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1. Introduction

Image segmentation is a key area of computer 
vision that has gained a lot of research attention 
in recent years. The aim of image segmentation 
is to divide an image into multiple segments with 
similar features such as texture, strength or color 
for examining objects within the image under 
analysis. Image segmentation has numerous 
applications in industry and research, including 
image or object recognition, image processing 
and comprehension, medical diagnosis of 
diseases, computer-guided surgery, treatment 
planning and anatomical structure. As it is 
presented in (Pal & Pal, 1993), conventional 
image segmentation techniques can be classified 
as threshold-based segmentation (Vese & 
Guyader, 2015), clustering-based segmentation 
(Wang & Huang, 2009; Hrošik et al., 2019), 
segmentation based on neural networks and 
region-based segmentation. Considering the 
last category, active contour models – ACM 
(Zou et al., 2021) are defined as an evolving 
contour towards the object boundaries. The curve 
evolution is led by the minimization of an energy 
functional with different terms such as membrane 
term causing the curve to shrink, the rigidity term 
which encourages the border to be a straight line 
and last but not least the term which pushes the 
curve to the object contour. Classic approaches, 
such as the edge-based models use the image 
gradient information to define object boundaries 
and stop the contour from evolving. In the 

presence of weak and noisy edges, the precision 
of the approaches where gradient information 
was used to direct an evolving contour toward 
the object boundaries is diminished. This method 
is sensitive to the initial level set position and 
the level set can easily break through the edges 
which are weakly expressed (Rahmat & Harris-
Birtill, 2018). Active contour models, in which 
an energy mechanism is formulated based on 
information such as strength, color, or texture 
in order to evolve an initial contour towards the 
object boundaries (Han, Zhang, & Gao, 2018), 
provide improved segmentation accuracy. 
The aforementioned approaches which are 
known as region-based active contours, show 
increased performance on weak boundaries 
and they are usually less sensitive to noises and 
initial contours. Considering the region-based 
basic assumption that each segmented area has 
constant intensity, these approaches perform 
poorly on images with intensity inhomogeneity. 
To overcome these limitations, the present 
paper proposes a cellular neural network (CNN) 
approach for edge features determination, where 
intensity inhomogeneity is accounted for and 
also the weakly expressed edges are enhanced. 
This is mainly due to the determination of an 
adaptive edge features template that is embedded 
within the curve evolution process. Results 
are illustrated in the case of two biomedical 
applications, microarray imaging for gene 
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expression levels estimation and microfluidic 
devices for cell clusters features determination. 
Thus, the remainder of this paper is structured 
as follows. The basic principle of edge-based 
ACM together with the CNN approach for edge 
features template computation are presented 
in Section 2. In Section 3, the proposed CNN-
driven active contour approach is employed in 
the case of biomedical imaging applications. 
The fourth section presents the conclusions of  
this paper.

2. Method Description

The proposed approach determines the edge 
features using an unsupervised machine learning 
approach. The detected features are further on 
used in a curve evolution procedure in order to 
determine pixels corresponding to the image 
foreground (i.e., the objects within the image which 
are cells, cell clusters or microarray spots) and its 
background. In this way, image segmentation is 
performed by separating foreground pixels from 
the image background by evolving an initial 
curve toward the object boundaries. The behavior 
of the proposed image processing workflow for 
segmentation is exemplified by means of an image 
with two cells used in (Li et al., 2010) and another 
image with cells registered using microfluidic 
devices (see Figures 2 and 3). To sum up, there 
are two main steps of the proposed segmentation 
procedure: cellular neural networks for edge 
features computation and active contours for the 
segmentation of image objects.

2.1 Cellular Neural Networks - CNN

There are both supervised and unsupervised 
machine learning approaches for image 
segmentation available. The accuracy of 
supervised ML-based segmentation is improved, 
since the input data is labeled and well-known 
(Xing et al., 2018; Hagerty et al., 2019). 
Unsupervised learning, on the other hand, has 
the benefit of automatic segmentation without 
any previofus knowledge of the object features in 
the training dataset (Jiao, Chen & Dong, 2020), 
albeit at the cost of increased computational 
complexity (Daniels & Gallagher, 2018). This 
is also the case of the described approach, 
namely edge features detection using cellular 
neural networks. The main benefit is that no 
training sessions are needed, and edge features 

