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Abstract: Various methods of implementing Fuzzy Systems using
Artificial Neural Networks are presented. After a brief
introduction to fuzzy systems, the approaches to their
implementation are compared and their potentials discussed.
Trends of the area are also given.
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Introduction to Fuzzy Logic and Fuzzy
Systems

Fuzzy logic was introduced in 1969 by L.A.
Zadeh [1] and is an extension of Boolean Logic.
In Boolean Logic a proposition can be either True
or False. This is a serious wecakness because it
cannot represent expressions such as "Almost
True" or "Certainly False" that are frequently
used by people. There are several degrees of truth
and Boolean Logic cannot represent them. Fuzzy
Logic provides the mathematical framework for
representing these degrees of truth. Furthermore
in Fuzzy Logic imprecisely defined classes can be
defined. Such a class is called Fuzzy Set and is
defined by its membership function. This function
returns the degree to which an object belongs to
the fuzzy set. The membership function can take
any valuc within the interval [0,1] (from 0, if the
object does not bclong to the set, to 1 if it
completely does).

Fuzzy sets can be considered as linguistic values
that can be assigned to linguistic (or fuzzy)
variables. For example, the fuzzy set "High" can
be the linguistic value of the linguistic variable
"Temperature”. If X and Y are fuzzy variables
and A, B are fuzzy sets then a simple fuzzy if-
then rule is of the form "If X is A then Y is B".
The way to reason from such a rule is given by
Generalized Modus Ponens. In classical Modus

85



FAM Rule 1
(A1,B)

FAM Rule 2

(AnBn 1>

e e e o e ————— e e e e — —

|

I

|

|

L .
i FAM Rule m
I

|

|

|

|

(Kz,ﬁz) > B3

FAM System

I
1
|
I
|
|
|
|
|
|
|
|
|
|

.\> O__IP rDefuzziﬁer }'9 y

mposition

Figure 1. The Structure of a FAM System

Ponens the inference is done in the following
way:

Ifxisathenyisb

xisa

We conclude thaty isb

The weak point of this fundamental way of
reasoning is that if x is slightly different from a
then no conclusion can be drawn from the rule. In
the extended Generalized Modus Ponens this
weakness is removed. The form of this more
powerful way of reasoning, follows:

IfXis A thenYis B
Xis A'

We conclude that Y is B

where A' and B' are slight modifications of A

and B respectively. B' should be defined by
K,E and A'. B’ should resemble B' as much as
A resembles A

The fuzzy rule "If X is A then Y is B" can be
represented as (K,E). We can have m such rules
(Xl,ﬁl),..., (Km,ﬁm). A fuzzy system can be
imagined as a Fuzzy Associative Memory (FAM)
[2] (see Figure 1). Its behaviour is the following:

Given an input fuzzy set A, all m rules become
active. Each rule R; (i=1,...,m) depending on the
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resemblance between A and _A-i will return a
fuzzy set Ei' bascd on Generalized Modus
Ponens. The desired behaviour is the more A
resembles Ki, the more ﬁi' resembles ﬁi‘ The
final output B is a composition of all -B-i'-

There are cases where the output should not be a
fuzzy set but a crisp value that represents as good
as possible the fuzzy set. This is done by a
defuzzifier, which implements one of many
defuzzification methods [3].

Implementation of Fuzzy Systems by
Artificial Neural Networks

A fuzzy set is defined by its membership function
and so every neural network that implements a
fuzzy system has to have a method of representing
the membership function. Various ways of
representing a fuzzy set are given in Figure 2.

