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Abstract :This paper treats the managerial planning problem of
a composite marketing-production process in an uncertain
environment through the Model Based Predictive Control
(MBPC) approach. For completeness, a review of the literature
concerning the application of stochastic control methodologies to
dynamic operational research and managerial planning problems
under uncertainty is first provided. Next, an outline of the Model
Based Predictive Control methodology is given including all key
elements required for our study. The composite marketing-
production problem that involves uncertaintics is then fully
formulated. The MBPC approach is tested through simulation in
a number of nontrivial example cases. In all cases the
performance of the resulting controlled system was shown to be
excellent a fact that verified our original feeling about the
suitability of the MBPC method for complex managerial
decision making.
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1. Introduction

The dominating problem  of production
management is uncertainty. Unccrtainty about
market demand, uncertainty about the current
status of the production and inventory systems,
uncertainty about the cost -cflectiveness of
production-inventory control policy in meeting
demand, uncertainty about the cffectiveness of
advertisement expenditures for the firm's product
promotion and so on. Onc possibility to allow for
management decisions under such unceriainty
conditions is to introduce stochastic clements in
the problem. There are at Icast two ways to do
this : (i) usc a known probability distribution
function as state variable within a deterministic
optimal control problem [1-3] (the difficult task

59



in this approach is to formulate the model so that
it can be solved within a deterministic
framework), (ii) use a stochastic/adaptive control
approach introducing the uncertainty explicitly
into the equations of the process. The problem
becomes more difficult if one considers that the
parameters of the model are also unknown. In
this case, the computations become very complex
and so approximation techniques have to be
employed [4-5]. The problem considered in this
work falls within this framcwork.

Consider a firm that wishes to determine joint
decisions of how much to produce and how much
to spend on advertising, so that total cost is
minimized while operational constraints and
management goals are satisfied. This problem is
solved here using the technique of Model Based
Predictive Control (MBPC) which is well suited
for such an environment.

In Section 2 the relevant literature on applying
stochastic control methods to Operational
Rescarch problems is reviewed. In Section 3 the
key idcas of MBPC are briefly presented within a
framcwork that satisfies the nceds of managerial
planning under uncertainty. In Section 4 the joint
problem of production-advertisement control is
presented and in Section 5 its application is
demonstrated through a set of simulated
examples for some cases. Finally, some
concluding statements are given in Scction 6.

2. Literature Review

Although the mathcmatical theory of stochastic
systems has started its development at the
beginning of our century in Economics and
Management Science, deterministic models have
prevailed until recently. Therefore it is not
astonishing that management applications of
stochastic control theory are relatively few. Some
surveys and further references can be found in [4-
8].

Regarding the marketing  (advertiscment)
process, Tapicro (1977) gives some examples of
how to use stochastic coatrol theory [9]. He
considers (1975) [10], a stochastic version of the
Vidale - Wolfe advertising policics using filtering
theory. Open-loop advertising strategics, with the
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filter equations as certainty equivalents, are used
as approximations in determining the optimal
strategy. Later on (1978) [11], he presented feed-
back type policies and open-loop policies which
involve goodwill. Furthcrmore, Tapiero (1982)
[12] ,compares optimal advertising policies under
two different objective functions, namely
expected profit maximization and constant risk
aversion utility, and shows that adopting the
fatter mcans that there will be less advertising,.

An example for a solution of a discrete-time
advertising problem using stochastic dynamic
programming is provided by Monahan (1983)
[13]. Another variant of the Vidale-Wolfe model
is optimized under a quadratic cost function by
Scthi (1983) [14]. He compares a dcterministic
version of this model to a stochastic one, where
an additive white noise process is present in its
dynamics. He shows that for a class of variance
functions of the stochastic process ,the maximum
value of the objective function as well as the form
of the optimal feedback advertising control are
identical in the deterministic and the stochastic
environment. This result can be seen as an
extension of certainty equivalence beyond the LQ
case.

