Object Oriented Approach to Software
Engineering for CIMIA

Florin-Gheorghe Filip and Gabricl Neagu
Research Institute for Informatics

8-10 Averescu Avenue,

71316 Bucharest

ROMANIA

Dr Florin-Gheorghe Filip graduated in Control Engincering
and took his Dr Engng. Sc. degree from the Polytechnical
Institute of Bucharest in 1970 and 1981, respectively. In
December 1991, Dr Filip was elected as a corresponding
member of the Romanian Academy. He is a member of the IT
Section of the Romanian Academy.

Since May 1991 Dr Filip has been the general director of the
Rescarch Institute for Informatics. In November 1991 he was
elected as a vice-president of the Romanian Society for
Automation and Technical Informatics-SRAIT.

Dr Filip is the author/co-author of some hundred technical
papers published in contribution books and intemational
scientific journals such as: IFAC J. Automatica, Large Scale
Systems, Computers in Industry, Modelling and Simulation,
Systems Analysis, ete. He is co-author of two
books:*“Cybemnetics, Automation and Informatics in the
Chemical Industry” (1979), and “Hicrarchical Real-Time
Systems™ (1986) . Dr Filip was session chairman and/or [PC
member at several international scientific conferences such as
'CEE Intemational Conference on Systems, Man and
Cybemetics (1988), Systems Analysis and Simulation (198%8),
[FAC/ IFORS Symposium on Large Scale Systems(1992), ctc.
He was invited to deliver lectures and participate in conferences
in China, Czech Republic, England, France, Germany, Kuwait,
Poland and Sweden. He is the editor-in-chief of the * Studies in
Informatics and Control” Journal, Dr Filip’ s main current
scientific interests include hicrarchical oplimization and control
of large scale systems, decision support systems, integrated plant
control in the process industries and discrete pant
manufacturing and information systems i public
administration.

Gabriel Neagu was born in Bucharest in 1949, In 1973 he
received his MSc. in Control Engineering from the Energetic
Institute of Moscow, and joined the Rescarch Institute for
Informatics in Bucharest. His major Research and Development
activities have been related to complex information systems for
steel works and aluminium plants, pipe factorics, electronic
industries, real-time discrete production control systems at the
shopfloor level, MIS at micro and macrocconomic level. He is
author/ co-author of more than 20 papers, mainly dedicated 1o
industrial information systems design. Currently, he is senior
researcher at the Rescarch Institute for Informatics. He is
working towards obtaining a doctoral degree in - applied
informatics. His rescarch interests include knowledge-based
production control systems, modelling and qualitative simulation
of discrete processes, decision support systems, societal
informatization, advanced informatic systems engineering.

Studies in Informatics and Control, Vol. 4, No. L. March 1995

1. Introduction

The object-oricnted approach (OOA) is one of the
most actively addressed topics in today software
engincering. The main advantages of this
approach include structuring capabilities, unity of
the communication mechanism between modules,
diminution of code redundancy, clear
delimitation of programmers' tasks, increasing
reusability of previously gencrated code.

For system analysis and design activities the
major benefit of OOA consists in the natural
matching between reality and model. Abstraction
power. structuring flexibility, interaction
expressiveness, robustness of OO design with
respect to the requirement changes, are but some
most attractive OOA fcatures for these activities.
Seven prime motivations and benefits of the 00
analysis arc identified in [C&Y91a]: tackle more
challenging problem domains. improve analyst
and problem domain expert interaction. increase
the intcrnal consistency of analysis results,
explicitly represent commonality, build
specifications resilient to change, rcuse analysis
results, provide a consistent underlying
representation.

There are reported a lot of altempts at and some
significant results in using OOA to treat the
speeificity and complexity of the Computer
Integrated Manufacturing and Intelligent
Automation (CIMIA) ficld. The paper aims at
providing a gencral view on O0OA subject and its
utilization in CIM ecnvironment. As far as a
specific application domain is concerned, the
cmphasis is put on the QO analysis and design
mcthods (OOADM). Section 2 presents the basic

47

concepts of OOA, and also the evolution of the
major OO information technology segments: pro-
gramming language, databases, OOADM. A
short characterization of the specificity of the 00
life-cycle is also provided. Section 3 is devoted to
a short presentation of the most representative
purely general-purpose OOADM. The intention
is twofold; to give an image of the extent to
which these methods cover system development
requirements in the CIMIA field, and to suggest
the necessity for further efforts towards a unified
approach of the development process structure
and the semantics of representations. Major
orientations in specific OOADM development for
CIM environment are outlined in Section 4.
Some conclusions and proposals for prospective
efforts in this field are formulated in the final
section.

