An Evolutional Knowledge-Based Framework for
Reverse and Forward Engineering

Stefan Trausan-Matu

Department of Computer Science
“Politehnica” University of Bucharest
313, Splaiul Independentei

77206 Bucharest

ROMANIA

Abstract: The paper describes a knowledge-based framework
for the development of program reverse and forward engineering.
The substratum for this framework is an object-oriented
environment for knowledge-based applications (XRL) written in
Common Lisp.

The approach starts from the idea that forward and reverse
engineering arc evolutive, knowledge intensive activities.
Regarding the development of knowledge-based systems,
knowledge acquisition is considered as a modelling activity that
implies not only the evolution of the knowledge base of the
system but also the evolution of the mental model that the human
experts actually use. Therefore, an integrated collection of tools
and techniques that support the construction, evolution, and
usage of knowledge-based models of programming concepts and
constructs, is provided. An evolutive taxonomy of re-usable
program components related to programming concepts is also
viewed as essential to the approach.

One of the main applications written in the knowledge-based
framework is the development of an intelligent reverse
engineering system of FORTRAN programs. After obtaining a
high level description of an analysed program, this description
may be refined to C or pseudocode.

Stefan Trausan-Matu received the engineer degree in
Computers from the Polytechnical Institute of Bucharest in
1983. In 1994 he took his Ph D degree from the same higher
education institution. Between 1983 and 1985 he worked in the
field of CAD of integrated circuits at "Microelectronica” Factory
in Bucharest. Since 1985 he has worked in the domain of
Knowledge Representation and Processing at the Research
Institute for Informatics in Bucharest. He has been head of
Expert Systems Laboratory at the institute. Last October he left
the institute and took an academic position at the
"POLITEHNICA" University of Bucharest. He teaches courses
on Artificial Intelligence, Data Structures and Algorithms,
Advanced Programming Languages. His research interests are
knowledge representation, constraint processing, object-oriented
Systems, expert systems, and artificial intelligence applications
in software engineering.

1. Introduction

Reverse engineering systems are following
backward the path normally taken by software
development methodologies (in forward
engineering systems). The goal of such systems is
obtaining a high level description (a

Studies in Informatics and Control, Vol. 3, No. 4, Dec. 1994

specification) of a program written in a usual
language (¢.g. FORTRAN or COBOL). This high
level description may be used towards attaining
several goals as re-writing the program in other
language, maintenance, validation or
restructuring of the program.

Usually, reverse engineering systems start with
an analysis similar to that of compiler front-ends.
The result of this first phase is an intermediate
form (a simpler language and/or the control flow
and data flow graphs) which is the starting point
for a second, abstraction phase. This second
phase is usually completed by a set of abstraction
transformations of the intermediate form towards
obtaining a higher level description.

Intelligent, knowledge-based reverse engineering
systems extend the capabilities of automatic
program abstraction by the usage of general
software engineering and specific problem
domain knowledge (a good discussion about the
usage of knowledge-based techniques in software
engineering is [2]). Such knowledge may suggest
the suitzbility of a particular abstraction,
dramatically reducing the amount of search
through the space of possible abstractions, A
knowledge-based approach is motivated by the
complexity and by the knowledge intensive
character of program understanding. One goal of
such systems is obtaining at least similar results
as human experts’ in program understanding.

A remarkable characteristic of knowledge-based
reverse engineering systems is their potential for
evolution. One of the main starting points of this
approach is the fact that knowledge-based reverse
engineering systems may be improved after each
run. The improvement results from knowledge

309

acquisition or restructuring (e.g. the acquisition
of new heuristics about selecting a particular
abstraction). The indication that some knowledge
must be acquired or/and previous knowledge
must be restructured comes after the validation
of the results obtained by the system vs. the
understanding of some human expert regarding a
sample program. A very important remark here is
that the knowledge acquisition process may
extend and/or restructure not only the system's
knowledge base but also the knowledge of the
human expert. Considering knowledge
acquisition as a modelling activity, yields such a
remark [3,7,21].

This paper presents a knowledge-based
framework for developing program under-
standing and refinement applications. This
framework has been developed in the XRL object-
oriented environment for knowledge-based
applications [4,5,7,19]. The main concern of the
framework is the provision of tools for the
representation and processing of the knowledge
categories involved in program transformations.
It considers three categories of knowledge: a
taxonomy of programming concepts, a collection
of abstraction and refinement transformations,
and several rule sets that include program
understanding heuristics. One of the main
applications written in this framework is an
intelligent reverse engineering system for
understanding and re-writing FORTRAN (IV)
programs in C.

The next section of the paper introduces the XRL
environment. The knowledge-based framework
for program understanding and refinement is
presented in the third section. The knowledge-
based reverse engineering system for FORTRAN
programs is described in the fourth section.

