is provided. The first -order
case could easily be handled due to the reduced
interaction between types and terms that
characterizes the monomorphic systems. Within
the second-order case, the difficultics posed by
polymorphic types had to be overcome.

The fifth Chapter is dedicated to the proof of
completeness of the theory of isomorphisms for
isomorphisms in the second-order A-calculus
with unit type. This represents by far the most
complex proof in the book, because in the
second-order case the problem of invertibility of
terms has to be faced The main idcas
underlying this proof are:

0 Consider a restriction of the class of
isomorphisms to isomorphisms of a particular
form and a special class of invertible terms, for
which a syntactic characterization is given:

] Two relevant classes of types are
identificd, types not containing products, or
terminal objects in the category, which are called
simple types, and products of simple types,
which are called regular types. It is proven that
the theory of isomorphisms for isomorphisms in
sccond-order A-calculus with unit type is
complete for isomorphisms of types if and only if
it is complete for isomorphisms between regular
types. That means, a reduction to a subclass of
types is obtained.

L] Any isomorphism between regular (ypes
can be proved by invertible terms, whose [rec
variables have simple types, called canonicul
invertible terms, thus obtaining a reduction to a
subclass of terms.

Studies in Informatics and Control, Vol .4, No.2, June 1995

® The problem of completeness of the
theory of isomorphisms for isomorphisms in the
sccond-order A-calculus with unit type is
reduced to the problem of completencss of
isomorphisms between regular types proven by
canonical invertible terms.

9 Characterize canonical bijections of second-

order A-calculus with pairs and unit type under
invertible terms of the second order A-calculus,
which benefits from a syntactic characterization
in the litcrature.

9 Show that the theory of isomorphisms for
isomorphisms in the sccond-order A-calculus
with unit type is complete for the definable
isomorphisms showing that the theory of
isomorphisms for isomorphisms in the second-
order A-calculus with unit type is complcte for
isomorphisms between regular types.

An immediate consequence of the main theorem
in this chapter is that, given the two types, it is
decidable whether they are isomorphic in all
models of sccond-order A-calculus with pairs
and unit type.

These results lay the necessary theoretical basis
to the devclopment of both library search tools
based on the type as specification paradigm and
extensions of the usual type-checking algorithms
for strongly typed functional languages.

The sixth Chapter provides a first formal
foundation for the theory of isomorphisms of
types regarding type-assignment calculi, similar
to Milner's ML. An adcquate new notion of
isomorphism is introduced, which allows the
design of a scarch algorithm. This algorithm is
more cficient than the previously proposed
ores.

These results have led to a complete practical
implementation of a library scarch system for
both the CAML and CamlLight functiona!
languages bascd on cquality of types modulo
isomorphisms. The algerithm is fully described
for the casc of the CAML system, but it lends to
re-writing for other dialects of ML or diflerent
functional languages. On the other side, the new

201

notion of isomorphism suggests its scope as far
as the traditional ML type inference algorithm.

The seventh Chapter is dedicaled 1o a
comprehensive definition of the advanced work
related to the isomorphism of types. Some hints
at possible future applications , not yct focusscd
on, are also made.

202

Suggestive program cxamples are given in all
chapters of the book. An extensive bibliography,
a citation index and a subject index, and
extremely suggestive and original — drawings,
that introduce cach chapter, rourd up the book.

Heana Valentina Rabega

Studies in Informatics and Control, Vol 4. No.2. June 1995