In Figure 2(a) the fuzzy set has been sampled at
various points, Fuzzy set A is represented as a
series of couples (X;, p5 (X,)), where u .

the membership function of fuzzy set A. The rate
of sampling can be higher in areas of the
membership function where more detailed
representation is required and low in other areas.
This sampling method has the advantage of not
requiring any convexity [4] of the membership
function .
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In Figure 2(b) the interval method is used. Now
the membership function is represented as a series
of a-cuts sets of the fuzzy set, where o-cuts are

crisp sets defined as A, = {x € X}p,K (x)= Ot}

[4]. Clearly, if we know an adequate number of 4-
cuts of the fuzzy sets at discrete points of the
interval [0,1] we can restore the fuzzy set.
Therefore a fuzzy set can be considered as a
series of crisp sets and common set theory can be
used. In case the fuzzy set is convex, every o-cut
is a single interval. This feature simplifies the
representing method.

Tnx) H(x)
X (b) X
(a)
Iux) H(x)
a c¢ b scs X
(c) (d)

Figure 2. Methods of Representing Fuzzy Sets

The method in Figures 2(c), 2(d) is used only
when the fuzzy set is normal (that is, at least at
one point the membership function will get the
value 1), and the shape of the membership
function is triangular. In this case just the triplet
(a,c,b) (see Figure 2¢) is adequate. If the fuzzy
system is also symmetric as in Figure 2(d) then
Jjust the couple (c,s) is enough to represent the
fuzzy set.

Keller et al [5]{6] use the first method of
sampling the membership function to represent
the fuzzy sets and propose a method of
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implementing fuzzy if-then rules using neural
networks. Fuzzy sets as "Low", "Medium",
"High", "Unknown" and most of their modifiers
"Very", "Very-very"-(Very2), "More-or-less” have
been defined and sampled at 11 different points.
A three-layer feedforward neural network has
been used where the input layer is not fully
connected to the hidden one, but the hidden one is
fully connected to the output layer (Figure 3). A
fuzzy rule of the form "If X is Low then Y is
High" has been tried to be encoded. The standard
backpropagation algorithm [7] has been used with
the training set of Table I(a).

B n

(L] OUTPUT

Neural
Network

[TTTTTTTTITIT
INPUT

[ TTTh

Figure 3. Implementation of Fuzzy If-Then
Rules Sampling Fuzzy Sets
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Table I(a)

Table I(b)

Training Set

Testing Set

Input Output Input Expected Output
Low High \/'e:ry2 Low Very2 High
Very Low Very High (More-or—less)2 Low (I\/Iore-or-less)2 High
More-or-less Low More-or-less High Medium Unknown
Not Low Unknown Noisy Low High

The structure has been tested (a part of the testing
set is shown at Table I(b)) and the system
returned the expected outputs. It should be noticed

that for disjunctive rules of the form "If X is A
OR Y is B then Z is ol , a neural network with
two hidden layers should be used, due to the
increased complexity of the rule.

The interval method of a fuzzy set representation
is current with Ishibuchi et al [8][9]. Interval
arithmetic is used, that means a generalization of
ordinary arithmetic for closed intervals. If X and
Y are closed intervals then Xz[xL,xU] and
Y=pyLyUl.

Addition and multiplication are defined as
X+Y=[xL,xU]+[yL,yU]= [xL+yL,xU+yU] and
[kx",kx"] ifk=20

- L Uy
kX =K[x",x ]_{[kxu,kx]‘] ifk<0

(k, real number). In neural nctworks the logistic
functionf(x) =

— is proper and for intervals
l+e

we have f)=f(x D =[F0ELEK)]. For fuzzy
rules of the form "If X is A AND Y is B then Z
is C" the interval arithmetic is suggested and the
rule is implemented as shown in Figurc 4. A
three -layer feedforward ncural network is used
and it is trained with the standard
backpropagation algorithm. At each time step, an
interval of the fuzzy sets A and B is input into

the neural network, producing an interval of the

88

output fuzzy set C. Tt should be mentioned that a
real number x can be represented as the interval

[x.x].

