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Abstract: This paper presents a flow invariance based
approach to variable structure systems. Sliding mode in both
single input and multi input systems is described via some
special flow structure of the state space, pertaining to adjacent
systems of variable structure. Quasi sliding motion is also
treated using flow- invariance.A simulation procedure helps
prove the advantages of this approach in designing quasi
sliding mode with oscillation-free control.
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1. Introduction

The theory of variable structure systems (VSS) has
been widely improved over the past 30 years, thus
establishing a lot of connections with other
different topics in system theory. Basic studies on
VSS with sliding mode (VSSSM) are due to
Emelyanov and Utkin, [1], [2]. A large and
interesting work concerning VSS is due to Itkis, [3].
In the last 10 years one must remark the substantial
contributions in the domain made by Sira-Ramirez
[4], [5).

Alargerinterestin VSS (and especially in VSSSM)
could be justified by their insensitivity to
parameter variations and to exogenous
disturbances caused by a feedback control
strategy.

Studies on VSS have usually referred to
continuous time systems, with sliding mode or
quasi sliding mode (QSM). For this reason the
term "VSS" is commonly used instead of "VSSSM".

Preoccupation has recently shifted from
continuons to discrete VSS, due to the tremendous
impact of computer technology on automatic
control. The topics are still open to future
investigation because, as one can see, every step
forward proposes new facilities induced by VSS
control strategy, in both theory and practice.

VSS are basically non-linear discontinuous robust
controlled systems. But for the sake of surveying,
let us notice that VSS are related, in many papers,
with: adaptive model reference control, system
identification, predictive control, linearization
problems, fuzzy sets, neural networks.

This paper is concerned with some special
characterizations of continuous time VSS, based
on the flow- invariance method, [6], [7].

Some preliminaries, referring VSS and also a
background of flow-invariance mathematical
method, are given.
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The main results related with scalar control VSS
are presented in Section 2, [8], [9], [10]. Further,
one extrapolates these results to multi input (MI)
systems, [10]. Section 4 deals with some problems
of quasi sliding mode (QSM). An illustrative
example is given so that to highlight the special
benefits of the proposed analytical methods.

1.1. Basic Definitions

Let us consider a non-empty family of dynamical
systems, J, having the same time domain T, the
same state space X and £ being the domain of
exogenous signals (reference inputs,
disturbances).

Denote X the space T+Xx*E.

Also consider a function: a: X;>3, with
RoCN(they might also be spaces), delineating,.for
every XER,, some system of J. Therefore a is a
decision- like algorithm.

Definition 1.1. (Variable Structure System (VSS))
With the preceding

AE; an—l(A) defines the variable structure
system (VSS) induced by a over 3J.

statements,

The membership systems, i.e. a(X), are called the
adjacent systems pertaining to VSS. B

In other words, a VSS consists of a family of
different systems and of a switching algorithm
which , by means of states, time or environment
conditions, defines the corresponding functioning
structure. Note that @ may be defined not only over
R, but also over a subset. Thus, even uncertain
systems could be considered. This is, of course, a
very general definition, but it addresses the larger
class of possible VSSs, dealt with in the literature.

By choosing a domain S with zero measure in the
state space X and by defining & on X\S the VSS
structure will be changing when the state
representative point (RP) passes over S. If the
structure is changing with a (theoretically) infinite
rate, the state being constrained on §, a sliding
mode (SM) (or sliding motion) comes up.

The VSSSM distinct feature lies in the evolution
of RP along a sliding domain (SD) (i.e. S) by means
of indefinite high frequency switching control. In
real plants such a motion meets bars because it is
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not possible to have only switching time finite and
this time not arbitrarily small , thus chattering
appears [11]. Therefore the RP moves rather in the
neighbourhood of a sliding domain, namely
quasi-sliding domain (QSD). This kind of a
motion, referred to as quasi sliding mode (QSM)
may be deliberately designed in VSS, in order to
prevent or limit the oscillations of the actuating
signal.

Sliding mode (i.e. "ideal" sliding mode - as a limit
case of quasi sliding one) has to meet the following
requirements:

1. From any initial state condition, RP hits the
sliding domain. This is the reaching
condition.

2. As soon as RP reaches SD, it remains
indefinitely on it. This is the slidin
condition, ]

3. The VSS behaviour in sliding mode has to
be asymptotically stable, with the desired
characteristics.

Consider the continuous-time dynamical scalar
control system:

% = f(txu(tx): = F(tx), teR _, xER", ueR™,
(1.1)

where x= (xl,xz,...,xn) ,u (ul,uz,...,um) ,

F= (Fl,Fz,..‘,Fn) .

Let us assume the continuous (possibly
time-dependent) m- dimensional hypersurface in
the state space:
S(t):={xe mT“’ s(t%)=0, o)
s= |:s .8 ] ‘R R -R™
1" m +

Notice that the control u may be discontinuous on
S. Consider that the state space originates from
the equilibrium set point of (1.2) and belongs to S.