2. Object Oriented Approach
2.1 Basic Concepts

Every object encapsulates a state (a set of values
for its attributes) and a behaviour (a set of
methods that operate on its state).

All objects that share the same set of attributes
and methods are gathered as a class, such that an
object belongs to only one class as an instance of
that class. Class is a generic concept, a model
of an object. Further, a class may be considered
as an object and then its model is a metaclass.

All classes are organized as a rooted, directed
acyclic graph or as a hierarchy (called class
hierarchy). A class inherits all the attributes and
methods from its direct and indirect ancestors in
the class hierarchy. Scmantically, a class is a
specialization (subclass) of the class(es) which it
inherits attributes and methods from; the same
class is a generalization (superclass) of the
classes that inherit attributes and methods from
it. The class hicrarchy must be dynamically
extensible, i.e. a new subclass can be derived
from one or more existing classes. The case when
the superclasses of a class are not interconnected
in the class hierarchy, corresponds to the multiple
inheritance.

The domain of an attribute of a class may be any
class. This leads to a dirccted graph of classes

48

called aggregation hierarchy, which may be
cyclic: the value of an attribute of an object is
also an object, there resulting a composile
object.

The state and behaviour encapsulated in an object
may be accessed or invoked from outside the
object only through explicit message passing.
Further, a message sent 10 an instance of a class
may be bound to a method defined in a superclass
of the class. The object interface is defined by the
set of messages meaningful for that object.
According to the polymorphism concept, different
objects may react different ways to the same
message, thus allowing the simplification of the
interface between objects.

2.2 00 Information Technology Development

Programming Languages. Perhaps every history
about OO language (OOL) should start with
Simula language [D&N66], which introduced the
term of encapsulation and the concept of virtual
machine with data and operations working
together. After that the next significant step was
represented by Smalltalk language, considered to
be the first OOL [G&R83]. Later, by mid'80ies
many other OOLs ecmerged, asking for a lot of
attention and cfforts to compare and systematize
them. In [Tcl89] OOLs are classified into: (a)
exclusive (pure) OOL, build around the concept
of object (like Smalltalk), and (b) hybrid OOL as,
for example, the extensions of conventional
programming languages (Flavors [Moo86],
CLOS. Object Lisp - for Lisp, C++ [Str87],
Objective C [Cox86] - for C, Pascal-Object
[Int89] - for Pascal). Based on the distinction
between the concepts of class and instance, [Arn]
proposes 3 groups of OOL, respectively based on:
(a) objects belonging to classes (the most
representative group including both exclusive
and hybrid OOL mentioned above), (D)
generalized objects. where class and instance are
less exclusive (for example knowledge
representation languages like KEE, with a unique
basic structure for all objects), and (c) active
objects (actors). with a highly dynamic evolution
and behavioural autonomy.

Different criteria to define a true OOL and to
discourage unrcasonable allempts at penetrating

Studies in Informatics and Control, Vol. 4. No. 1, March 1995

this area have also been proposed. Thus, Meyer
[Mey88] formulates 7 successive levels of object
orientation which should be implemented by an
OOL: object-based modular structure, data
abstraction, automated memory management,
classes (as a combination of module and type),
inheritance, polymorphism, and multiple
inheritance. Also [Arn90] defines three
properties common to all OOLs: use of object
structure; share the object knowledge by either
inheriting its information or using the object in
different procedures, and provide the object with
the message mechanism for communication with
its environment.

Databases. The field of OODBS has started to
spread out significantly by mid'80ies. In [Kim91]
there are identified two major reasons why using
the OO paradigm as a basis for a new generation
of database technology: (1) a data model that
subsumes the data models of conventional
database systems can be constructed using this
paradigm, and (2) the notions of encapsulation
and 1inheritance (reuse) impair the difficulty of
developing and evolving complex software
systems. It should be reminded that the same goal
of overcoming the difficulties has driven data
management technology from file systems to
relational database systems during the past three
decades.