However it is the problem of production planning
that has been addressed extensively in the
litcrature in an assortment of its stochastic
variations. Simon (1936) and later Holt et al
(1960) [13] considered the certainty-cquivalence
principle for a lincar system with a quadratic
critcrion. and examined various applications in
production and workforce scheduling.
Schneeweiss  (1971.1974,1975,1977)  [16-19],
studied several non-lincar  cost  functions
(criteria). In particular he considered piccewise
lincar cost functions including set-up costs.
Assuming a linear fcedback control, stationary
policies and normality, he approximated the non-
quadratic costs with quadratic ones such that the
best lincar policy with respect to the original
costs, is obtained. This approach is essentially
maintaining the certainty equivalence principle
and turns out to bc more cfficient than the more
common technique of postulating certainty -
cquivalence (and in this way reducing the
stochastic problem 1o a deterministic one). This
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is also the case if safety stocks are introduced in
the latter approach.

Using the approach of Schneeweiss, Gaalman
(1976) [20] considered the general multi-
dimensional case. He derived necessary
conditions and suggested methods for solving
them. Approximation of optimal policies by LQG
approach is used by Baetge and Fischer (1982)
[24], to determine the control policy for a linear
dynamic production, inventory and pricing
model, where unknown future demand varies
stochastically and has to be estimated. Here
overlapping plans are modelled by recomputing
the optimal decision rule periodically, using an
ARIMA model to predict the exogenous variable,

O'Grady and Bonney (1981) [22] have studied a
production system affected by random variations
in the manufacturing process. The production
system includes several workstations and it is not
possible to obtain measurements at each station.
Their paper is related to some other works of
Koivo and Hendricks (1973) (23], and Stohr
(1979) [24]. The above work of Koivo and
Hendricks is among the very few works that
consider marketing variables (namely advertising
expenditures) explicitly into the production
process and determine optimal decisions.

A simple but instructive example of how to apply
stochastic differential equations (Ito calculus) to
the optimal control of a production-inventory
model is given by Sethi-Thompson (1980) [25].
The production of one good with inventory is
considered. The demand rate is constant but
inventory changes are distributed stochastically.
The problem is to minimize a quadratic objective
function over time,which includes terms of
deviations of the production and inventory levels
from their factory-optimal policies. It is shown
that if the inventory level is very high, optimal
control may be negative, which amounts to
disposing part of it, to save holding costs.
Necessary and sufficient conditions for this type
of policy are derived. An explicit consideration of
a non-negativity constraint for the production
ratc  enormously complicates the stochastic
optimization problem.

Another interesting application of continuous
time stochastic optimal control theory using
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impulse control, has been examined by Vickson
(1982) [26]. The problem here is to obtain
average cost minimizing policies for a sequential
production model with random variation in
completion times of successive Jobs in the long
run. Jammernegg [27] has investigated another
stochastic dynamic production-inventory model
with incomplete information about demand.

Also the applicability of linear-quadratic
stochastic control theory to production and
inventory control has also been illustrated by
Bensoussan (1974) [28], Mohapatra and Sahu
(1977) [29], Willke and Miller (1978) [30].
Kleidorfer and Glover (1973) [31], proved some
general results for linear convex stochastic
control problems and discussed their impact on
production planning. Baker and Peterson (1979)
[32], and Baker (1981) [33] used a discrete
linear-quadratic model for evaluating rolling
schedules.

Stochastic control theory is also particularly
uscful for decaling with problems of the
information flow within the firm. The qucstion of
information control for inventory monitoring as a
combined estimation-identification problem has
been addressed by some rescarchers, The
interesting point is that the value of information
itsclf enters the objective function. This aspect
becomes explicit in the works of Deissenberg and
Stoppler (1982,1983).134-35), where information
gathering can be influenced by management.
Costs of observation need to be taken into
account. They formulate a stochastic optimal
control problem of the LQG type and show that a
separation property holds for the closed -loop
optimal control policy.