Let us also define the symmetrical neighbourhood
of S:

R(t) := {xem"; [k(tx) ]| SK(t,x)} ,

- T_ n m
K= [Kl,...,Km] R, * R, >R

(13)
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where the inequality is componentwise
determined, i.e. Isil =< |Ki I By taking u as a
discontinuous function along S, with the
components:

u (%), 5(tx)<0
,i=Tm  (14)

u(tx) = .
u (t,x), 5,(tx)>0

-+ .
where u u” are continuous and defined on the

whole state space (by prolongation, for instance),
the following family of dynamically smooth
systems is set up:

2 = f(t,x, [uf u:]) = (1.5)

= F(tx), p=1,2", x € R".

The index p corresponds to all possible sign
combinations. According to the previous

statements, (1.5) with (1.2) and (1.4) define a VSS
with 2™ adjacent systems.

The well-known basic concepts can be stated as
follows.

Definition 1.2 (Ideal Sliding Domain (SD))
Switching hypersurface S (1.2) could be an ideal
sliding domain (SD) for system (1.1) if it did not
contain any trivial trajectory segments of adjacent
systems (1.5), and if for each e >0 and x* €S, there
existed a neighbourhood V* of X* such that for
every x,EV*\S§, the trajectory of (1) starting from
(tg:%g) evolved inside the domain:

SE = {x e R", |B(tx) || = e},
fortzt,m

Definition 1.3 (Quasi Sliding Domain (QSD))

The set R < R" could be a quasi sliding domain
(QSD) for (1.1), (1.2) if any trajectory of (1.1),

(16)

n
s(t,x)=0 =K
s=0
X X
s=-K 1
N _
Y
0 0

a. Stable ideal sliding mode

b. Quasi sliding mode

Figure 1.1 Sliding Mode and Quasi Sliding Mode
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starting from (t;, x;), with x)ER evolved inside R,
foreveryt =t W

The motion of state on SD is called (ideal) sliding
mode (SM) and the motion in QSD is called quasi
sliding mode (or pseudo sliding mode). The
behaviours are depicted in Figure 1.1.

The function K(t,x), stated in (1.3), is called the
reliable margin of QSM.

1.2. Siiding Mode Description

The most usual statement about sliding mode
existence is the componentwise geometric
condition:

lim £ <0, lim § =0. (1.7)

si-+0 ! si-—(} k

It is well- known that (1.7) equation is only
sufficient conditions, but, because of their
simplicity, many authors look upon them as the
definition of sliding motion.

Another possibility of designing SM is the
Lyapunov function approach [1]. This is to choose
a positive function (quadratic, for instance),
depending on s: V(s,t), with \'/(s,t) negative in a
certain vicinity 2 of the origin of R™ space, without
the origin.

Moreover, the preceding methods can also be
used for the statement of reaching conditions.
That is why, instead of (1.7),one says that § and
s must have opposite signs in a larger vicinity of
S. The domain €, related with the Lyapunov
function, has to be the largest one, respectively.

Sliding mode means a special behaviour of VSS,
which is different from any of the adjacent systems.
The description of this mode is made by Utkin’s
equivalent method, [1], [2], leading to the sliding
differential equation. The idea is to expressu, as a
smooth function, from:

$ =0 Vs e f(tx) + % =0, (18)
where V = ii ek . The solution is
X ax1 6x2 ox
n

called the equivalent control, Ueq: By replacing Ueg
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in (1.1) the differential equation with continuous
right-hand side is obtained:

X =f (t,x,ueq) § ' (1.9)

representing the model of the ideal sliding mode .

Because of s = 0in SM, the m components of state
vector x are to be retrieved as functions of the
remaining n-m ones. Substituting them and
removing the supplementary m equation, (1.9)
yields :

g-F (xl,l) ; Ker" ™ ; (1.10)
which is called the sliding motion equation. The

stability and transient characteristics of (1.1) in SM
are equivalent to those of the system (1.10).

With SM not available in (1.1), but with QSM
available in (1.1), and with (1.9) asymptotically
stable, the state evolves by keeping a bounded
distance from the state of the ideal sliding mode
(1.10) [1]. So, in QSM the equivalent control
method can also be used, but minding that the part
x! of the state evolves "near" the solution of the
equation (1.10), which starts from the same initial
condition.

1.3. Flow Invariance

First, the flow invariance mathematical method
has been developed apart from control system
theory [6], but actually the fact that it represents a
highly useful tool in approaching specific
problems should be emphasized [7], [12]. It can be
related with various aspects of stability and control
design questions.

Let us more consider system (1.1), where F is
assumed as being continuous and locally
Lipschitzean function on some open set T+X <
R, R

Therefore, for every (t;, X)) € T*X there exists a
unique soiution x(t), defined on (ag, by) < T such
that x(t;) = x,. Functions

x~ () =x(t), t€ [ao,to] ,xT()=x(1), te [to,bo) ,

are notified on the negative and positive solutions
of (1.1) to (ty, Xy), respectively.