According to [C&F92], an OODBS integrates
features from relational databases (storage
management methods such as persistence,
transaction, concurrency, recovery, querying,
versioning, integrity, security), from semantic
data model (aggregation, generalization, and
specialization associations), and from OO
programming (polymorphism, classes, methods,
encapsulation, reusability and extensibility).

Relevant results in the field appeared at the
beginning of the 90ies: Gemstone [BOS91],
Ontos [HAD90], Orion [Ki&90], 02 [De&91].

Some weaknesses of OODBS are formulated in
[Kim91]: commercial offerings suffer in varying
degrees in performance and/or functionality, the
richness of an OO data model also implies extra
difficulties in implementing an OODBS that will
render high performance, the lack of an industry-

Studies in Informatics and Control, Vol. 4, No. 1, March 1995

wide consensus on the semantics of the OO
paradigm beyond a set of high-level 0O
concepts.

Analysis and Design Methods. The major
advantage of OOA for system analysis and design
activities is the natural matching between the
reality and the model. That explains the interest
of this approach in simulation, where Simula has
been considered as a precursor of Smalltalk.
Abstraction power, structuring flexibility,
interaction expressivity are but some most
attractive OOA features for these activities.

The Booch's paper [Boo86] published in 1986, is
considered to be one of the first sound bases in
this field. Starting with the end of the 80ies a lot
of attempts at developing analysis, modelling and
design methods, were reported. Some of the
most representative ones will be described in
more dctail in the next section in order to
emphasize the importance of this OO0 IT
component. Now some general remarks on this
topic are made in the sequel.

First, the favourable factor of a demanding
context seems to have played an important role as
to increasing the interest in this field. Thus, one
source of the software crisis that characterized
the first half of the '80ies was the lack of
requirement analysis methods adapted to the
software engineering approaches. The OOA was
identified as one of the most promising solutions
in filling ‘this gap. Also, in the midS8Oies, the
protolyping approach started to play an
increasing role in software engincering as a
solution for an efficient support of the end-user's
involvement in early phases of the life cycle
[Flo84]. OOA is considered to be very suitable
for this goal due the natural way of
communication between end-user and
development team that it hosts.

Second, the IT community are ever more aware
of the potential of these methods, as emphasized
by different comparative analyses in this field.
Coad and Yourdon provide such a comparison
[C&Y91], which includes functional
decomposition, data flow, information modelling
and OO approaches. The comparison is guided
by the so-called principles of managing

49

complexity: abstraction, encapsulation, inheri-
tance, association, communication with
messages, categories of behaviour.

Third, as a consequence of the increasing
importance attached to requirements definition
phase, the emphasis in OO methods development
is put on the analysis methods.

According 1o [Br&91] there are 3 major
orientations in this area: (a) methods based on
entity-relationship model, where the key problem
consists in finding out the solution capable of
treating the relation as class; (b) methods based
on operational approach working with structural
view (objects, structures, relations) and
behavioural view (states, events, methods,
messages) of the system; and (c) methods based
on the declarative approach, treating the system
as a collection of interrelated objects.

Another significant trend in this field aims at
reconciling structured analysis, based on the data
flow, with OO approach. An example is given in
[War89], where the data flow derived from the
functional decomposition is replaced by the
"stimulus-answer" type analysis.

2.3 O0A Life Cycle

The modelling power and expressivity of the
object oriented paradigm encourage prototyping
techniques. This leads to an incremental model
of system development life cycle, with its well-
known advantages: useful and meaningful
feedback to the user, major system interfaces
tested first and most often, a smooth transition
between system versions, overlapping analysis,
design and development phases to provide early
results. The life cycle for OO design proposed in
|Boo91] includes the following phases: analysis,
design, evolution and modification. The author is
utterly critical to separating the activities of
analysis and design, the proposed strategy being
"analyze a little, design a little". The evolution
phase combines traditional coding, testing and
integration aspects. Prototyping is strongly
encouraged in this phase as well. Adding a new
class, changing the implementation of a class, re-
organizing the class structure, changing the
interface of a class, are types of evolutionary

50

changes. The modification phase consists in
adding new functionality or in modifying some
existing behaviour.

As a general remark, in such incremental type
life cycle the mainstream of the system
development process has further a downward
orientation, even if there are significant upward
feedback links between phases. In our opinion,
the efforts in the life cycle model development for
OOA should be directed towards the idea of
reusability, which is a key advantage of the
object-oriented paradigm.