This means that both real number input-output
pairs and fuzzy rules can be applied during the
training process of the ncural network. In other
words, the conventional necural network that maps
input-output pairs can be enhanced by fuzzy if-
then rules, deduced from experience. The fuzzy
rules express that if the input vector belongs to a
specific area of the input space then the output

vector should belong to a specific area of the

A

| &

output space.

Neural
Network

X [ ! Y
A B
Figure 4. Using the Interval Method for
Implementing Fuzzy If-Then Rules

Something that should be stressed is that the
above methods arc based on classical artificial
neural networks . where weights and biases are

Studies in Informatics and Control, Vol. 4, No. 1, March 1995



real numbers. Another technique will consist in
fuzzy neural networks [9][10] where weights and
biases are fuzzy numbers (convex, normal fuzzy
sets). Hayashi et al [10] opted for fuzzy neural
networks and fuzzified the delta rule of the
backpropagation  learning  algorithm. The
drawback of this approach is that the derivatives
required by the learning procedure are evaluated
in a simplified way. During the differentiation
fuzzy numbers are assumed to be real numbers.
The Extension Principle [11] was used which
determines how a function of real numbers can be
extended to fuzzy numbers.

On the other hand, Ishibuchi et al [9] succeeded
in overcoming this problem. With neural
networks with fuzzy weights and biases still
present , the interval method of representation
was mainly applied. The Extension Principle was
also involved and learning was performed by the
backpropagation algorithm. The derivatives are
now evaluated in a much more sophisticated way.
A differentiation operated in the intervals used
and the results of computer simulations were the
following. If compared with neural networks with
crisp weights and biases, fuzzy neural networks
are better when the fuzziness of the fuzzy target
output is greater than that of the input. Crisp
neural networks are better when the fuzziness of
the output is smaller than that of the input. The
above behaviour can be explained if we notice
that the existence of fuzzy numbers for weights
and biases in the neural network increases the
fuzziness of the inputs and leads to fuzzier

Big
0.5 f 05

outputs.

A different approach is made by Horikawa et al
[12]{13]. The structure of a neural network is
designed in such a way that rule extraction and
membership function tuning are performed.
Depending on the type of output, three types of
neural networks are defined. In the first type the
output is a constant (e.g. class 1, class 2, ... for
classification problems). In the second type the
output is a first order linear equation function of

the input values
(X4, Xa,.... %) = @ +@4X) +@gXp+.. 48X,

In the third type the output is a fuzzy set.

The success of this approach comes from the fact
that the logistic function that ncurons of artificial
neural networks use, can be considered as the
membership function of a fuzzy set (see Figure
5a). If f is the logistic function then it can be the
membership function of the fuzzy set "Big".
Moreover, 1-f can be the membership function of
the fuzzy set "Small". Fuzzy set "Medium" can be
produced by a composition of f and 1-f The
connection weights of the neural network are
parameters that determine the characteristics of
the membership function (the central point and
the gradient). The backpropagation algorithm is
used. During the learning stage the weights are
modified, while changing the characteristics of
the fuzzy sets. At the final stage, the membership
functions of the fuzzy sets are tuned (Figure 5b).
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Figure 5. The Use of the Logistic Function as Membership Function
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What really happens is that in the beginning such
fuzzy sets as Small, Medium, Big are proposed
and after the training, the shapes of these fuzzy
sets have been changed (tuned) in a way such
that the consequences of the input should be the
expected output. This means that extraction of
fuzzy rules is performed at the same time.

Conclusions - Trends

Various techniques for implementing fuzzy
systems by artificial neural networks have been
presented. The interval approach seems to be the
most promising. Membership function tuning and
rule extraction are rather interesting ideas and a
lot of work still has to be done. Furthermore
productive neural networks have been proposed
for the fuzzy logic inference [14] and Buckley et
al [15] have shown that artificial neural networks
and fuzzy expert systems are equivalent. The co-
operation of fuzzy logic and neural networks
secems to be a successful one. Future is getting
fuzzier.

This work was supported by the Greek National
Scholarship Foundation.
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