2. The XRL Object-Oriented Environment
for Knowledge-Based Applications

Object-oriented programming (OOP) is now largely
looked upon as a powerful programming paradigm,
able to cope with software change and re-use. OOP
provides an anthropomorphic metaphor (the object)
that is more cognitively ergonomical for complex

310

systems decomposition. An object has a number of
components (slots) and can respond in a specific way
to a number of messages. An inheritance relation is
defined among objects: When an object A inherits
from another object B, it can be considered that A
has all the components of B (unless they are
redefined in A).

Knowledge-based systems explicitly represent and
process knowledge from the application domain.
The most powerful knowledge-based programming
environments (e.g. KEE [12]) integrate several
knowledge representation paradigms in order to
cope with the various knowledge types of an
application. Such environments are usually written
in Lisp around an OOP language. In addition to
common OOP characteristics, the kernel language
offers some facilities for the so-called frame
knowledge representation paradigm [12]. As a
consequence, complex structuring of objects is usual,
a great emphasis is placed on multiple inheritance
with method combination, and other Al knowledge
representation and control mechanisms are
integrated: rules, logic programming, demons, and
constraints.

XRL is an object-oriented environment for
knowledge-based applications, that integrates
structured objects, production rules, and
constraint representation with several processing
mechanisms [4,5]. The environment has been
developed in Lisp and has the layered
architecture depicted in Figure 1.

Concurrent

Constraint Production rules
refinement

representation

and processing Object-oriented representation

COMMON LISP

Figure 1. The XRL Architecture

XRL is a so-called prototype-based object-
oriented language. In such languages there is no
separation among class and instance objects. An
individual (the equivalent of an instance) object is
crcated by a clone (copy) operation of its

Studies in Informatics and Control, Vol. 3, No. 4, Dec. 1994

prototype. This individual object may be a
prototype to another individual object as.o.
Therefore, several (dynamic) successive
refinements of an object may be performed. This
is not the case with class-instance OOP languages
that do not allow an instance to be further refined
to another instance.

An XRL object is defined with the "unit"
construct. The object's meta-description is
declared in the self slot. The supers sub-slot of
the meta-description declares the list of objects
which the current object may inherit slots and
methods from. The assignment of methods to
messages for the object is described as selector-
method pairs in the same self slot. Slots may be
meta-described in a similar way to objects (see
the "AddPositive" object described at the end of
this section).

Below, four XRL objects are presented. They are
used in the reverse engineering system described
in the fourth section. The "selfAssign" object
inherits properties from "assign" and is the source
of inheritance for "inc". All of these objects have
a specific attached method (describing their own
behaviour) for the "write_in_C" message. "inc32"
is a particular object that is a clone of the generic
"inc" object.

(unit assign
self (a statement
write_in_C Cassign)
variable undf
expression undf)

(unit selfAssign
self (a statement supers (assign)
write_in_C Cselfassign))

(unit inc
self (a statement supers (selfassign)
write_in_C Cinc)
expression 1)
(unit inc32 (a inc variable x1))

Studies in Informatics and Control, Vol. 3, No. 4, Dec. 1994

C code for the "inc32" statement is
obtained by sending it the "write_to_C" message:
(msg ‘write_to_C 'inc32). This message is
processed by the "Cinc" associated method:

(defmethod Cinc (selector_name target_object)
... Lisp code for printing the inc statement)

The description of a program in the reverse
engineering system presented in this paper
consists in a network of XRL objects. Objects in
this network contain explicit links (slots filled
with other object/s) for control flow, for data
flow, for object decomposition, and for
abstraction and refinement to other objects.
Production rules are the most popular knowledge
representation techniques. They are very suitable
to represent heuristic knowledge as situation-
action pairs [8,10]. XRL rules are implemented
as objects. This implies that rules may be related
in inheritance hierarchies similar to concept
taxonomies. For example, the set of rules that
detects which are the usages of an array in a
program, has the following structure:

RULE

N

STORE SORT

/R

STACK QUEUE ACCUM

N

SEARCH FILTER

Figure 2. A Rule Taxonomy

311

An example of an XRL rule is:

(unit store
self (a rule_behavior)
arguments (array)
if (notInterchanges singleIndex dynamics)
notInterchanges (not (fslot 'interchanges array))
singleIndex (= (fslot 'nr_of_indexes array) 1)
dynamics (member (fslot 'dynamics (eval (car
(fslot 'indexes array))))
(onlyincrementation
onlydecrementation))
then ((pslot 'usage array (cons 'store (fslot 'usage

array)))))

The integration of constraint processing facilities
in an OOP system enhances the power of
representation and processing. Relations among
objects or among components of an object,
transformations of the state of objects, can be very
elegantly described using constraints. Constraint-
based programming may be considered as a new
programming paradigm that is useful in a wide
area of applications. In artificial intelligence,
constraints attracted great interest due to their
very suitable representation for describing
complex problems involving search. Constraints
are relations between variables named cells of
the constraint. Each variable may have values in
a particular set, finite or not. Constraint networks
are created by sharing cells of a set of constraints.
Constraint processing consists in the assignment
and/or change of values in cells so that, finally,
all constraints are satisfied [20].