Definition 1.4 (Flow Invariant Sets)

Studies in Informatics and Control,Vol.3,No.4,Dec. 1994



A time-dependent set D(t)CX, (€T, is called
negatively, and positively flow-invariant with
respect to system (1.1) respectively, if for each
(tgXg) ET*D(1), the following conditions are met:

X~ (ao,to] =D(t), x* [to,bo) <D(t).m (1.11)

In other words, a set D is said to be positively flow
invariant (or flow invariant), (PFI) for system
(1.1), if every state trajectory which starts from D
at some moment, remains in D for all subsequent
time.

Theorem 1.1

D(t) is PFI with respect to system (1.1) if and only
if X\D(t) is negatively flow-invariant (NFI) with
respect to the same system. B

Theorem 1.2

A closed set D(t) is PFI with respect to (1.1)ifand
only if

lim inf h~d (x+h F(tx); D(t+h)) =0,  (112)
h—-+0

for each (t,x)ET*D(t). m
In (1.12) d denotes the distance in R,

Assume in the sequel that T = R +»X=R" and
D(t) is the time dependent n-dimensional
parallelepiped:

D(t):-—-ﬁl[ai(l), b0)], a®sb,, R, (113)

a;, b, being some differentiable functions.
Theorem 1.3
D (t) defined by (1.13) is PFI with respect to (1.1)
if and only if
F, (t,X) |x=ai =3
, (1.14)
F. (tx) |x=bi =b. (1)

foreacht € R,,xeD(t).m

In (1.13) and, accordingly, in (1.14) it is possible to
take a; = -@ or b, = + o but, conversely, the
corresponding items in (1.14) have to be removed.
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Figure 1.2 suggests the significance of D (t)as a
flow invariant set within the state space of some
2nd order dynamical system,

b, (t)

no]

Figure 1.2 Positively Flow Invariant
Parallelepiped

2. Single Input Sliding Mode System

This section characterizes the single input (SI) (or
scalar) sliding mode systems, by means of flow
invariance method.

The main results are only reviewed, with no proofs.
For more detailed aspects, a list of references is
available. Consider the system (1.1), with (1.2), for
thc case m = 1. For a simpler writing, (1.4) is
replaced by:

u (tx), s<0
u(t,x) = (21)

u+(t,x), 5>0
and thus the adjacent systems are respectively:
x=f (t,x,u“ (t,x)) :=F (1,%), (22)

%=t (txu’” (%) :=F" (tx), (23)
both with continuous right - hand side.

If assuming, for the sake of convenience, that the
switching function s, introduced in (1.2), with
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m=1, verifies the condition gf— # 0, then the
n

non-singular state transform:

x> I:x1 Xyee xn__ls]T:=; (24)

is allowed for (1.1). To avoid intricate expressions
which could escape the basic idea, x is directly
replaced by s in (2.1) - (2.3); accordingly, (2.2), for
m = 1, is:

S :={x eR" x =0} 235)
o n
Also define :

S_:={x en”; xn<0} = {s < 0}, (2.6)

S+:={xE Rr"; xn>0} = {5 >0} 27

Therefore in (1.6) x, replaces s, and xlin (1.10) is
defined by:

X o= [:xlx2 xn_l]T. (2.8)

We are now in the position of formulating the main
results. '

2.1, Sliding Mode Existence via Flow
Invariance Approach

On using the flow- invariance method, proper and
equivalent conditions for the SM existence need be
defined.

Theorem 2.1 (Sliding Mode Conditions)

Assume that the adjacent systems (2.2), (2.3) have
no trajectory segments on the switching
hypersurface S. Then, for system (1.5), the
following statements are equivalent:

1° S is the ideal sliding domain.

2° Each functioning subset is negatively
flow-invariant with respect to its own
switching subsystem.

3° The complementary element of each
functioning subset is positively
flow-invariant with respect to the switching
subsystem of that functioning subset.
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4 lim infh”'d (x+h Fz(t,x); sUst) =0,
h-0

foreach (tx) ER = (s U s:) ;

5 (k] (t,xl,...,xn_l,O) 20
N ) (29)
F (t,x1 _— ,xn_l,O) ;0

1_ n—1
forcachte®R , x' = (xl""’xn-l) eR'm

For proof, see [8], [9], [10].

The underlying idea is that of the adjacent system
(2.2), which represents the VSS on S *, having sUs™ as
PFI domain, and (23), which represents the VSS on
§", having sUs* as PFI domain (see Figure 2.1. a,b).
Given these fcatures, one’s (also intuitive) assertion is
that the asscmbly behaves like a SM system.

Remark 2.1

Theorem 2.1 gives necessary and sufficient
conditions so that SM exists. It is noticeable that
only boundary restrictions are referred (i.e. (2.9)).
Theorem 2.1 also depicts a special flow structure
of the state space induced by VSSSM control.®

2.2. Reaching Condition

Reaching condition can also be characterized by
means of some flow invariance issues, as follows.