are enhanced in comparison with the gradient-
based edge detection approaches. Cellular 
neural networks (CNN) were introduced in 
1988 and 1993 (Chua & Yang, 1988; Roska & 
Vanderwalle, 1993). Arrays of similar dynamical 
structures, known as cells, are connected locally 
in such networks (Roska & Vanderwalle, 1993). 
The basic unit of a CNN is the cell, which is a 
one-dimensional dynamic structure connected 
only to its neighbors, allowing neighboring 
cells to interact directly (Figure 1(a)). The 
CNN dynamics is described by the nonlinear 
differential equation of a Cij cell in position (i,j) 
with uij, xij, yij the input, the state and the output 
of the aforementioned Cij cell as follows:
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where M and N represent the size of the two-
dimensional array of cells represented in Figure 1(a). 

 
Figure 1. (a) Interconnection of M x N two-dimensional 
block of cells (Cij cell and its neughbours Nr

ij) within 
the CNN approach (Roska & Vanderwalle, 1993); (b) 

CNN cell state computation based on the template 
matrices and the configuration constants
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A constant external input u and an output y are two 
main characteristics of each neural network cell. 
The block diagram for the computation of each 
neural network cell state is shown in Figure 1(b).  
It includes linear and nonlinear elements that serve 
a given purpose according to their configuration 
constants (0)ijx , R and C (0) 1ijx ≤ , C > 0, R>0) 
and to the template matrices A(.) and B(.), where 
A(.) affects the output control of the neighboring 
cells and it is known as the feedback operator, 
whereas B(.) affects the input control and is 
known as the control operator. Each element of 
the template matrices corresponds to a cell from 
the CNN structure. A two-dimensional CNN 
can be thought of as a parallel non-linear two-
dimensional filter that can be used for various 
tasks. In image processing, noise removal (Su et 
al., 2008), shape extraction, edge detection, and 
inpainting (Elango & Murugesan, 2009) can be 
achieved by calibrating the A, B, and I template 
coefficients. According to (Li et al., 2011; Nossek, 
1996), the determination of template coefficients 
is performed either by design or by learning. In the 
present case, for extracting the image edges and 
simultaneously suppressing the noise, solving the 
system of inequalities as it is described in (Nossek, 
1996) led to the following template matrices:
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In the case of biomedical images, the values of 
pixel intensities vary significantly in the areas 
corresponding to object edges. These phenomena 
lead to unexpected results when noisy images 
are processed by means of classical edge 
detection operators, such as Roberts, Sobel, 
Prewitt. Because of inhomogeneous foreground, 
background and noisy edges, it is unrealistic to 
find a uniform threshold suitable for every image 
object. Thus, the proposed CNN-based edge 
features detection is sensitive to both strong and 

weak edges. As an example, in Figure 2 where 
edges are strongly expressed, the active contour 
procedure behaves similarly when it is based on 
gradient matrix (Figure 2(a)) and based on edge 
features determined by CNN (Figure 2(b)). 

Figure 2. (a) Image of two cells from (Li et al., 
2010) with the evolved curve based on gradient 

information around the object boundaries; (b) Image 
of two cells with evolved curve based on edge 

features determined by CNN; (c) Gradient magnitude 
representation; (d) Edge features determined by CNN

On the other hand, in the case of weakly expressed 
edges, active contours driven by CNN edge 
features (Figure 3(d)) offer better segmentation 
results than the classic active contour based on 
the magnitude of the image gradient (Figure 3(c)). 
Thus, it can be seen in Figure 3(b) how the lower 
right part of the evolved edge described the cell 
more accurately than the one from Figure 3(a). 