An example of a generically, parametrically, and
hierarchically defined constraint in XRL, for a
series connection of N electrical resistors, is:

(:DeclareConstraint NSeriesResistors
cells (ul u2ili2r)
:GroupsOfCells ((t1 (ul i1)) (12 (u2 i2)))
:parameters (n)
‘InnerConstraints ((sum :isa (n_adder :n n))

312

(res :isa (:set n :of resistor
-atleast 2)))
-connections ((:map 'r :to's :of sum)
(:group-map 't1 :to 't :of (res 1))
(:group-map 't2 :to 't2 :of (res n))
(do((i1(1-m)) ((=im))
(:group-connect 't2 :of (res i)
:to 'tl :of (res (1+i)))
(:connect 'r :of (res i) :to (term
i) :of 'sum))
(:connect 'r :of (res n) :to (term
n) :of 'sumy)))

The concurrent refinement module [6] offers a
blackboard-based [8] problem-solving archi-
tecture for instantiating (considered as
refinement) XRL objects. Associated with this
architecture, a refinement language is defined.
For example, the generic object description below
is a declarative specification of a procedure for
the addition of the positive elements in a collection
The same description also contains annotations
for the instantiation of the object, as a whole, and
of its components. For example, the object
"AddPositive" and the "description” slots will be
refined by "expand"-ation. The "inputs” slot will
be "anchor"-ed to an existing description, and the
"outputs" slot will be left "as-it-is".
(unit AddPositive
self (a ProgrDescr modeR 'expand)
inputs (a Collection elem-type Real)
(a Slot ModeR 'anchor
to-anchor ExecChooseCol)
outputs (a RealVar)
(a slot ModeR 'as-it-is)
description (a DataFlowSequence
description
(allof
(a generate gen (the
iterator from inputs))
(a TestIfPositive)
(a SelfAdd))
(a Slot ModeR 'expand)
start (the inputs)

Studies in Informatics and Control, Vol. 3, No. 4, Dec. 1994

finish (the outputs))
(a slot ModeR ‘expand))

The concurrent refinement and constraint
processing modules were not used in the first
version of the reverse engineering system
described in the fourth section. Nevertheless, they
will be used in the next version due to their
potential for describing complex problem- solving
regimes (for example, in the co-operation of
multiple knowledge sources in program
understanding). The concurrent refinement
system has been used for a program specification
and refinement application [21].

3. A Knowledge-Based Framework for
Program Understanding and Refinement
The XRL environment has been the substratum
for developing a complex framework for forward
and reverse engineering of programs represented
as object networks. This framework has three
parts that correspond to three kinds of knowledge
involved in software engineering:

1. A taxonomy of programming concepts and

constructs;

2. An abstraction and refinement mechanism
based on a programmed graph grammar
formalism;

3. Mini expert systems containing heuristics for
program understanding and refinement.

3.1 The Taxonomy of Program Concepts and
Constructs

The taxonomy of programming concepts and
constructs is organized as an extensible hierarchy
of XRL objects along the inheritance relation.
The objects in the taxonomy are prototypes for all
the individual objects used for program
descriptions at various levels of abstraction. Each
object is at the same time a construct that may be
used in a program description and it also defines
a programming concept.

Studies in Informatics and Control, Vol. 3, No. 4, Dec. 1994

In the taxonomy there are three main groups of
objects corresponding to data, control, and
procedural abstractions. The data abstraction
objects are generic descriptions of data
structuring as container, table, set, stack, a.s.o.
Control abstraction objects include control
structures and various kinds of statements or high
level processings on data objects. Procedural
abstraction objects describe classes of procedures.

A very important facility of the framework is the
possibility of extending the taxonomy by the
inclusion of new objects. For example, for a
particular application, the domain specific objects
may be included in this taxonomy. These specific
objects may, in some cases, extend even the
general programming taxonomy of objects by
introducing new programming concepts or by
restricting the existing taxonomy (as discussed in
[21]). This is one of the main ideas of the
approach presented in this paper. In fact, the
taxonomy of programming concepts is a
knowledge base that may be considered as a part
of a programming theory. This theory evolves as
a result of developing new applications (for
understanding and refinement of programs in
various domains) that need the addition of new
objects and/or the revision of the existing ones.
New concepts may be suggested after a training
process that consists in automatically
understanding a program with the reverse
engineering System, comparing this
understanding with the one of a human
(eventually the author of the program), and
finding the missing concepts that determine the
existing differences.

Figure 3 presents a part of the taxonomy of

programming concepts and constructs that are
now in the framework.