Theorem 2.2 (Reaching Condition)

For cachty€ R | ,x€ N" \s , the state of system
(10) rcaches the idci 1 sliding domain S if and only
if there cxists a differentiable function, depending
on (tg, X, r: R, = R, satislying the following
conditions:

1° There exists TE€ ([0,+ uo) where r(r) =Q;

2°x € (0, r(to)] (2.10)

3° F. (t,xl e r(l)) = (o),
ifsfty=x <0

! (%) = %on @1
Fr (e X,y (D) <O,
t ifs(to) =x,>0

Studies in Informatics and Control,Vol.3,No.4,Dec. 1994



functioning domain

" NFI

PFI1

. +
a. State space for x = F (t,x)

+ PFI

NFI

functioning domain

b. State space for x = F (t,x)

Figure 2.1 State Spaces for Adjacent Systems for a SI VSSSM

RREE
For proof, see [9), [13].

According to (2.11), the state space of VSS
is shared into the following flow structure:
R™ La(x(t), + ), is NFI with respect to (2.3) and
R-le(-o, r(t)] is PFI with respect to the same
system. Similarly, for (2.2), R™1u(-co, -r(t)] is NFI
and RO-Iulr(1), + ) is PFI.

The reaching motion is suggested in Figure 2.2,
where two different initial conditions for s were
considered.

for each te [to,r) , (x ) ER 1 m

In order to use Theorem 2.2 in control
problem-solving, an appropriate choice of r(t)
must be made, allowing a desired velocity of the
reaching process.

Studies in Informatics and Control,Vol.3,No.4,Dec. 1994

Remark 2.2

Theorems 2.1 and 2.2 are strongly related, both
offering solutions to the different requirements
made by VSSSM (section 1.1). Clearly, for r(t)=0
in (2.10), (2.11) one obtains (2.9), so Theorem 2.2
also refers the ideal SM as a subsequent phase of
SD reaching. This very important aspect shows the
nel significance of the flow structure induced on
the state space by VSS. m

3. Multi-input Sliding Mode System

Consider the general case of multi input dynamical
systems, (1.1) for which 1<m<n, together with
the m-th order switching manifold (1.2). These
clements involve the 2™ adjacent systems (1.5),
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rl(to)
sl(to)

sz(to)l

rzfto)

reaching

instant

Figure 2.2 Reaching Phase via Flow Invariance Description

based on the discontinuous componentwise vector
control (1.4) [1], [2), [4], [10].

The sliding mode statement is a little bit different
in multi input (MI) case because of several
possibilities being offered for its definition
(Definition 1.2 or any equivalent definition).

To simplify any further analytical description, let
us assume that:

as.

rank |:—1] =m,
|
i=Lm,j=Tn

which allows the non-singular state co-ordinate
transformation:

X:= [xl... xn] -»x:= [xl... X Sy sm]. 3.1)

As already done in the scalar case, _similarly, we
proceed on replacing the state by x, but also on
denoting it with x, instead of x. Moreover, the
following notations are made:

f(txu) := [fl... fn_m PPy (pm] (txu)= (32)
=F(tx ):= [Fl...Fn_mtplqbz...qu] (tx)LER  XER".

For the sake of simplicity of writing, the functions
will often be expressed without their explicit
variables.

By means of eqgs. (3.1), (3.2), the VSS (1.1) turns
into:

x1=f1(t,x,u) xl=F1(t,x)

s _=f ) . _=F e
‘I'!ITI n—m ¢b‘l‘ll‘l'l n—m .(3-3)
sl—<p1(t,x,u) sl=¢1(t,x)

2 =, (txw) 5,=,

The individual sliding manifolds pertaining to S,
(1.2), and the corresponding semi spaces are,
respectively:

Studies in Informatics and Control,Vol.3,No.4,Dec. 1994



a. Hierarchy of controls

} Hq ]

- 7
WA
~

\

b. Collective sliding motion €. Strictly sliding motion

Figure 3.1 Multi Dimensional Sliding Mode, Projected on S-Space
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B :={xE§R“; si(x)=0};

{sit :={x€ R, si(x)>0}; i=Tm. (3.4

tsi' :={x€ ! si(x)<0},

In order to obtain a compact description of the
VSS family (i.e. the adjacent systems), the
multiple sign symbol will be introduced:

o= (crl,az,...,am) =0,0,...0,, aie{- , +}, (3.5)
o, being a sign symbol (but not a number).
Obviously, there exist 2™ different o symbols.
According to egs. (3.4) and (3.5) system (1.1) with
(1.4) is a proper VSS, namely:

T
$=f (t,x,u“(t,x)) ,u’s [uclil,...,uam] ,
. 39)

where the adjacent systems are, respectively:

x=f (t,x,u"(t,x)) @ X=F(tx)’, teR _ xeR", (3.7

and are further denoted by A°.

The operation of MI in SM should consider
various kinds of motions; the most general one is,
of course, the regime which corresponds to
Definition 1.2, with no peculiarity. Nevertheless,
by imposing some other restrictions, some useful
and quite interesting modes could appear. Three
main possibilities in multi - input sliding mode
system ( also remember that S is a vector function)
are briefly presented in the sequel.