To better understand the way a CNN works, it 
can be seen as an iterative spatial convolution 
process on bi-dimensional matrices corresponding 
to image pixel intensity values. At the price of 
increased computational cost, the edges are 
detected and enhanced, a benefit that can be 
used in cases where it is difficult to distinguish 
the useful information from he background. As 
an example, X-ray images are processed for edge 
detection (Prasad et al., 2016). Nevertheless, 
the proposed approach is not limited to bi-
dimensional filtering. It also can be employed in 
processing uni-dimensional image profiles for the 
determination of the magnitude and location of 
profile peaks. As a result, increased accuracy for 
the determination of structural ordering parameters 
is obtained (Gavrea et al., 2017). Further on, the 
procedure of evolving an initial contour based on 
edge features determined by CNN is explained. 
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Figure 3. (a) Image of a microfluidics cell with the 
evolved curved based on gradient information around 

the object boundaries; (b) Image of a microfluidics 
cell with the evolved curved based on edge features 

determined by CNN; (c) Gradient magnitude 
representation; (d) Edge features determined by CNN

For this purpose, equation (2) and the A(.), 
B(.) and I are used for the determination of the 
edge features denoted by the gCNN

ij values which 
correspond to the states of Cij cells.
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2.2 Active Contour Models  
Driven by CNN

The active contour procedure for image segmentation 
is presented as follows.  Let IS be an image defined 
on a given domain Ω, containing the background 
pixels and the foreground pixels associated with the 
image objects. One considers an initial rectangular 
perimeter that confines both  background and 
foreground pixels. The aforementioned perimeter is 
evolved towards the boundaries of the objects within 
the image under analysis. In order to describe the 
curve evolution process, a given dynamic contour 
is defined as the zero level set of a time dependent 
energy functional ( , , )LSF x y tϕ . Assuming that the 
LSF φ takes negative values inside the zero level 
contour and positivie values outside, in order to 
determine the boundaries of the objects, one has to 
find the solution of the partial differential equation 
denoted by (3), which is referred to as the level set 
evolution (Li et al., 2010):

F
t
ϕ ϕ∂
= ∇

∂                                               
(3)

where F is the speed function that controls the 
motion of the curve.

The zero level of the level set function (LSF) 
( , , )x y tϕ  corresponds to the object boundaries. 

The LSFϕ  must be smooth and accurate in image 
segmentation applications, particularly near its 
zero-level set, where it describes the contour of 
the object to be determined. In order for the level 
set to be applied for the determination of object 
boundaries, according to (Li et al., 2010), the 
previous equation is written as:

1 extediv
t

ϕϕ ϕ λ
ϕ ϕ

 ∇ − ∂∂
= ∇ −  ∂ ∇ ∂   

,
             

(4)

where eext is chosen to describe the edge 
information. The classic approach makes use 
of the following L and A energy functionals:  
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where  the coefficient 0λ > , ,α δ∈ℜ  is the Dirac 
delta function and H the Heaviside function. The A 
term speeds up the curve motion in case the initial 
contour is far away from the desired boundaries, 
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whereas the L term computes the line integral of 
the function g along the zero level contour of φ, 
pointing to a minimum in case φ is located at the 
object boundaries. The function g represents the 
edge indicator function and it is defined as:

2
1

1 S

g
G Iσ

=
+ ∇ ∗  

,
                                   

(5)

where Gσ  is a Gaussian kernel with a standard 
deviation σ used to smooth the Is image by using 
the convolution operator *.

The results of the segmentation performed by 
means of active contours based on the edge 
indicator function expressed as equation (5) can 
be seen in Figure 2(a) and Figure 3(a) in the case 
of two distinct types of cells.

By replacing the edge information function g 
with the gCNN from equation (2), equation (4) is 
transformed as follows:
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where δ represents the smooth approximations of 
the Dirac delta function. An improvement of the 
segmentation procedure can be observed in the 
case of weakly expressed edges like the ones from 
Figure 3(b) in comparison with Figure 3(a).

The proposed segmentation procedure is 
applied to two types of biomedical images, 
namely microarray images and images recorded 
from microfluidics devices. The results of 
the segmentation procedure based on edge 
information delivered by the CNN approach are 
presented in the next section. Pre-processing 
techniques can be added for contrast enhancement 
in case the application demands it. Future work 
is aimed at such implementations, considering 
the computationally efficient techniques for local 
contrast analysis available for the improvement of 
the image segmentation process (Vrejoiu, 2020). 
In order to reduce the computational time needed 
for the curve  to evolve towards its final state 
which corresponds to object boundaries, selective 
diffusion as it is proposed in (Terebes et al., 2018) 
can be also applied. Moreover, object texture 
(Barburiceanu, Terebes & Meza, 2021) can be also 
embedded within the curve evolution process in 
a similar manner as the proposed approach. This 

shows once again that the active contour model 
remains an important tool for image segmentation.