313

PROGRCONCEPT

T E——

DATADESCR PRGND FUNCT
DATAELEM CONTAINER MAPPING TEST //INPUT OUTPUT STOP JOIN
TABLE COLLECTION
/\ S
HASHTBL INDEXTBL EXPLICITCOL BAG SET IMPLICITCO|
SRt s
ARRAY 4‘
DISPENSER SEQUENCE CURSORSTR SYMBOLTABLE

TN

LINKEDLISTCURSORTREE

/N~ |

STACK QUEUE HEAP INTERVAL
ASSIGN
——
SELFASSIGN INDEXEDASSIGN

/N

INC DEC NEGATE INDEXEDSELFASSIG

—

INITIALIZVARASSIGNEXPRASSE

‘ INDEXEDVARASSIGN

I INSDEXEDINITIALIZ
BLOCK

S

BSEQ BLOOP BIF BIF-ELSE

i

STDLOOP REFINEDLOOP

BT e,

BDOWHILE BWHILE BFOR

Figure 3. A Taxonomy of Programming Concepts and Constructs
taxonomy above discussed. Program abstraction

3.2 Abstraction and Refinement Transformations

The description of a program in the framework
presented here consists of a network of objects
that are clones of generic objects from the

314

and refinement are obtained by transformations of
the network of objects. For the description and
manipulation of such transformations, a
specialized module has been developed. In this

Studies in Informatics and Control, Vol. 3, No. 4, Dec. 1994

module, each possible transformation is
represented as a production in a programmed
graph grammar [11]. In Figure 4, an example of
a production that transforms a four-node
subgraph into a new node is presented. In this
example, T is the so-called "embedding"
transformation of arcs [11] and P is the
production applicability predicate.

nl
arcl ni
n y n$ arc}
-—-ﬁ new
n3 Y nd pr aid
arc2 né
né
n2 n5
pr<(snew, T, P) with P=true and T={(arcl ,arc3),(arc.
n3 nd

Figure 4. A Graph Grammar Production

3.3 Mini Expert Systems Containing Heuristics
for Program Understanding and Refinement

The concept taxonomy reflects the structuring of
the programming domain. The graph grammar
transformation is a formalism for the description
of knowledge about abstraction and refinement
among groups of concepts. In addition to these
two knowledge categories, heuristic knowledge is
usually involved in program understanding and
refinement. For example, if in a procedure the
components of an array are updated only by
interchanging them in a loop, the procedure
might be a sorting one. Such heuristic knowledge
is commonly wused by humans when
understanding a program. For the representation
and processing of such knowledge, a production
rule paradigm [10] is adequate.

As discussed in Section 2, XRL rules are
represented and organized as objects. This gives
the possibility of a hierarchical organization of
rules. Another advantage of the object
implementation is the uniformity of
representation that facilitates the integration of
heuristic knowledge into taxonomically organized
concepts. Several related rules are grouped in a

Studies in Informatics and Control, Vol. 3, No. 4, Dec. 1994

so-called rule set. A rule set is an object that may
be viewed and used as a mini expert system that
provides information about some possible
abstractions or refinements.

4. A Reverse Engineering System for
FORTRAN Programs

The reverse engineering system presented in this
section is an application that combines the facilities
provided by the knowledge-based-framework
described in the last section with compilation
specific techniques. The goal of the system is
abstracting a high level description of a FORTRAN
program. The result of program abstraction is the
starting point for the generation of a C or
pseudocode version of the initial FORTRAN
program. The processings made by the system are
illustrated in Figure 5. These processings go through
three phases: the source program analysis and
intermediate code generation, the generation of the
network of objects' representation, the abstraction
phase, and (if desired) generation of code in another
language (e.g. C).

FORTRAN program

[Lexical, syntactical, and semantical analysis |

Intermediate code

Preprocessed code

Symbol table

[Translation to a network of objects]

Program representation as a network of objects
with control flow arcs

Program representation as a network of objects
with control and data flow arcs

ol
| Control abstraction]

| Loop analysis and refinement]

Data structure abstraction]

Abstract model of the program

C program Pseudocode

Figure 5. Processings in the Reverse
Engineering System

315

4.1 Source Code Analysis and Intermediate
Code Generation

The FORTRAN program is, first of all, lexically,
syntactically, and semantically analysed and
translated into an intermediate code language. A
symbol table is also generated during this phase.
The intermediate code is further preprocessed for
some simplifications that reduce the number of
statements and control structures. For example, a

FORTRAN program Intermediate code
I=1 (EXPR %%VARO 1)
$=0 (EXPR %%VARI 0)

2 IF(1.GT.10)GOTO1 2

(LEXPR %%VAR2

FORTRAN program, its intermediate and
preprocessed codes are below listed, emphasizing
the statements' correspondence in the three
languages. In this example, preprocessing
reduces logical assignment, test, and, eventually,
a branch statement, to "IF" or "IFNOT"
statements,. The "LOOP" statement (that
corresponds to FORTRAN "DO") in the
intermediate language is translated into
assignments, tests, and branches.