1. The method of hierarchy of controls, proposed
by Utkin [1], disjoints the vector control problem
in m successive scalar control problems. First, the
1st component of control, (i.e. u;, (1.4)) leads the
state to s!, in a "partial” SM. The system turns into
an n-1 order system in which the 2nd control
component u, further setsaSMons, 1 = s!Ns?and
so on (Figure 3.1. a). The last phase lies in SM on
S=S,.

2.The collective sliding mode refers the case in which
every component of control, u,, "partially" achieves
SM on s\, but simultaneously (Figure 3.1.b).
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3. The strictly sliding mode is the regime under
which the state hits on and is confined to S, but no
SM "partially” arises in VSS (Figure 3.1.c). Despite
intuition, such systems actually exist, as an original
Utkin’s example shows [1].

In any situation, some flow structures of the state
space are attainable. A special difficulty is induced
by the 3rd case, where a Lyapunov method would
rather be used.

The following results, referring sliding and
reaching problems, are just briefly outlined,
without proofs or large remarks. For more details,
also see [1], [2], [4], [6], [10]. The problems are
subject to further investigation.

As Definition 1.2 suggests, let us assume in the
sequel that none of the adjacent systems A has
trajectory segments on §',i =1,m.

3.1. The Hierarchy of Controls

The method of control hierarchy [1], develops an
artificial sequence of scalar SM fulfilments. Briefly
saying, when the state of a system had hit the

manifold s, : = F\ s', k = T,m, the previous uy, ...,
i=1

u,, components would have already been
installing the sliding regime on 5.5,
successively. Thus, on s, the order of system is n-k
and only m-k components in control u are free to
choose, the preceding ones being formally
replaced by their own equivalent controls.

Since the vector control design problem is
decomposed into m scalar problems, the
analytical methods lend to be applied to the single
input systems.

The following inequalities are manifest with the
sliding mode cxistence on s, =s':

+0,.0,
@, (%) |Sl=0 <0
,xe R, 5, =0, (€ R, (3.8)
—-0,..0
@ (1x) m[sl=0 =0

the symbols o, i=2,m, being arbitrary. The
equivalent control of this scalar sliding mode is:

Studies in Informatics and Control,Vol.3,No.4,Dec. 1994



u:q (t,xl,...,xn_m,sz,...,sm) and results from the
condition:

1
2 (t'*-“eq) | m0 =0- (39)

The n-1 order sliding differential equation is of the
form:

= ((x0") :=F" (1) (3.10)

with

T
1._ Ta_fa a 1 1
X:= [xl...xu_msz...sm] fh= [fl...fn_mgpz...gom] ,

T T
1,_ [l 1 i 1 1,_
F:= [Fl...Fn_quz...tﬁm] us= [u2 Us... um] .

Resuming this procedure, the switching variables
$348y, and also the controls Uy, are
successively removed.

As a result, the sliding mode equation,
corresponding to the evolution of § state, is
obtained. Moreover, one finds m restrictions on
the components of control u, in terms of
inequalities (3.8).

The reaching conditions can be formulated
similarly as in the scalar case (Theorem 2.2), by
confining the system to step k (evolving on Sp.1), to
reach the surface s, i.e. the intersection S
Complicate relations would have to be written,
with no special meaning, so one prefers not to
enter into more details.

Remark 3.1

The flow structure employed by the control of
hierarchy is given by (3.8), as follows. By sliding on
s'", s1" is laid down to be PFI for adjacent systems
(3.7), corresponding to symbols o = RO il
and s!* is NFI for the same adjacent systems.
s1* is PFI for the adjacent systems (3.7) with
0 = -0, ...0,, and s" is NFI for the same family.

Sliding on s,=s,Ns, asks for s!Ns?" to be PFI
systems of the form ®=f! (t,)’(,ul'“ , with

o= +0,... 0., and conversely s! Ns2*+ must be
NFI for the same family, and so on.®
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3.2. Collective Sliding Mode

If the state representative point (RP) reaches and
slides on each individual n-1 dimensional
manifoldss' at least in the neighbourhood of s, this
obviously yields the sliding mode on the m order
domain s (i.e. the intersection of individual
manifolds s').

Although it is quite restrictive, this collective SM
is frequently used in design problems.

In the sequel, the condition for sliding mode
existence and also other corresponding conditions
are stipulated, by means of flow-invariance
approach.

Theorem 3.2

System (3.3) satisfies the condition for collective
sliding mode on s, if and only if for everyi =1m

m

and x€N s, respectively ,the following
i=1

conditions hold:

a
o,sgnp.(t,x) |5i=“ =0, ¥o =0, .0, €{-,+} 8

(3.11)

The reaching requirement can be met by confining
the RP to either moving directly to s, or hitting on
a certain surface s', in any of the subsets splitby s
in the state space.