The above list of works is by no means
exhaustive but simply refers to the most
important works in the ficld, Recently authors
have pointed out the importance and usefulness
of using MBPC as a decision making tool for
production-inventory planning problems [36].
The present paper extends our previous results to
considering the composite production-marketing
problem and demonstrating its  effectivencss
through simulated cxamples. In the following the
basic idcas of MBPC are given and  its
functionality as a decision tool within the
framework of managerial planning is outlined.
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3. Model Based Predictive Control

Model Based Predictive Control (MBPC) is a
control strategy based on the explicit use of a
process model to predict the process output over a
long-range time period. The key elements
characterizing MBPC can be summarized as
follows:

—  Prediction model. It is the model by which
the real output of the plant/process 1is
predicted for a time period of T samples.
This is an internal model "running” in
parallel with the real one which is supposed
to be partially unknown.

- Reference Trajectory. The purpose of the
control is to lead the output vector along a
desired and generally smooth path r(t) to a
final set point d(t). Such a path r(t), is called
reference trajectory. In many cases it is
assumed that the future desired process
output is unknown. If the set-point is not
prespecified in the future one can usc a
predictor in order to predict the desired
trajectory that the output of the system is
forced to track. This is a very important
feature for handling complex managerial
goals that may vary dynamically as a
response to some unpredictable events.

Structuring the control law. The predicted
output yp(t+j/t) j=1,...,T dcpends on the

postulated control input u(t+j) j=0,1,...,T. An
essential task of the prediction procedure is
the calculation of the prediction errors. An
effective prediction error plays the vital role
of sclf-compensating the cumulative effect of
model mismatches, external disturbances
and additive noise that deteriorate the real
process operation. A very flexible and
efficient way was pointed out in [37] for
handling this problem. Having the predicted
values of y, the MBPC algorithm is trying to
minimize the distance between yy(t+j) and
r(t+j). Whatever form of performance
criterion is involved, one has always to
minimize a function of the T independent
future control variables. So the number of
calculations required to solve the problem
depends on the length of the planning
predictive horizon T. This is one reason for

62

putting some structure into the control
scenario  u(t+j). Control  structuring
essentially means reducing the number of
degrees of freedom by specifying a priori
some relationship among the future control
variables. This can be done mainly by using
a control horizon (T, < T) which reduces the
dimension of the control vector. In addition,
“structuring" has been found to enhance the
robustness and the performance of the
control system.

-~ Algorithmic Calculation. Generally, the
objective function can be of any form.
However in our case (as it is always the case
in the litcrature) the objective is of the
quadratic form and contains three terms : ()
deviations of the output from a nominal
trajectory, (b) magnitude of the control
signal, and (c) diffcrences of the control
signal at time k. mnus control value at time
k-1. Weight matrices are adjoined to each of
the above terms that can be viewed either as
design parameters or as cost elements. Their
choice affects the accuracy, robustness and
dynamic performance of the plant output.

Solving at time t the resulling equations, one
determines all elements of the control signal.
However only the first one is actually applied to
the system. At time (t+1), as new measurements
are obtained, the whole procedure is repeated,
after an appropriate backward time shifting, and
a new control input is determined. This is the
well-known receding horizon strategy,, a
common feature in managerial planning. In fact
if there arc no constraints on control or state
space variables, the MBPC approach is
cquivalent to the classical LQG which is the most
frequently encountered  technique in the
literature.