As far as a concrete application domain, like
CIMIA, is concerned, besides the foreground
process of the incremental development of a new
application, an upward, background process of
cumulative development of the domain class
hierarchy design and implementation have to be
considered. The final goal of the background
process should be a computer-implemented
reference model. A two-phase computer-aided
development process of a new application will
then be available: (1) a specialization phase
standing for the requirement definition as a
subset of existing reference models, (2) an
instantiation phase of implementation, based on
concrete values for system attributes and
methods.

This perspective addresses in fact a new
significant stage in the development of today
generic modelling approach to CIM
environment [F&N9I3].

3. General -Purpose OOADM

3.1 Object Oricnted Analysis and Design
(OOAD) [C&YI1a, b]

The strong point of the method is the analysis
phase, which establishes a continuum of
representation for systematically expanding its
results onto a specific design.

The analysis process is structured in five layers
(subject, class & object, structure, attribute and
service) and in five corresponding activities:

a. Finding class & objects: during this activity
structures, devices. things and events, roles
played, operational procedures, sites, and

Studies in Informatics and Control, Vol. 4, No. 1, March 1995

organizational units are analysed. The following
criteria should be met: needed remembrance,
needed behaviour, (usually) multiple attributes,
(usually) more than one object in a class, always
applicable attributes and not merely derived
results.

b. Identifying structures: generalization-
specialization structure and whole-part structure
with relevance to the given application domain,
are defined.

c. Identifying subjects, as a basis for the structure
definition of the future system model. Principles
of minimal interdependence between class
structures and of minimal interrelation (message
transfer) between objects belonging to different
subjects ,are considered.

d. Defining attributes. Relevant information
about the object features and states in the context
of system's responsibilities, is analysed. Identified
attributes should be placed as high as possible in
the generalization-specialization structure.
Instance connections, i.e. links between objects
required to fulfill their responsibilities, are also
defined.

e. Defining services. Simple (implicit) and
complex services are identified as a support for
the specific behaviour which an object is
responsible for exhibiting. This activity also
includes the identification of the message
connections between objects in order to model
their processing dependency.

The design process consists in improving OOA
results for designing the problem domain
components, and designing human interaction,
task management and data management
components.

The method underlines the importance of CASE
tools for both the analysis and design processes,
as a support for prototype development.

3.2 Object Modelling Technique
(OMT) [Ru&91]

OMT is a modelling and design method for
software development, based on modelling
objects from the real world and using the model
to build an OO language - independent design.

Studies in Informatics and Control, Vol. 4, No. 1, March 1995

The software development life cycle is structured
in analysis, system design and object design. The
method also describes ths target environments,
including OO languages, non OO languages, and
relational databases.

The major concerns of the analysis phase are
object modelling, dynamic modelling and
functional modelling. The object mode! describes
the structure of the objects in a system - their
identity, their relationship to other objects,
attributes and operations (methods). The goal in
object modelling is to capture those concepts in
the real world that are important for the
application. The object model provides the
essential framework within which the dynamic
and functional models can be placed. The
dynamic model is the event model of the system,
describing aspects of the system concerned with
time and sequencing of operations. The dynamic
model captures control aspects and is graphically
represented by state diagrams. The functional
model describes what the system does, but not
how it does . The model is represented by data
flow diagrams.

The operations in the object model correspond to
evenls in dynamic model and functions in
functional modecl. Functions are invoked by
operations in the object model and actions in the
dynamic model. They operate on data values
specified by the object model.

During the system design phase, the target
system is organized into subsystems based on
both the analysis technique and the proposed
overall architecture. The system designer must
decide on what performance characteristics to
optimize, choose a strategy of attacking the
problem and make tentative resource allocation.

In the object design phase details are added to
the design model in accordance with the strategy
established during system design, with emphasis
on data structures and algorithms needed to
implement each class. Computer-domain objects
are included in the model. They are described
using the same object-oriented concepts and
notation as application-domain objects do, even
though they exist at different conceptual levels,

In the implementation phase the object classes
and relationships developed during object design

5i

are finally translated into a particular
programming language, database or hardware
implementation. The target language influences
on design decisions should be minor.

3.3 Object Oriented Development
(OOD) [Boo91]

The OOD method is dedicated to complex
systems development based on the object model.
OOD operates with 5 types of diagrams as a
support for the design process:

(1) Class diagrams: classes and their relationship
in the logical design of a system. Depending on
its complexity, a system requires one or more
such diagrams to document its class structure.