Note the availability of Theorem 2.2 in this frame,
but for components. Accordingly, the RP
necessarily reaches one of the individual
manifolds, say sl. This happens because the flow
structure of the state space induced by SM control,
forces the RP tos,(t) =0,i=T1,m, after a finite time
interval, anytime the initial state is resumed.

Theorem 3.3

One necessary and sufficient condition of system
(3.3) for reaching the manifold S, is that every
thy EN o x,€M" \S, should have a differentiable
function, depending on
T

(to,xo), r= [rl...rm] :91+->2R“, which satisfies
the statements:

1° There exists 7 > t;, such as ri{r)<0,i=T,m;
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20 s, ([0) € (O,ri (to)] ,i=Tm;
3° Foreachi=Tmand 0=0;..0,€{-, +}™

g.sgn (gp?(t,X) _;(U) l si=ri(t)-<'0’
al (3.12)
x€ N s te (t 7).m
i=1 (0 )

3.3 Strictly Sliding Mode

VSS (3.3) can evolve in sliding mode on s without
any individual sliding on s'. This behaviour is
addressed as "strictly" sliding mode [10], rather
being an unusual regime, if compared to the
previous ones (Figure 3.1. b).

It seems to be fairly difficult to generally deal with
strict SM. Most frequently, this problem is
approached by the Lyapunov method. But many
authors express the Lyapunov function by
imposing the well- known geometrical restriction
of 5. <0.

Unfortunately, this does not apply here because
such conditions determine a collective sliding
mode, not a properly strict one.

A characterization of strict SM can be produced
in terms of flow invariance, by assuming a new
variable:

%]
£:=||s||= (si+s§+...+sfﬂ) ; (3.13)

representing the usual norm in ™, m> 1. In this
space, the prospective sliding domain is written as
{§=0}. In any of the functioning domains s,
(3.4), the components s; can respectively be
expressed as some functions of §, namely:

V2 .
si=i(§2—si—-s§—...—sfn) ,xESl:. (3.14)

In ®’™\S, system (3.3) can be defined by means of
the new state vector:

X:= [x]... X _ Sy sm_IE],
as the following discontinuous right side
differential equation:
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[] a

X —Fl(t,x)

. e .

n—m Fn m(t’x)

5, = G1)
4 m :

s XEN s"
i=1

........

a
& =ptx)
Assume now that the 2™ adjacent systems
pertaining to (3.15) are continuously prolongated
over the whole state space R".

Theorem 3.4

One sufficient condition for strictly sliding motion
of (3.15) on the manifold S, is that for every multi
symbol o, the following inequality holds:

P(tx) |, S0, tER ,xE Rf 1 (o)m  (3.16)

See [10] for a proof. In terms of flow invariance,
the reaching condition can also be stated for
system (3.15). Notice that here only a sufficient
reaching restriction is made on (3.3).

Theorem 3.5

One necessary and sufficient condition for (3.15)
so as to reach the surface {£ =0} is that for each
t,ER , X% ERMS, there exists a differentiable
function depending on (ty, x;), r: R = R, for
which the following conditions are met:

1° There exists 7 > tg, such as r(r) =0,

2° For &, (i.e. the n-th co-ordinate of x g):
Eo=r(t);
3° For everyo=0; ..o, €{-, + }™

m s
P(t0)° |y SHO, xei_ Sls“’i, te (to,t) m (317)

Remark 3.2

The previous approach emphasizes some flow-
invariances , but it is merely a Lyapunov like
approach, because ||[s|| isinvolved.
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Nevertheless, Theorem 3.5is a little more eloquent
since it asserts not only reaching condition, but
also the dynamics of reaching motion. These
characteristics are strongly related to the
expression of r. @

4. Quasi Sliding Motion in Single Input
System

This section addresses single input VSS in which
not sliding but quasi sliding motion (QSM)
manifests. Although control u in an ideal sliding
mode can be designed using high (theoretically
infinite) switching frequency, the real actuator
devices use non-zero switching time. On the other
hand, chattering appearing in control could be
destructive for the equipment. For this very
reason, it is necessary to introduce, for both
analysis and control synthesis purposes, a
quasi-sliding (or real sliding) motion [1], [3], [10],
[14]-[17).

This special sort of behaviour has already been
stated in Introduction, where quasi sliding domain
(QSD) was defined (Definition 1.3). Remember
that domain R (t), (1.3), is a QSD for (1.1) if every
state trajectory originating in R (t) cannot leave it.
Let us consider only the case of single input VSS,
as described by (1.1) with m = 1. Let us also
consider a scalar variable s (x,t) which defines the
manifold §, (2.5). By proceeding like in Section 2,
the new state variable (2.4) will directly replace
the old variable x.

Thus, x_ is used instead of s. Accordingly, the
considered neighbourhood of § is:

R([):={xE§R";|s([,x) | <K(t,x):K: m+*m“+m+} .
(4.1)

We also consider the special variant where K only
dependsont:

R(t):={xE§R"; [s(t,x) ] <K();K: ER+—»£R+} . (42)

As Definition 1.4 suggests that a special link
between QSM and flow- invariance can be
established, namely the set R(t) must be PFI with
respect to VSS. However this assessment may not
be directly expressed in terms of Theorem 1.3,
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because of the right hand side of (1.10) having
discontinuities on S. A rigorous approach deals
with some flow invariant sets pertaining to
adjacent systems.