3. Experimental Results

3.1 Microarray Image Analysis 

Microarray images are used for the estimation 
of gene expression levels. RNA derived from 
biological samples is synthesized into microarray 
targets in microarray experiments. Single-
stranded DNAs or RNAs representing individual 
genes, labeled with fluorescent markers, are the 
targets. The microarray targets hybridize with 
sub-sequences (probes) of the genes within the 
whole genome on a microarray slide, with each 
gene paired with a fluorescent spot. For each 
fluorescent marker, a .tiff image is created using 
laser scanning at the appropriate wavelengths. 
In a two-color microarray experiment, a probe 
image, which corresponds to one fluorescent 
label, is compared to a reference image, which 
corresponds to the other fluorescent label. 
Using advanced microarray image processing 
techniques, gene expression levels are determined 
based on fluorescent light intensities (Campbell, 
Hatfield & Heyer, 2007). Microarray technology 
is intensively used in describing biological 
mechanisms involved in various diseases 
(Venkataramana et al., 2018;  Belean et al., 2015).

The selection of the rectangular region for each spot 
using the method proposed in (Belean et al., 2020) 
is the first step in segmenting microarray spots 
using active contours.  Both the background and 
foreground pixels associated with the microarray 
spot are included in the rectangular region. The 
foreground pixels correspond to microarray spot 
pixels, while the background pixels correspond to 
the local spot background. As a result, the second 
step is to divide pixels within each rectangular 
region into foreground and background. For each 
rectangular region, the proposed level set approach 
guided by the CNN edge features is employed in 
order to determine the contour of the microarray 
spot. The dataset onto which the proposed method 
is applied is presented next.

3.2 Dataset, results and discussion

One used 4 pairs of images corresponding to 
the microarray samples having the following 
IDs: GSM333336, GSM333353, GSM333337 
and GSM333341 (according to the microarray 
analysis conducted by (Fabro et al., 2008) listed 
in Gene Expression Omnibus). Each pair consists 
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of two images corresponding to the Icy3 and Icy5 
fluorescent dyes.

Each microarray image has a size of 4000x1944 
pixels and contains 32 spot groups with 380 spots 
per group. The GSM333336 and GSM333353 
samples represent biological replicates of uninfected 
Arabidopsis leaves compared to a common 
reference and they are further on reffered to as 
E1 samples. The GSM333337 and GSM333341 
samples are denoted by E2 and they represent 
biological replicates of infected leaves compared to 
the same reference. A selection of microarray spots 
is used for illustrating the visual results obtained by 
using the proposed active contour driven by CNN 
for spot segmentation  (see Figure 4). 

Further on, the reproducibility and biological 
significance of the proposed image processing 
techniques are assessed in the case of the presented 
dataset. The mean absolute error (MAE) and the 
coefficient of variation (CV), which indicate the 
sameness of spot intensities and the variation 
of spot intensities, respectively, are computed 
to quantify the reproducibility of the proposed 
segmentation techniques.

The MAE is given by:

1

1 n
n

spot i
i

MAE G G
n =

−∑
                                   

(7)

where n is the number of replicates, n
iG  is the 

normalized mean spot intensity value and G  is 

the spot overall mean if one considers the means 
of the corresponding spots within the n replicates.

The CV is given by:

spotCV σ
µ

=
                                                      

(8)

where σ  and µ  represent the standard deviation 
of spot intensity with subtracted background and 
the mean spot intensity, respectively.

The efficiency of the proposed method increases 
as the MAE and CV values decrease. Both the 
proposed segmentation method and the GenePix 
Pro Software approach had MAE and CV 
values computed. As it is shown in Figure 5, the 
following parameter values were obtained for the 
E1 experiment: the average MAEACM-CNN coefficient 
was 518 and the average MAEGP measured by 
GenePix Pro software was 551. Furthermore, the 
MAEACM-CNN, and MAEGP average values for 
experiment E2 were 541 and 495, respectively. In 
terms of MAE and CV coefficient, the level-set 
segmentation protocol produces results which are 
comparable to those of the GenePix Pro method. 
In the case of spot pixel intensity values, the CV 
represents a standardized metric of dispersion that 
is independent of the unit where the measurement 
was taken. A small CV shows that the pixel 
intensity values for a given microarray spot differ 
slightly. As a consequence, considering the CV 
coefficients, Table 1 shows that the proposed 
approach delivers a more accurate spot description.