(2) State transition diagrams: dynamic behaviour
associated with certain classes through the state
space definition, events that cause a transition
from one state to another, actions resulting from
a state change.

(3) Object diagrams: the existence of objects
(object visibility) and their relationship (message
synchronization) in the logical design of a
system. They capture the dynamic semantics of
the object operations. Each object in an object
diagram denotes some (specific or arbitrary)
instance of a class in the class diagram.

(4) Timing diagrams. the dynamics of message
passing in an object diagram. They provide
additional information to the static image of
cooperative collection of objects passing
messages to one another provided by the object
diagrams. Also state transition diagrams only
show how state changes occur within a single
object, not within a set of collaborating objects.

(5) Module diagrams: the allocation of classes
and objects to modules in the physical design of
a system. A single module diagram represents
full or part module architecture of a system.

(6) Process diagrams: allocation of processes to
processors in the physical design of a complex
system designed for a distributed multiprocessor
architecture.

The OO design process is considered to be an
incremental process which gencrally tracks the
following order of events:

52

a. Identify classes and objects of a given level
of abstraction: discover the key abstractions
in the problem space (the significant classes
and objects) and invent the important
mechanisms that provide the behaviour
required by objects working together to
carry out some functions.

b. Identify the semantics of classes and objects:
establish the meaning of classes and objects
from the perspective of their interface in
order to identify things that can be done on
each instance of a class and that each object
can do to another object. This phase is
considered to be much more difficult than
the first one.

c. Identify relationships among classes and
objects: define the static and dynamic
semantics of cach interaction mechanism in
order to ensure the required object visibility.

At this point in design focus is still entirely on
the outside view of the key abstraction and
mechanisms.

d. Implement classes and objects: make design
decisions on the representation of classes
and objects, and allocate classes and objects
to modules (and programs to processors).

4. Specific OOADM for CIM
Environment

The support for the OOA implementation in CIM
environment is given by both gencral -purpose
and specifically developed OOADM.

In [Ba&93], an OMT model for system dynamic
representation is described. The system model is
organised in topological, operational and
graphical sub-modcls, describing how the
components are interconnected, the function of
each component and the graphical representation
of each component. respectively.

As to specific development methods, it should be
noted that they are usually not so rigorous in
satisfying the OOA requirements. It means that
the analysis phase is mainly based on traditional
methods (functional dccomposition, structural
analysis). This comes from the efforts of
converling the existing expericnce in using the

Studies in Informatics and Control, Vol. 4, No. 1, March 1995

traditional methods to this new paradigm. From
this point of view specific methods may be
considered more pragmatic in this period, by
smoothing the process of conscious transition
towards a new development framework.
Obviously this class of methods corresponds to
the trend of reconciliation mentioned at Section 2
in the context of OOADM taxonomy definition.

HOOD (Hierarchical Object Oriented Design)
method [HOO89] is destinated to the
development of complex real-time software
systems and has been developed for the European
Space Agency.

Each object is defined by its static properties
(object body, required interface, offered interface)
and dynamic properties (sequential or parallel
regime for the required operation execution).
There are defined two types of objects: passive
objects (offering operations running in sequential
regime) and active objects (with their own
internal control structure for operation required
by other different objects and running in parallel
regime). The objects are related through two
kinds of connections: utilisation (an object uses
the operations with other objects) and integration
(an object integrates in its structure other
objects). Concerning the development life cycle,
HOOD method is used for the architectural and
detailed design phases.

The requirement analysis phase is supposed to be
carried out with other both traditional (SADT)
and object oriented (OOAD, OOSA) methods. At
the output, like other QO methods, HOOD
provides language-independent specifications,
which may be codes in ADA, Pascal, C, OOLs.

A development of HOOD method is presented in
[P&R93]: the HOOD/PNO method uses Petri
nets to describe the behaviour of active objects.

Another example is provided in [KKC93], where
the OOMIS (Object Oriented modelling
methodology for Manufacturing Information
Systems) is presented. In the analysis phase,
manufacturing functions are decomposed into
component functions using functional diagrams
similar to IDEFO. Data flow among functions
and also their infrastructure, are defined. Then,
functional diagrams are transformed into
function, data and operation tables. In the design

Studies in Informatics and Control, Vol. 4, No. 1, March 1995

phase, these tables are translated into an object-
oriented information model including the class
dictionary (function classes and entity classes)
and the class relationship diagrams
(generalization, aggregation, and interaction).