Given the key idcas of MBPC let us now clarify
some points and discuss the framework within
which it can be used as a decision making tool.
As we have argucd above, MBPC closed-loop
control yields a lincar fecdback decision rule.
Given that as in many real systems the
production management process is expected to be
subject to noise and/or non-linearities (stemming
from simplifying assumptions), the appearance of
feedback terms is shown to attcnuate all these
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Figure 1. MBPC Decision Making Scheme

factors and thus it is very desirable. Another key
feature is the requirement for feedforward control
action counteracting mainly the disturbances
effect. For managerial planning this notion is
considered to be of equal importance, since it
represents the activity of forecasting, which is
viewed as a common element of most managerial
jobs. For the decision makers ,planning, and
hence forecasting, is fundamental to the
management of the enterprise; often the role of
feedback is less immediately obvious to them. In
practice however forecasting methods usually
involve  considerable errors, hence the
recognition in the Management Science of the
need for control systems that can monitor
performance in the light of plans, and adjust as
necessary. MBPC introduces all these concepts in
a straightforward manner providing a great deal
of flexibility to the decision maker. The
functional structure of the MBPC approach is
shown in Figure. 1. The decision maker takes
action based on his (her) model description of the
process. It is highly unlikely that this model will
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be an exact model of the process.
Optimal/stochastic control methods are very
sensitive to such model mismatches. The MBPC
approach is proven to be efficient even with these
mismatches, mainly through the corrective action
of the error predictor. More than that, even if the
model is  under- or  over-parameterized,
somcthing  very common in Management
Science, MBPC can produce satisfactory results.
This is very important since in inventory-
advertiscment process there are distributed time
lags which are rarcly known exactly. For such
difficult dynamics this approach can constitute a
very eflcctive tool. The same is true if non-
lincarities exist in the real process while the
decision maker model is assumed to be linear. In
fact, this is onc of the most powerful arguments
to use this approach, and will be demonstrated
through several simulation examples.

The information available in every time period is
used in a consistent manner to continuously
update all predictors involved in the control
scheme. It is the philosophy of control that
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makes it superior to such problems. Disturbance
prediction is used in other approaches too. Then
problems of shorter time periods are solved. This
idea is best exploited in the MBPC scheme. The
flexibility offered by this approach is reflected by
the fact that we can handle uncertain set-points
too. This is of fundamental importance for
managerial planning where the management
rarely knows well in advance the ideal
functionality point of the enterprise, due to
unpredictable exogenous events. The decision
maker has the option of handling some
uncertainty in the reference signal and can take
action in advance, so that he can smooth out
these sources of difficulty.

In the next section we are dealing with a
composite production marketing problem for a
single product, and highlight some of the key-
points mentioned in the previous discussion.

4. A Composite Marketing-Production
Problem

Marketing and production policies in a firm are
interdependent. Marketing policies are normally
designed to generate demand for the firm's
products, whereas production policies are usually
designed to meet that demand. However,
although marketing and production policies are
interdependent, most of the marketing and
production models assume that the decision
making in the two areas is separate [14-15, 38-
43]. It is only in the recent years that models
incorporating interdependencies between the two
areas have been proposed [23, 44-47]. Most of
these works assume that the inventory level at
any time responds immediately to the difference
between the production and sales rate. But some
products are depleted not only by sales but also
by decay, such as spoilage in fruit, physical
depletion in highly volatile liquids or
deterioration in electronic components. Also
advertising outlay has effects on sales that carry
over into future periods, and thus there exist
some time delays between advertisement and
increases in sales rate. Inherited to this already
highly complex problem is the uncertainty
introduced since neither the exact values of the
parameters involved are known nor the acquired
measurements are free of errors. Koivo has
studied a stochastic model incorporating an
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arbitrary relationship of sales advertising
response. However the decision maker is still
assumed to have at his disposal the exact values
and time delay of the marketing model (which is
the most difficult to be estimated). All the other
works treat the same problem within a
deterministic framework except for [44], where
distributed time lags are assumed for the
marketing model and the duration of the
customer's memory of the product, generated by
advertisement, is a random  variable
(generalization of the Vidale-Wolfe maodel).