Figure 4. (i) the first row ilustrates the microarray spots with irregular contours selected for segmentation, 
having the following identification numbers according to GenePix Experiment GSM33353: IDs 537, 9458, 
9454, 2583 and 10565; (ii) the second row ilustrates the edge features determined using the CNN approach; 

(iii) the third row shows the results of the proposed spot segmentation procedure
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The genes differentially expressed within a 
microarray experiment are estimated once the 
intensity values for each microarray spot are 
measured, and they are known as up-/down-
regulated genes. The interpretation of relative 
variations in intensities for the same spot from 
the sample and reference images, namely ICy3 
and ICy5, respectively, is of interest to biologists 
and medical doctors. The fold change value 
Fc = log2(R/G) is employed for selecting he 
differentially expressed genes, where R and 
G represent the median intensity for the same 
microarray spot recorded from ICy3 and ICy5 
fluorescent label, respectively. As a rule of 
thumb, a fold change value Fc > 1.5 marks a 
gene corresponding to a microarray spot as up-
regulated or over-expressed, which means that 
the gene is active in the case of the microarray 
experiment under analysis. 

Table 1. Comparison of the values of the coefficient 
of variation (CV) determined based on the proposed 
segmentation procedure ( second column) and the 

ones delivered by GenePix Pro

Experiment ID 
(Image channel)

Mean CV 
(proposed 
method)

Mean CV
(GenePix)

GSM333336 (ICy3) 0. 586 0.663
GSM333336 (ICy5) 0.496 0.534
GSM333353 (ICy3) 0.439 0.635
GSM333353 (ICy5) 0.648 0.706
GSM333337 (ICy3) 0.592 0.684
GSM333337 (ICy5) 0.543 0.766
GSM333341 (ICy3) 0.472 0.552
GSM333341 (ICy5) 0.622 0.795

0

1000

2000

E1 = (GSM333336, GSM333353) 
E2 = (GSM333337, GSM333341) 

E

MAEACM-CNN

MAEGP MAEGP
MAEACM-CNN

Figure 5. The reproducibility of the proposed spot 
segmentation approach indicated by the sameness 

of the spots evaluated using the mean absolute error 
(MAEACM-CNN) on the ordinate axis in case of the two 

sets of microarray image samples E1 and E2

Considering the proposed selection of spots, the 
fold change factor for the spots having the IDs 

2583 and 9458 shows an increase in the Fc by 0.6 
and 0.52 in comparison with GenePix Pro, which 
obtained the values of 1.62 and 1.54. 

This shows an activation of the At5g38430 gene 
(index 2583) involved in the process of converting 
the carbon dioxide into energy-rich molecules, 
whereas the AT3G09440 gene (index 9458) is 
part of a family of heat-shock proteins produced 
by plant cells in response to stressful conditions.

3.3 Microfluidic Device Images

It is well-known that gene expression (i.e. the 
translation of information encoded in a gene 
into complex molecules such as proteins which 
play critical roles in a living organism) is 
involved in the development and maintenance 
of multicellular organisms (Venkataramana et 
al., 2018). Any alteration of these processes 
may have a critical impact on the evolution of 
an organism such as cell motility that may lead 
to primary tumor formation. Consequently, along 
with the gene expression analysis, the cell and 
cell clusters have to be characterized also in 
terms of their physical features.