There are two other orientations in specific
OOADM development. The first one deals with
the release of OO versions for former developed
methods. An example is the M* - OBJECT
methodology [DGV], aiming at providing
engineers with methods and tools for information
system analysis and design as well as the
development of database applications in
production and CIM environments. It is the OO
extension of the A/* methodology based on an
extended version of the entity-relationship
approach.

This orientation is entitled for the case of
general-purpose methods . The Object- Oriented
System Analysis [S&M88] is considered as a
structured analysis method converted to the OO
way of thinking.

The second orientation is less important in the
context of this analysis. It includes traditional
methods using OO terminology for better
formalization of modelling requirements
(IN&G94], [Ina93]).

In the OO, analysis and experience coming from
the utilisation of OODBS are regarded, and an
example is given in [C&F92], where the Orion
system is used to develop a BOM system.

In our institute, the OOA is used in the area of
DSS for both process and manufacturing
industries. Making use of OO concepts, a
multilevel modelling scheme, including an
external model (EM), a mathematical
formulation (MF), and an internal (performance)
representation (IR), has been developed for the
process industry [Fil93]. The OO view of the
scheduling problem is presented in Figure 1.

In manufacturing industry, the (MC-D)S project
aims at providing solutions for Decision Support
problems (scheduling, real -time allocation,and
monitoring) in Manufacturing shop Control
Systems. The project is being developed
according to the generic prototyping approach

53

(GPA) [Nea93]. The major product of the
requirement definition phase is the 00
conceptual model of the system including the
structural model (Figure 2), the control
(behavioural) model, and the user-interface
model. The domain specific decisional resources
are identified too. For the design specification
phase, the system structure is defined using the
GPA hierarchical framework architecture, with
resource, services and option levels. Then the
detailed OO specifications are developed and
verified through the mechanism of particular
prototypes implementation. The generic
prototype has gradually been developed by the
integration of adopted particular prototypes. The
generic prototype for the flow shop model has
lately been developed.

5. Conclusions

The attention paid to OOA implementation in the
field of CIMIA is 1o be remarked. Its attractivity
is mainly motivated by the modelling power of
object oriented paradigm, which is generated by
both the direct correspondence of the modelling
concepts with the real world and the unity of
these concepts through the entire development
life cycle. This is the reason why most of the
efforts and results are reported in the area of
system analysis and design.

The development strategy is based on either
general-purpose or specific methods. The former
ones, beyond their practical use, are also a good
support to familiarizing system developers with
the specificity of this approach. The latter oncs
scem to be more pragmatical as trying to
reconcile the OOA requirements with their
authors' former experience. Using the structured
analysis as a front-end to the OO design is but
one significant example in this respect. Some of
the specific methods claiming the object
orientation, are in fact traditionally shaped, but

54

using OOA terminology. As the case was with
OO0 programming languages, clear criteria
should be formulated to discriminate real OOAD
methods. More attention and efforts should be
devoted to compatibilise and standardise the
development process structure and graphical
notations of today methods. In this respect the
large experience in 0O software development
stimulated by OO technological support available
on the market (OODBS, 00 programming
environments) has to be considered as well.

All analysis and design methods are unanimous
in emphasizing the role of prototyping approach.
This results in an incremental type life cycle for
the system development Pprocess. The major
beneficial aspect is again the uniqueness of
modelling concepls. This ensures the
compatibility of prototypes developed in different
phases of the life cycle and encapsulates the
system image with different levels of resolution.
The effective exploitation of this advantage
requires the development of powerful prototyping
tools.

There is another reason why claiming for such
support: the reusability of former solutions and
results. Although it is one of the hit ideas of OO
paradigm, the reusability has not been openly
addressed until now. With respect to a given
application domain, this aspect becomes crucial.
Here the OO prototype should evolve gradually
towards an implcmentation-independent generic
model for the given domain. Such a prototype,
together with a set of compatible class libraries,
developed for different computing platforms and
configurations, could be viewed as one of the
most reasonable goals of the endeavours to fully
utilise the OOA capabilitics in domain-oriented

software engineering.