Preprocessed code

(EXPR %%VARO 1)

(EXPR %%VARI1 0)

2

(IF (%%VARO ***GT*** 10) 1)

%%VARO ***GT*** 10)
(IFNOT %%VAR2 -2)

(GOTO 1)
2
=I+1 (EXPR %%VARO %%VARO + 1) (EXPR %%VARO %%VARO + 1)
S=S+I*1 (EXPR %%VAR1 %%VARI + (EXPR %%VAR1 %%VARI +
%%VARO * %%VARO) %%VARO * %%VARO)
WRITE(*,3)] (OUTPUT %%VARO) (OUTPUT %%VARO)
GOTO2 (GOTO 2) (GOTO 2)

1 IF(S.GT.10)WRITE(*,3)S 1

(LEXPR %%VAR3

1

%%VARI ***GT**¥)

(IFNOT %%VAR3 -3)

(IFNOT (%%VARI ***GT*** 10)

-3)
(OUTPUT %%VARI1) (OUTPUT %%VARI1)
-3 3
3 FORMAT(12) (INFO 3 FORMAT(12)) (INFO 3 FORMAT(12))
DO 41=1,10 (LOOP 4 %%VARO 110 0) (EXPR %%VARO 1)
1.1
(CONTINUE)
4 WRITE(*,3)I 4 4
(OUTPUT %%VARO) (OUTPUT %%V ARQ0)
(EXPR %%VARO0 % 1)
(TFNOT (%%VAROQ ***GT*** 10)
1.1)
STOP (STOP) (STOP)
END

The symbol table obtained after parsing is:
(A %%VARO INTVAR 0)

(S %%VAR1 REALVAR 0)

(%%VAR2 %%VAR2 VAR 0)
(%%VAR3 %%VAR3 VAR 0))

316

Studies in Informatics and Control, Vol. 3, No. 4, Dec. 1994

4.2 Generation of the Program Representation
as a Network of Objects

The next processing phase is concerned with the
creation of objects for each preprocessed code
statement. Links that reflect control flow and data
flow between the generated objects are also set

up.
A classification of statements according to the

a result of this abstraction, basic blocks [1,15] are
gencrated as clones of the object, that describe the
Scquence control abstraction. Between objects
describing statements and the surrounding basic
blocks, a link is maintained.

The network of objects is further enhanced by
data flow information computed by an algorithm
similar to those used in some compilers [1,15].
The description of the program is now a network

Preprocessed code

(EXPR %%VARO 1)

(EXPR %%VAR1I 0)

2

(IF (%%VARQ ***GT*** 10) 1)

(EXPR %%VARO %%VARO + 1)

(EXPR %%VARI1 %%VAR] +
%%VARO * %%VAR0)

(OUTPUT %%VAR0)

(GOTO 2)

1

(IFNOT (%%VAR1 ***GT** 10) .3)
(OUTPUT %%VAR1)

3

(INFO 3 format(i2))

(EXPR %%VARO 1)

1.1

(CONTINUE)

4

(OUTPUT %%VARO)
(EXPR %%VARO %%VARO + 1)
(IFNOT (%%VARQ ***GT**x* 10) 1.1

(STOP)

Generated object

INITIALIZ-82
INITIALIZ-830
JOIN-831
IF-832

INC-833

SELFASSIGN-834

OUTPUT-835
GOTO-836
JOIN-837
IFNOT-838
OUTPUT-839
JOIN-840
INFO-841]
INITIALIZ-842
JOIN-843
CONTINUE-844
JOIN-845
OUTPUT-846
INC-847
IFNOT-848

STOP-849

Basic block
BSEQ-850
BSEQ-854

BSEQ-857

BSEQ-853
BSEQ-856
BSEQ-852

BSEQ-851

BSEQ-855

hierarchy of programming concepts is made
when generating objects. For example, "EXPR"
assignments in the preprocessed code arc
translated into specific clones of "INITIALIZ,"
"SELFASSIGN," "INC," and other descendants
of the "ASSIGN" object from the taxonomy of
programming constructs. Control flow links are
also generated at the moment of each creation of
a new object.

A first control abstraction of sequences of
statements is also obtained during this phase. As

Studies in Informatics and Control, Vol. 3, No. 4, Dec. 1994

of objccts (for statements in the preprocessed code
and for basic blocks) with links reflecting the
control and data flow. This description is the
starting point for several types of abstractions.

4.3 Abstractions

All of the abstractions in this phase are obtained
by means of the graph grammar parsing module
described in the previous section. New
abstractions may be included by adding new
productions in the grammar. Abstraction
processes may be guided by heuristics represented

317

as XRL production rules. Usually the result of an
abstraction is a new object, clone of an object
from the taxonomy of programming concepts and
constructs.