4.1 Flow Structure of Quasi Sliding
Motion

Bascd on the adjacent systems (2.2), (2.3), let us
build the following VSS :

(F_(t,x), xE{xE [l X < —K(t)} =R (1)

H (1,x), xE{xE R x| <—K(t)} :=R%),
te !R+, 4.3)

e
I

F¥ (%), xE{xE R x = +K(t)} :=R*(1)

For the time being, the switching algorithm of the
VSS can establish the structure (i.e. the
functioning adjacent systems) but only outside
RO(t). This is the reason why H (t,x) may represent
some multivalent function. Obviously, (4.2) and
system (1.1), with control (2.1) have the same
structure outside R (t).

We are prepared to give the main result
concerning the quasi- sliding motion. If K only
depends on t, ie. R(t) is given by (4.2), the
following holds.

Theorem 4.1

Each trajectory of system (1.1), with the scalar
control (2.1), starting from R(t) cannot leave this
domain, i.c. R(t) is a QSD, if and only if:
F ( ,xI,...,xn_l,—K(L)) = -K(t)
. (4.4)
+ L]
E (t,xl,...,xn_ . K(t)) = K@)

1 n—1
for every te E}T+,x v (xl,...,xn_l) ER"'m

A proof runs in [10], [15].

The QSM existence, if K depends on t and x,
namely R(t) expressed as (4.1), will be properly
characterized by the following theorem.
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Figure 4.1 Flow Structure of Quasi Sliding Motion

Theorem 4.2

The set R defined in (4.1) is a QSD for system (1.1),
with the scalar control (2.1), if and only if:

-, 0K - nL
P +3t—VKF =0, 0n {xe R, X e -—K(t,x)}

b

+ + B 9KF* <0, 0n [renx = +K()

+—
Fﬂ at

(4.5)
for every t€ 91+,x1 = (xl,...,xn_l) eRr" lm

Remarlc 4.1

Theorems 4.1 and 4.2 produce boundary
conditions, which represent, despite their
simplicity, a useful tool in quasi-sliding mode
analysis and synthesis. This quasi sliding motion
can be deliberately generated in VSS. By
appropriately choosing K(t) as a decreasing
function, the quasi-sliding motion can attair. the
ideal sliding. Moreover if K(t) depends on the
initial state and so x(tg) ER(t) does, the reaching

360

condition is possible. In fact, if the state point
belonged to R(t) at every moment, the reaching
problem would make no sensc. B

It is worth noting that, according to Utkin’s well-
known findings, [1], the system behaviour in
quasi-sliding mode is stable if the corresponding
ideal sliding across S is asymptotically stable.

The flow structure of system (4.3), working in
QSM, lies in that R* is NFI with respect to
adjacent system (2.3), and R* UR? is PFI with
respect to the same adjacent system. The same
goes with (2.2). For the assembly, i.e. VSS defined
in (4.3), it is clear that R is PFI, so R(t) is a QSD.

4.2. Quasi Sliding Control Synthesis for
Linear Plant

Theorem 4.1 can be directly applied to control
design, due toits simple statements (4.4). Consider
the linear plant with scalar control.

%=A(Ox+BMy te R, x€ A" ue R, (49)
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A(t) and B(t) matrices are adequately
dimensioned and include continuous and locally
Lipschitzean time-dependent elements. Control u
is taken as:

u t,x), XER (¢
u(tx)= +( ) +( )’

u (tx), xER (1)
R"and R* being stated in (4.3); meanwhile, u is
not defined on RO(t). Consider the linear
hyperplane defined in (1.2) by a linear function:

4.7

s(tx):=cx,c:= [clcz...cn_llj, cTB(t);tO, te ?R+.
(4.8)
The transformation (2.4). i.e. (xl,...,xn_l,xn) -

- (xl,...,xn_l,s), yields the equivalent form of
(4.6):
R=Ell4an s+Bn
(4.9)
§=c[A1(t)—a“(t)c1] x1+ca"(t)s+cB(t)u

where Al is the matrix A with the last column
dropped, a' is the i-th column of A, ¢! is ¢ with the

. T
last element missing, and x! : = [xl...xn_l] ‘

The forms of E!, a" and B simply result from
calculus. Assume the control:

u(tx)=— [w Wy ¥ J x4y (t,xl) w(s), (4.10)

with:

w(s) = sign (s), if [s(t)] = K(1),

and where w might be a multivalent function (for
instance, a hysteresis law). Therefore, if the state x

lies in RO(t), there will no longer be restrictions on
w.