Studies in Informatics and Control, Vol. 4, No. 1, March 1995

Bource

is connected

TmQ

Plant Aesinatins
fmay run
Exteraal
Plant Factors(EF)
Basic C/R
Regime
Plant Farecast
Past Evolution Stoct
Evolution of EF Level
Plant
; EF Tank
Opgatmn Flow Forx
Schedule Evolution
1 S
¢
Plant
eration T;ném
iy :
L e ariant
7 Proﬂuctinn Stock T
ate
Schedsle Schedule
Plaat Stock
Flow
Schedule
v
Production

Plan

Figure 1. An Object Oriented View of the Scheduling Problem

Studies in Informatics and Control, Vol. 4, No. 1, March 1995

55

_ PartFam _

!
.B’. 1
- l =

1.m i,m

Machine

1.m

K

mmtert |

1- NS Configuration 2 . MS Profile 3- MS Progranme

Figure 2. The Object Oriented Model of a Manufacturing Shop

Studies in Informatics and Control, Vol. 4, No. 1, March 1995

56

REFERENCES

[Am90] ARNOUX, M, Programmation
orientée objet et systémes multi-agents:
application en robotique et productique,
Ph. D. Thesis, University of Nice and
Sophia-Antipolis, 1990.

[Ba&93] BARKER, HA., HARVEY, LT.,
GRANT, P.W. and JOBLING, C.P., Object-
Oriented Data Representation for
Computer Aided Control Engincering,
Preprints, IFAC 12th World Congress, Vol,
3, Sydney, 1993, pp. 281-284.

[Boo91] BOOCH, G., Object-Oriented Design
with Applications, BENJAMIN/
CUMMINGS, Redwood, 1991.

[Boo86] BOOCH, G., Object-Oriented Deve-
lopment, IEEE TRANS. ON SOFTWARE
ENGINEERING, Vol. 12, No. 2, 1986. pp.
211-221.

[Br&91] BRUNET, J., GROSZ, G., ROLLAND,
C., SCHMITT, J.R. and SOUVENET, C..
Information System Development: A
Survey, MASI Report 91.38, Inst. B. Pascal.
Paris, 1991.

[BOS91] BUTTERWORTH, P., OTIS, A. and
STEIN, J., The Gemstone Object Database
Management System, COMMUNIC-
ATIONS OF THE ACM, Vol. 54, No. 10,
1991, pp. 64-77.

[C&F92] CHUNG, Y. and FISCHER. G.W. .
Illustration of Objcct-Oriented Databases
for the Structure of A Bill of Matcrials,
COMPUTERS IN INDUSTRY, Vol. 19,
1992, pp. 257-270.

[C&Y9la] COAD, P.E. and YOURDON, E. :
Object-Oriented Analysis, YOURDON
PRESS, Englewood Cliffs, NJ, 1991.

[C&Y91b] COAD, PE. and YOURDON, E.,
Object-Oriented Design, YOURDON
PRESS, Englewood Cliffs, NJ, 1991

[Cox86] COX, B.J, Object-Oriented Program-
ming: An Evolutionary Approach,
ADDISON-WESLEY, Reading, MA. 1986.

Studies in Informatics and Control, Vol. 4, No. 1, March 1995

[D&N66] DAHL, 0O.J. and NYGAARD, K,
SIMULA-An ALGOL-Based Simulation
Language, COMMUNICATIONS OF THE
ACM, Vol. 9. No. 9, 1966, pp. 671-678.

[De&91] DENK. O. et al. The 02 System,
COMMUNICATIONS OF THE ACM, Vol.
34, No. 10, 1991, pp. 34-48.

[DGV93] DILEVA, A., GIOLITO. P. and
VERNADAT, F., The M* - Object
Methodology for Information System
Design in CIM Environment: the
Organisation Analysis Phase, Research
Report No. 1918, INRIA., Rocquencourt,
1993,

[D&V87] DILEVA. A. and VERNADAT. F,
Information System Analysis and
Conceptual Database Design in Production
Environments with M*, COMPUTERS IN
INDUSTRY, Vol. 9, 1987, pp.193-217.

[Fil93] FILIP, F.G., An Object-Oricnted
Multilayer Model for Scheduling, in 4.
Verbrack, E.J. KerckholTs (Eds.) Proceedings
of European Simulation Symposium, Delft,
1993, pp. 173-180.

[F&N93] FILIP, F.G. and NEAGU. G.. CIM in
Continuous and Discrete Manufacturing,
CONTROL ENGINEERING PRACTICE,
Vol. 1. No. 5. 1993, pp. 815-825.