Due to the unstructured character of FORTRAN
programs, control abstractions are the first
transformations meant for recognizing the basic
control structures (sequence, decision, and loop)
in the program described as a network of objects.
For each abstraction, a new object, clone of the

BSEQ-850

\L\D‘_-___-

BSEQ-854

!

BSEQ-85 QSEQ-BS'?

BSEQ-856

é2,,/”

BSEQ-852

"
T

BSEQ-855

object describing the abstraction (from the
taxonomy of programming constructs) is
gencrated. This new object contains the objects
that have already been abstracted, and may be
considered for other abstractions.

The control abstraction process is carried out by
means of a grammar similar to that in [14].
Figure 6 illustrates the application of an "If" and
a "Loop" transformation to the control flow graph
of the program discussed in this section.

BSEQ-850

Jp&r_——_—

BSEQ-854

2

'_WM> BIF-888 BSEQ-857

If
V4
BSEQ-852
\L J_ BSEQ-852
BSEQ-851 | '> BLOOP1-8
‘ Loop \L
BSEQ-855
BSEQ-855

Figure 6. An Example of " If" and "Loop" Control Abstraction
Transformations in the Program Above Considered

318

Studies in Informatics and Control, Vol. 3, No. 4, Dec. 1994

The loop and data structure abstractions also
consist in the application of some specific
transformations, represented as productions in the
graph grammar. The decision on applying a
transformation takes into account information
(including, for example, the notion of cobweb in
[25]) and heuristics (represented as production
rules) about variables in the program. A special
emphasis is paid to variables (and especially to
induction variables [1]) in loops. Techniques
specific to loop optimizations in compilers [1] are
combined with loop understanding heuristics for
loop abstraction. In the next version of the
system, loop analysis will be extended to covering
loop understanding presented in [22].

Array analysis is another major concern of the
reverse engineering system presented in this
paper. The usage of heuristics permits some
guesses about the possible usage of an array,
suggesting possible abstractions of cach array
(associated with its indices) 10 a hi gher level data
structure (e.g. a stack or a queue). In [21], an
experiment for abstracting a stack from a
FORTRAN program, is prescnted.

4.4 Code Generation

After the abstraction phases above presented, a
network of objects describing the initial program
at a higher level, is obtaincd, This description can
be further abstracted at an cven higher level or it
may be the starting point for forward cnginecring
with a view at obtaining code in a specific
programming language. For example, in the
system described herc, the abstract description
resulted from the rcverse engincering of
FORTRAN programs can casily be translated into
C or pseudocode. This forward cngincering phase
is completed by (C and pscudocode) gencration
methods attached to each object. The FORTRAN
program which the examples in this scction
referred to, has been translated into C as:

void main()

{int I;
float S;
I=1;
S=0;

Studies in Informatics and Control, Vol. 3, No. 4, Dec. 1994

while (1(I>10))
{
I++
S=S+I*I;
printf{("\n I=%d".I);
3
if(S>10)
{
printf("\n S=%(",S);
}
for(I=1: I(I>10); I++)
{
printf("\n I=%d",1);
}
exit(0)y;
}

Loop and array analysis is very important for the
translation of the analysed programs into other
languages. For example, loop analysis provides
information for the refinement of cach loop to a
specific loop statement in C. In the above
cxample, two loops have been refined to a
"while", respectively a "for" loop.

Array analysis is also important for the
generation of C code. For example, C arrays start
{from 0 and not from 1 as in FORTRAN. This fact
brings about some dccisions on specific
refinements. These decisions are due to array
usage analysis that may be considered a mini
expert system. An example is the program below:

dimension x(4)
x(h=10
x(2)=20
x(3)=30
X(4)=40

w=1

319

s=0
doli=1,4
s=s+x(i)

1 w=w+s*x(1)
write(1,1)w
stop

end

has been translated into:

void main()
{

intI;
float W.S;
float* X;
X[0]=10;
X[1]=20;
X[2]=30;
X[3]=40;
w=1;
§=0;

for (I=1-1; 1((I+1)>4); I++)

{
S=S+X(II;
W=W+S*X[I];
}
printf("\n W=%f",W);
exit(0);
}

but,

dimension a(8)

320

do4i=1l,n
4 q=q*t+(n+1-i)*a(i)

stop

end
has been translated into:

void main()

{

int NM,I;

float T,R,P,Q.X;
float* A;

I=1;
do

{
Q=Q*T+(N+1-(I-1))*A[-D;

I++;

}

4.4 Results and Comparison with Other
Approaches

The reverse cngincering system described in this
paper was developed for a subset of the FORTRAN
IV language and tested on some tens of routines.
There were not considered statements like computed
or assigned goto, encode, decode, common, and
cquivalence. Format statements were parsed as
comments. A run of the reverse engineering system
is considering one procedure. Nevertheless, the
resulted object network can be saved and its
information used in the analysis of related
procedures. Due to the evolutionary character of the
system, (and to the possibility of knowledge
acquisition) the system can be extended to covering
untreated features and statements.