Some important tools for cell features extraction 
are the microfluidic devices.  The manipulation 
of fluids that are geometrically confined to a 
submillimetre scale is known as microfluidics. 
These microfluidic system constraints include 
benefits such as cost-effectiveness and a high 
resolution, as well as features such as laminar 
flow in the case of both single and cluster cells 
navigating through a complex area (Hong et 
al., 2016; Umer et al., 2018). Microfluidics 
systems with several channels are constructed 
with these advantages in mind, and cultured 
cells are connected to the channel surface. This 
lays the groundwork for a cell cluster to enter 
the channels for further analysis. Mathematical 
models are available for describing the motion of 
a viscous fluid in porous media, in our case the 
microfluidic channels (Gutt, 2020). Cells and cell 
clusters contained in the microfluidic devices are 
moving through the microfluidic channels based 
on the gradient of nutrients using cell adhesion 
molecules. Thus, complex mathematical tools are 
available for modeling and evaluating cell cluster 
motility. Nevertheless, this paper is focused on 
the segmentation of microfluidics images for the 
determination of cells and cell clusters.
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A mention regarding the size of the clusters of 
cells found in the blood or lymphatic circulatory 
system of patients with several metastatic 
carcinomas is given in (Hong et al., 2016). 
They can range in size from 20 to 130 μm and 
contain up to 100 cells, with the metastatic 
potential of up to 50% higher than that of 
single cells (Umer et al., 2018; Lisencu et al., 
2021). Significant advances have been reported 
regarding the molecular analysis of tumor 
clusters, nevertheless, the limitation of state-of-
the-art research with regard to the cluster cells 
dynamics process lies in the scarce information 
regarding the assessment of cell cluster velocity 
in relation to various factors such as cluster size 
or events (i.e., cluster division or unions). Thus, 
understanding the key phenotypes of cell clusters 
is an open subject in current research. Using 
microfluidic devices, images of cluster cells 
along the microfluidic channels are recorded 
(Au et al., 2017). State-of-the-art research shows 
an increased interest in the analysis of the cell 
clusters migration process (Spatarelu et al., 2019; 
Ma et al., 2018). Collective migration in the case 
of single cells was analyzed, showing that it is 
associated with biomechanical particularities 
such as the restructuring of extracellular matrix 
(ECM) (Spatarelu et al., 2019). Considering cell 
clusters, the use of microfluidic devices with 
narrow constrictions for the channels (i.e. channel 
width of 5-10 μm) proved that the process of 
extravasation in the case of cell clusters occurs 
more often than in the case of single cells (i.e. 
in 90% of clusters, up to 20 cells were found 
to migrate through the narrowest constriction 
of 5 μm) (Ma et al., 2018). Nevertheless, more 
information is necessary regarding cell clusters 
that are not confined to a constricted area. Thus, 
the questions that arise are: What is the cell 
clusters size in the case of microfluidic channels 
having a width of 50 μm, with the possibility to 
host cell clusters of large size (in round numbers 
up to 20 - 30 cells per cell cluster (Umer et al., 
2018))? Are the cell clusters formed even in 
case that the channel size is not limited?   The 
following dataset and the proposed method are 
used further on to answer the previous questions.

3.4 Dataset, Results and Discussion

In the case of the proposed dataset, the 
microfluidic channels were designed to have a 
channel width of 50 μm, in order to allow cell 

clusters of various sizes to be present within 
the same channel. For obtaining the cell cluster 
images, transfected suspension cells were loaded 
into the seeding chamber of collagen-coated 
microfluidic devices and allowed to migrate for 
at least 24 hours (Tudoran et al., 2015). Migrating 
cells were recorded using a Nikon BioStation 
microscope. Time-lapse images were acquired 
at multiple spatial locations for a number of 10 
microfluidic experiments, leading to a dataset 
of over 30 images that were considered for cell 
cluster segmentation using the proposed approach. 
Each image recording of 16 microfluidic channels 
with 0 to 3 cell clusters within each channel led 
to a number of over 500 cell clusters available for 
analysis. Microfluidic channels hosting mammary 
cancer cell lines are ilustrated in Figure 6.

Figure 6. Microfluidic channels hosting mammary 
cancer cell lines

Using the proposed segmentation approach, a 
rectangular perimeter using active contour models 
guided by the CNN edge features is evolved as 
described by equation (6). At the end of the curve 
evolution process, the resulted  separates the 
pixels corresponding to the cells or cell clusters 
from the background. The image horizontal profile 
was computed as the preliminary procedure for the 
determination of the initial rectangular perimeter 
which was used as the initial condition for the 
curve evolution. The indices for the maximum 
values within the image profile correspond to the 
set Hi of horizontal lines hi, whereas every two 
consecutive lines hi and hi+1 delineate a given 
microfluidic channel i. Based on the values of the 
pairs (hi, hi+1) the rectangular perimeter is defined. 
The curve evolution is applied separately on sub-
images corresponding to each of the microfluidic 
channels, as it is illustrated in Figures 7 and 8. As 
preprocessing steps, on each of the sub-images 
corresponding to the microfluidic channels, a 
padding procedure which replicates the image 
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margins followed by a Gaussian convolution 
using a convolution kernel of size 5 and σ = 1 
are applied.