[Flo84] FLOYD. C. . A Systematic Look At
Prototyping. in R. Budde, K. Kuhlenkamp,
L. Mathiassen, H. Zullighoven (Eds.)
Approaches 1o Prototyping, SPRINGER-
VERLAG. Berlin, 1984,

|G&R83] GOLDBERG., A. and ROBSON. D ,
Smalltalk-80; The Language and Its
Implementation, ADDISON-WESLEY,
Reading. MA. 1983,

[HAD90] HARRIS, C.. ANDREWS. T. and
DUHL, J., The Ontos Object Database
Technical Report, Ontologic Inc.,
Burlington, MA, 1990.

[HOO89] HOOD User Manual. E.S.A., Version
3.0, Scptember 1989, Ref. WME/89-353]B.

57

[Ina93] INAMOTO, A. , A Study on Object-
Oriented System Design of Factory
Automation Systems, Preprints of IFAC
12th World Congress, Vol. 4, Sydney, 1993,
pp. 4-12.

[Int89] INTERSIMONE, D., Turbo Pascal S.5,
Design Goals and Language
Implementation, Proc. of TOOLS'89 Conf.,
Paris, 1989, pp. 283-294.

[Kim91] KIM, W. , Object-Oriented Database
Systems: Strengths and Weaknesses,
JOOP, July/August 1991.

[Ki&90] KIM, W., GARZA, J.F., BALLOU, N.
and WOELK, D., Architecture of the
ORION Next Generation Database
System, IEEE TRANS. KNOWLEDGE
DATA ENG., Vol. 2, No. 1, 1990, pp. 109-
124.

[KKC93] KIM, C., KIM, K. and CHOIL I, An
Object-Oriented Information Modelling
Mecthodology for Manufacturing
Information Systems, COMPUTERS AND
INDUSTRIAL ENGINEERING, Vol. 24,
No. 3, 1993, pp. 337-353.

[Mcy88] MEYER, B., Object-Oriented
Software Construction, PRENTICE-HALL,
1988.

[Moc92] MOCHEL, T., Simulation of Discrete
Systems with An Object -Oricnted
Concept, in A. Sydow (Ed.) Computational
System Analysis, Proc. of 4th Int
Symposium on Systems Analysis and
Simulation, ELSEVIER, Berlin, 1992, pp.
611-616.

[Moo86] MOON, D.A, Object-Oriented
Programming with Flavours, Proc. of
OOPSALA Conf., Special Issue of SIGPLAN
Notices, Vol. 21, No.11, ACM, New York,
1986, pp. 1-8.

58

[Nea93] NEAGU, G., Generic Modeclling Vs.
Prototyping: An Object- Oriented
Approach to the Deccision Support at the
Shopfloor Level, in R.S. Sodhi (Ed.) Proc.
of 9th Conf on CARs&FOF, Newark, NJ,
1993,

[N&G94] NGWENYAMA, O.K. and GRANT,
D.A., Enterprise Modelling for CIM
Information System Architecture: An
Object- Oriented Approach, COMPUTERS
IND. ENGNG., Vol. 26, No. 2, 1994, pp.
279-293.

[P&R93] PALUDETTO. M. and REYMOND, §,,
A Methodology Based on Objects and
Petri Nets for Development of Real-Time
Software, Proc. of Int. Conf. SMC'93, Le
Tougquet, France, 1993.

[Ru&91] RUMBAUGH, J., BLAHA, M,
PREMERHANI, V., EDDY, F. and
LORENSEN. W.. Object-Oriented
Modelling and Design, PRENTICE-HALL,
1991.

[S&M88] SHLAER, S. and MELLOR, S.J., An
Object-Oriented System Analysis:
Modelling the World in Data, YOURDON
PRESS, Englcwood Cliffs, NJ, 1988.

[Str87] STROUSTRUP, B., The C++
Programming Language, ADDISON-
WESLEY, Reading. Ma, 1989,

[Tel89] TELLO, E. Object-Oriented
Programming for Artificial Intelligence. A
Guide to Tools and System Design.
ADDISON-WESLEY. 1989.

[War89] WARD. P.T. , How To Integrate
Object-Oricntation with Structured
Analysis and Design, IEEE SOFTWARE,
Vol. 6, No. 2. 1989, pp. 74-82.

Studies in Informatics and Control, Vol. 4. No. 1, March 1995