Studies in Informatics and Control, Vol. 3, No. 4, Dec. 1994

The approach made in this paper is, in several
aspects, similar to that of the "Programmer's
Apprentice" (PA) project at MIT [17]. XRL has a
similar functionality with the first layers of the
system CAKE [16], in which the latest version of
PA has been implemented. XRL has been
developed as a general-purpose environment for
knowledge-based applications. Therefore, it does
not have an equivalent of the plan calculus layer
from CAKE. Nevertheless, XRL has some other
important facilities as production rules, advanced
constraint representation and processing, and the
concurrent refinement modules that enhance the
power of knowledge representation and
processing. Programmed graph grammar parsing
in the present approach is also related to the
program understanding approach from the same
"Programmer's Apprentice" [23,24] but extends
parsing by taking into account heuristic
knowledge. XRL also offers some of the facilities
of the V language [18].

One conceptual difference between PA and the
approach in this paper is the metaphor taken into
account. As emphasized in [21], the current
system is not directed towards being an
apprentice of an experimented programmer. It is
rather considered as an environment that
encourages and facilitates the cognitive
modelling processes for the development of a
theory of programming activities represented as
an articulated knowledge corpus. This idea is
related to the point of view that sees knowledge
acquisition as a modelling activity [3]. Therefore,
knowledge bases are not only libraries of
programming “cliches." It is desired that they
would rather contain an evolving model of
programming concepts and constructs, From this
perspective, program understanding and
development are very useful activities for the
evolution of the system's knowledge about
programming. In this evolution it is very
important also the enhancement of human
knowledge as a result of getting new insights as
side effect of the development of programming
knowledge.

The idea of considering global information about
data is not recent. It is also used in [25]. They
determine variable "cobwebs," an extension of
def-use pairs' idea from compilers [1] and use this

Studies in Informatics and Control, Vol. 3, No. 4, Dec. 1994

information for program restructuring. Data
structuring as used in [13] is for generating an
object-oriented structuring.

Control abstraction has been considered for many
years as structuring unstructured FORTRAN
programs [14]. The present approach includes a
similar technique, one important difference being
the fact that the restructuring of the program is
only a first abstraction phase in the spectrum of
abstraction possibilities. The versatility of the
programmed graph grammar parsing also gives
the possibility of various restructurings,
according to any control abstraction.

The idea of developing hierarchies of
programming concepts and (eventually) re-usable
constructs is not a new one. Barstow's PECOS
system might be an example [9]. The up-to-date
libraries of re-usable objects for several OOP
languages (e.g. C++) are in fact developed along
such hierarchies. The approach in this paper tries
to make aware the fact that such hierarchies must
converge 10 a structuring reflecting an evolving
theory of programming. It is also very important
to facilitate and attract the contribution of human
experts to the development of such hierarchies.

5. Conclusions

The approach made in this paper starts from the
idea that knowledge acquisition is a modelling
activity. One consequence is that building
programming apprentices is only a perspective of
the possible integration of knowledge-based
techniques in software engineering. A more
adequate point of view is focused on the human
expert which must have the most "ergonomic"
tools for modelling, experimentation (a point of
view also related with fast prototyping), and, in
connection with the first two activities,
knowledge representation, In ‘this context, the
OOP paradigm (extended towards frame
knowledge representation), is viewed as naturally
supporting at the same time the modelling
process, re-usability, and evolution in all the
phases of program development,

The development of the framework presented in
the paper and the experiments performed are
sustaining these ideas. For example, the

321

taxonomy of programming concepts and rules
and, at the same time, the model that the author
had had about programming concepts and
activities evolved after some of experiments.
Now, the definition and integration of new
objects in the taxonomy is intended (e.g.
algorithm construction schemes as "divide &
conquer” and “greedy”, high level loop
abstractions suggested by [22]). After having
included new objects, complex restructurings are
planned in the idea of maintaining a sound
"theory” of programming represented by the
taxonomy of concepts.

REFERENCES

1. AHO, A, SETHI, R. and ULLMAN, J,
Compilers. Principles, Techniques, and
Tools, ADDISON-WESLEY, 1986.

2. BALZER, R, A 15 Year Perspective on
Automatic Programming, JEEE TRANS.
ON SOFTWARE ENGINEERING, Vol. SE-
11, No. 11, November 1985, pp. 1257-1268.

3. BARBUCEANU, M., Knowledge Acquisition,

Modelling, and Operationalization, PhD

Thesis, "Politehnica” University of Bucharest,
1993.

4. BARBUCEANU, M. and TRAUSAN-MATU,
ST., Integrating Declarative Knowledge
Programming Styles and Tools into a
Structured Object Environment, in J.
McDermott (Ed.) Proceedings of 10-th
International Joint Conference on Artificial
Intelligence IJCAI'87, Milan, Italy,
MORGAN KAUFMANN, 1987.