Let us now formulate our problem. We assume
that a firm produces a product and then,, using
advertisement strategies, tries to promote and
distribute it to end-customers. The price is fixed
and the firm influences the potential market by
using appropriate levels of advertisement. The
underlying sales-advertisement is not exactly
known, but assumed to have the following form :

s(k+1)=(1-A)s(k)+ iajA(k -i) ()

where A is the decay of the sales or forgetting
coefficient, 2, is the efficiency of advertisement at
time k-i, m is the time lag introduced in the
process, s(k) is the sales level, and A(k) is the
advertisement effort.

The advertising response modcls that have been
built over the last years fall in two general classes
[42-43]: (i) a priori models that provide a more
conceptually sound set of characteristics, and (ii)
econometric models that are better related to
available data [48-50]. The model above (1), falls
within the second category, but it can be used as
a normative one for some range of the life cycle
of the firm's product. Note that although we
assume "some" econometric estimation or
calibration of the model, it is preasumptuous to
claim exact values of the parameters involved in
the process.

To demonstrate the flexibility of our approach in
the simulation examples, we investigate a case
where although the real process follows a non-
linear form, namely the Vidale-Wolfe model, the
decision maker still employs a linear model. It is
shown that after some "learning" period the
MBPC approach performs well.
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The production department is modelled by the
well -known inventory balance equation :

iD= (100 + Tipte i)~

@

where I(k) is the inventory level at time k, r is the
inventory decay coefficient, p(k) the production
capacity, r; is a parameter denoting which part of
the production enters the warehouse due to
possible production delays. Without affecting the
generality one can assume r,=1, 1;=0 for i #0 as it
is done in most models in the literature.

The objective of the firm is to achieve a desired
sales level assigned by some central authority and
to keep a specified inventory level while using
minimum advertising and production effort. The
costs involved are assumed to be quadratic
(although they can have any other non-linear
form with an increase in the computational load)
and the initial values of the problem variables are
assumed as known.

The mathematical form of the objective function
is :

ky
J= D) -xg P v k) (3
k=0

sty s, | + s chy

where x4 and sy are the desired inventory and
sales level respectively, m, r, d, are appropriate
unit costs and h,w are coefficients which are
chosen by the management depending on how
severe are the desired sales or inventory level
achievement (or it can be regarded as a cost
parameter expressing unfulfilled/lost sales,
market share, in equivalent cost).

An alternative cost formulation is to introduce
into the objective function the changes of the
production control variable, a feature that is
known in the production planning literature as
"production  smoothing  problem".  This
alternative is also examined through a simulation
example in the next section.

Often, management receives information
concerning the values of the states of the system
only at discrete time instants (c.g. weekly) and
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the management decisions are applied at discrete
time instants too. Frequently, at the time an
optimal decision is to be made the measurement
of some of the states is not available or it is
inaccurate. In order to include such a possibility
in our model, the relation between the
observations and the state values is described (in
vector form) by :

YO = 200+ wk) L 2 = (x(K), sK) T

where y(k) is the obscrved output of the system
inventory level and sales level, and w(k) is the
measurement error that can be approximated by
white Gaussian noise. Note that such a white
noise can be present at the state equations (1) and
(2) of the system describing random changes
during successive transitions of the production
marketing process.The management may use
some previous historical data to get " a first idea"
of the model parameters and then to use it for
decision making process. The block diagram of
the process is given in Figure 2.

Note that in our case we have disregarded
autonomous demand which cannot be controlled
by advertisement strategy. One can use existing
forecasting techniques to identify its level and
consider it in the design process. However, for
our purposes it is assumed that either this
segment of the market is too small or can it be
identified efficiently by some appropriate
method.