Let the structure for v be [1]:
n—1

V([,xl) =—a0 - E ailxi’,

i=1

(4.11)

where the following inequalitics hold:

inf{cB(t) (ai+¢i) - [cai({)—Ca“(t)c':l }30,i=1,n_1
t

(4.12)
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SL[IP{CB([) (——ai-i-tpi) - [cai(t)-—can(t)ci:l }Egi_i;),n_

They arc equally described by:

eB(0e> | ca'(t) —ca”()e,~cB(Uy, l,tem A=Ta-1

The next result comes directly from Theorem 4.1
[15].

Theorem 4.3

The set R(t) is a QSD for system (4.6), with
(4.10)-(4.13), if aud only if:

c[a"(t)K(t)—-aOB([)J <ROLER,. 8 (414
The conditions (4.10)-(4.13), coupled with the
corresponding reliable margin of QSM, K(t),
make a complcte tool for control synthesis. The

reaching of S could be solved by choosing K(t) as
a function depending on Lo X0

Notice that the suggested QSM control must cope
with some unccrtainties, for |s| < K(t). The art of
control design is to choose w, inside R? , in order
to diminish the chattering of control u, as well as
the state oscillations. Heuristics are not only
allowed here, but also recommended. Valuable
ideas are presented in several papers [16]-[20].

Altempts at testing some rules for w, involving
good characteristics regarding oscillation
alleviation, are made in the following example.

4.3. Simulation Example

To illustrate the previous method of designing
dcliberate quasi- sliding motion in linear VSS,
pleasc consider the lincar unstable system;

0.57.5-9 1
=11 0 o0|x+ |0 u,
01 0 0

[ }

We must find the control law u in order to stabilize
(4.15) in quasi-sliding mode, within a QSD alike
(4.2). Let us choose, according to (4.8):
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1.2 ; i H -1 : ; :
0 2 4 6 8 0 2 4 6 8

Evolution of stale 5(t) and reliable margin K(t)
10 : : : 1.5
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|
0.5 ..........................
-K(1) ‘ K()
O .......................... R EAhGRLREEErLE
3
B s suh R LR e emmmmeeoeno V i
/7| EOS, Mn— ——
-]0 .““-"----E"-"“-'"--E ------------- g ------------ 1 _1 ; e e R sl
215 ‘ : ‘ - -1.5 :
0 2 4 6 8 -2 -1 0 1 2
QSM control u(t) Variable w(s)

Figure 4.2 QSM for Example 43, with Sharp Hysteresis w
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0.6

Evolution of state

QSM control u(t)

0.5

t (sec)

R e - TSRS JI—

4 6 8

........................................

....................................................

-1 0 1 2

Variable w(s)

Figure 4.3 QSM for Example 4.3, with Smooth Hysteresis w
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Figure 4.4 QSM for Example 4.3, with Univalent w
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s(x) = cx,c=[1 14 1],

yielding the equivalent form, corresponding to
(4.9):

o 95 201 -9] [« 1

wee | =10 0

S 109 211 -9 1
s . (4.16)

T
1_ 2
x—[xlxz} € Re,

Utkin’s equivalent control is u =[09 21.1]%,
and one can readily see that the asymptotic
stability of ideal sliding mode is ensured.

By assuming the previous notations, we get:
cal + 9¢c, = 10.9, ca? + 9¢, = 21.1,

Let us adopt: y; = 8, ¥y =25 a;=4,a, =6.
Define K(t) as a decreasing function:

K, (2—e”1), iTK()zA+4,
K(t)= . (417)
Ae“/szO, ifK()<A+A

where A = 0.2, A, = 0.01, T, =2 T, = 0.5 and
Ky > [s(0)]. Since K(t) is known, it is allowed to
take, according to (4.14):

ag = ag(t) = K1) - 9K(1) + &, 8y = 0.05

Simulation results corresponding to x(0) =[0.2 0.2
0.5]" and K(0)=K,=1, w(0)=-1, are shown in
Figures 4.2., 4.3, 4.4. Different laws for w(s) have
been passed. They correspond to: sharp hysteresis,
smooth hysteresis, univalent function .

Generally, the state responses indicate that the
system is stable (but not asymptotically, becausc of
a reliable margin) and obviously
R(t)={]|s| =K(t)} isa QSD.

Remark that both stability and QSM existence are
not determined by choosing w(s). On the other
hand, the quality of response and the oscillations
of control u are related with the adopted strategy
for controlling the plant into QSD, by mcans of
function w.
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5. Final Remarks

In this paper, sliding mode in single input and
multi input dynamical systems, is approached via
flow- invariance method. The main results point to
a cohcrent description of reaching and an ideal
sliding,

The flow- invariance method was also used to
describe the quasi- sliding motion in VSS with
scalar control. This induced a procedure for
control synthesis in linear VSS, which was
illustrated by an example. This approach could be
successfully developed for a large class of
dynamical systems, liable to disturbances and
parametric uncertaintics.

For the sake of compactness and only concerned
with a gencral frame of the overall links between
VSS and Mow- invariance, the paper does not
include proofs.

We think that a review of the methods the new
theorics on VSS bring forth ,will make a good start
for further research.
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