5. BARBUCEANU, M. and TRAUSAN-MATU,
ST., XRL: A Layered Knowledge
Processing Architecture Able To Enhance
Itself, STUDIES AND RESEARCHES IN
COMPUTERS AND INFORMATICS, Vol.
1, No. 1, Bucharest, 1989, pp. 76-106.

6.. BARBUCEANU, M. TRAUSAN-MATU,
ST. and MOLNARB, Concurrent
Refinement: A Model and Shell for
Hierarchical Problem-solving, in J.C. Rault
(Ed.) Proceedings of 10th Workshop on
Expert Systems and Their Applications,
Avignon, 1990.

3

10.

11

12.

13.

14.

15.

16.

BARBUCEANU, M. and TRAUSAN-
MATU, ST, MODELS: Towards a
Language Construction Approach to
Expert System Design and Enhancement,
STUDIES AND RESEARCHES IN
COMPUTERS AND INFORMATICS,
Vol.1, No. 2, Bucharest, 1990, pp. 57-76.

A. Barr and E.A. Feigenbaum (Eds.) The
Handbook of Artificial Intelligence, Vol.2,
MORGAN KAUFMANN, 1982.

BARSTOW, D., Knowledge-Based Program
Construction, NORTH-HOLLAND, 1979.

BROWNSTON, L., FARRELL, R., KANT,
E. and MARTIN, N., Programming Expert
Systems in OPSS. An Introduction to Rule-
Based Programming, ADDISON-WESLEY,
1985.

BUNKE, H., Attributed Programmed
Graph Grammars and Their Application
to Schematic Diagram Interpretation,
IEEE TRANS. PATT. ANAL. AND MACH.
INTELL., Vol. 4, No. 6, 1982.

FIKES, R. and KEHLER, T., The Role of
Frame-Based Representation in
Reasoning, COMMUNICATIONS OF THE
ACM, Vol.28, No.9,1985 , pp. 904-920.

LANO, K. BREUER, P. T. and
HAUGHTON, H., Reverse-Engineering
COBOL via Formal Methods, SOFTWARE
MAINTENANCE RESEARCH AND
PRACTICE, 5§, 1993, pp. 13-35.

LICHTBLAU, V., Decompilation of Control
Structures By Means of Graph
Transformations, in G. Goos and J.
Hartamanis (Eds.) Mathematical Foundations
of Software Development, Lecture Notes in
Computer Science No. 185, SPRINGER-
VERLAG, 1985.

MUCHNICK, A. and JONES, ND,
Program Flow Analysis: Theory and
Applications, PRENTICE-HALL, 1981.

RICH, C., The Layered Architecture of a
System for Recasoning About Programs,
Proceedings 1JCAI'85, MORGAN
KAUFMANN, 1985, pp. 540-548.

Studies in Informatics and Control, Vol. 3, No. 4, Dec. 1994

17. RICH, C. and WATERS, R.C., The 21. TRAUSAN-MATU, ST., Computer Aided
Programmer's Apprentice, ACM PRESS, Software Engineering; Program Re-design
ADDISON-WESLEY, 1990. and Re-use by Reverse Engineering (in

18. SMITH, D., Research on Knowledge-Based Eﬁﬁ?;?t’;)of Bﬂtﬁ resfhf;‘;‘s: Politchnica
Software Environments at Kestrel ’)
Institute, JEEE TRANS. ON SOFTWARE 22. WATERS, R., A Method for Analyzing
ENGINEERING, Vol. SE-11, No. 11, 1985, Loop Programs, IEEE TRANS. ON

pp. 1278-1295.
19. TRAUSAN-MATU, ST., Micro-XRL: An

SOFTWARE ENGINEERING , Vol. 5, No.
3, 1979, pp. 237-247.

g ; ; 23. WILLS, LM, Automated Program
Object-Oriented Programming Language - Goai .
for Microcomputers, Research Report, Recognition: A Feasibility Demonstration,
Technical Institute of Cybernetics , Slovak ,;igifllf;IICIAL INTELLIGENCE, 45, 1990, pp-
Academy of Sciences, Bratislava, 1989. '

20. TRAUSAN-MATU, ST., GHICULETE, GH. s MRS, i o Ph;";,gh"’:
and BARBUCEANU, M., The Integration (also MTH 1 gy e et
of Powerful and Flexible Constraint s ’ ’ '

Processing into an Object-Oricnted 25. ZIMMER, Restructuring for Style,

Programming Environment, in J.C.Rault
(Ed.) Representation par Objets, La Grande

Motte, France, June 1992.

Studies in Informatics and Control, Vol. 3, No. 4, Dec. 1994

SOFTWARE PRACTICE AND
EXPERIENCE, Vol. 20, No. 4, 1991, pp.
365-389.

323