S. Simulation Examples

Extensive simulation studies have been carried
out to demonstrate the effectiveness of the MBPC
approach. The results are presented in Figures 3
through 11. In all cases zero initial conditions
(start-up of the operation ) are assumed and use
was made of the constrained MBPC version, in
order to lake into account physical constraints on
the control variables of the problem. The lower
bounds were sct to zero while upper bounds are
200 and 100 units for the production and the
advertisement control variables, respectively.
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Figure 2 . Block Diagram of Production-Marketing System with MBPC Scheme

In Figure 3 exact model measurements are
assumed i.e. there is no noise corrupting the
process, and only a slight misspecification of the
decaying factor _ of the marketing model exists.
The real value is 0.02 while the decision maker
uses its estimated value 0.03. The objectives of
the process are attained without any difficulty,
besides the previous mismatch. All other
parameters are identical. The form of the
employed model is :

s(k+1) = 0.98 s(k) + 0.1 A(k) +
+0.01 A(k-1) + 0.001 A(k-2)

I(k+1) = 0.97 I(k) + p(k) - s(k)

In Figure 4 the same system is simulated. Here
the decision maker model also uses a wrong
value for the inventory decay coefficient (r=0.03
instead of its real value 0.01). The results are
excellent again,

In Figure 5 the decision maker model is assumed
to have the following form :

s(k+1) = 0.97 s(k) + 0.1 A(k) +
+0.02 A(k-1) +0.0001 A(k-2)

I(k+1) = 0.97 I(k) + p(k) - s(k)

i.. there are differences in the parameters A 1, a,
and a; . Note the occurrence of a large overshoot
in the inventory which is due to untuned model
used for the decision purposes. After a short
learning period the operation of the process is
quite satisfactory.
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In Figure 6 the production model is as in the
previous case but the decision maker uses the
following advertisem.ent response relationship:

s(k+1) = 0.97 s(k) + 0.3 A(k) + 0.15 A(k-1)

Both model mismatch and time delay
underparameterization exist in the decision
maker model. The learning period takes more
time but satisfactory tuning is achieved after
some time period.

Figure 7 depicts the case where the changes of
the control signal are punished instead of its
magnitude, i.e. a type of production smoothing
problem is considered. The production control is
somewhat smoother and the results are similar.

In Figure 8 the main disturbance corrupting the
system performance is assumed to be white
Gaussian noise. The process parameters are
known to the central authority but random
changes affect its operation. The error predictor
involved counteracts this source of disturbance
and yields a quite satisfactory operation.

In Figure 9 the "worst" case is considered to be
that where the decision maker faces both model
mismatch and noise corruptive action. The
overall operation is degraded but still the
performance of the system is satisfactory.

Finally, the last cases shown in Figures 10 and
11 demonstrate the MBPC approach under non-
linear process behaviour. The real system evolves
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under the non-linear model of Vidale-Wolfe. The
decision maker still uses for his planning
procedure the previous linear delayed model.
Figure 10 shows the trajectories when the
advertisement effectiveness of the Vidale-Wolfe
model is 1, while in Figurell its value is 0.7. In
both cases the assumed value was 1 (this value is
the parameter a, according to the notation of
Section 4). Observe the occurrence of a small
wave effect probably stemming from the
inherited non-linearity of the latter case.

6. Conclusions

A firm must combine marketing and production
information, use it to modify its conception of the
market, use the revised conception to make
marketing decisions and production decisions,
and finally arrange for gathering of new
information, Briefly speaking, a firm needs an
efficient control system for a successful and
profitable operation in a rapidly changing
marketing environment. The MBPC approach
discussed here is very suitable for this problem,
namely for setting the advertising level and
production capacity level. The concept of such a
flexible and powerful tool seems virtually
incontestable: a company should learn from
experience in an organized way. The model
studied can be useful as it stands and is certainly
capable of extension. The results presented in the
paper demonstrate the potential usefulness and
applicability of such an approach in solving
management planning and decision problems.
Although every model is only an approximation
of the real technical and economic processes,
computer simulation provides some insights into
the dynamic interactions between these
processes. Although decision maker models are
not the same as the real ones, MBPC was shown
to offer a valuable tool in successfully testing and
implementing efficient strategic corporate plans.
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