Figure 7. Visual results for two selected cell clusters 
(first column of images) together with the representation 

of the image gradient and CNN edge features in the 
second and third column of images, respectively

Figure 8.  Segmentation of cell clusters during: 
(a) their movement using both the classic active 
contour approach (left) and the active contours 

based on CNN edge features (right) and (b) events 
such as cluster division or union using both the 
classic active contour (left) and the CNN driven 

active contour (right)  

At this point, the initial curve is evolved by 
using both the classic active contour model and 
active contour models driven by edge features 
determined using CNN. 

The main benefits of the last approach are 
illustrated in Figure 8, in comparison with a 
classic active contour model. In the case of cell 
adhesion molecules attached to the surface of 
the microfluidic channel and used for the cell or 
cell clusters to advance, better visual results are 
obtained by using the proposed method. In Figure 
8(a) the second image shows that cell-specific 
adhesion molecules are detected more accurately. 
Regarding the weakly expressed edges, Figure 
8(b) shows a comparison between the classic 
active contours and the active contours based on 
CNN. Here, in the case of the cell cluster edges 
from the right side, the proposed approach also 
delivers more accurate segmentation results.

The cells within all channels are analyzed in 
terms of their shape and size using the proposed 
approach for segmentation. The gradient and edge 
features determined for the cell clusters, are also 
illustrated in Figure 7. Thus, in Figure 7 first line 
of images is described as a moving cell cluster, 
where the cell-specific phenotype is visible and 
used for the migration of the cell. In the second 
line of images, the cell cluster has an unusual 
shape, which is due to the cell cluster division 
process which may take place. The proposed 
segmentation procedure is tested in both cases. 
Referring to Figure 7, the second image column  
reveals the gradient magnitude in the case of cell 
cluster images, whereas the third image column 
shows the edge features determined by using the 
cellular neural network.

In terms of cell cluster sizes, both single-cell and 
cell clusters sizes were determined for the  entire 
dataset, leading to an average size of  520 μm 
for the single cells. Moreover, the size ranges 
between 700 to 1200 μm for 29.6 percent and 
between 1200 and 5000 μm for 60.9 percent of 
the entire cell cluster population. It can be noticed 
that only 9.5 percent of it corresponds to single-
cells, showing that, even in conditions of non-
extravasation (no channel constriction imposed), 
there is a preference for the tumor cells to migrate 
in large clusters.  
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The accurate estimation of gene expression levels 
is also important in describing phenotypes for 
living organisms. Considering the aforementioned 
key aspects, the main novelties this paper 
brought about are the proposed segmentation 
procedure for accurate determination of cell 
cluster sizes using microfluidics devices and the 
determination of supplementary differentially 
expressed genes in comparison with the existing 
software so as to better explain the key biological 
processes involved in plant defense responses to  
pathogen infection.

4. Conclusion

Two of the major research goals in this field of 
biomedical applications are the use of microarray 
technology for an accurate description of genetic 
mechanisms governing different bio-molecular 
pathways involved in different diseases (Berry 
et al., 2019) together with the characterization 
of cluster cell phenotypes which have a leading 
role in tumor migration and metastasis (Micalizzi 
et al., 2017). The present paper proposes a 
segmentation procedure used in the computation 
of microarray spot average intensities and the 
determination of the features of cells and cell 
clusters. The employed procedure showed 

increased segmentation accuracy in case of 
image objects with weakly expressed edges in 
comparison with classic active contour models. 
Also, a more accurate identification of cell-
specific motion parts has been observed (i.e., 
organelles).  These results show great potential 
in both the characterization and the identification 
of events such as cluster cell division or merging 
events for the cell migration process. Moreover, 
in the case of microarray spot segmentation, the 
proposed procedure led to the identification of 
supplementary up-regulated genes in comparison 
with the number of up-regulated ones determined 
with the existing software platforms (i.e., GenePix 
Pro). The proposed CNN-driven active contours 
model is also employed for the analysis of the 
cell cluster migration process. It was found that 
tumor cells prefer to migrate in clusters in non-
constrictive microfluidic channels.
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