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Abstract: Genetic algorithms are stochastic adaptive algorithms
whose search method is based on simulation of natural
genetic inkeritance and Darwinean struggle for life. In the last
Years, there has been much interest in studying the theoretical
foundations of genetic algorithms, and especially novel
applications. The purpose of this paper is twofold. First, a survey
of genetic-algorithms is made, discussing what they actually are,
and how they work. Secondly, some applications in process
identification and control ase presented, together with a practical

application in fuzzy control.
Keywerds: genetic algorithms, natural evolution, process
identification, process control.

1. Introduction

In the 50s, von Neumann produced the
theory of self -reproducing automata [1], where
genetic algorithms (GAs) originated from,
Holland continued this idea in [2]. In [3] the
author discussed on the ability of a simple
bit-string representation to encode complicate
structures and on the transformations improving
them. His work mainly demonstrated that, with
a proper control structure, fast improvements of
bit-strings  could occur under  certain
transformations. GAs ([3], [4], (5], 6], (71, [8),
[9], [10]) implement such ideas; they are a class
of probabilistic algorithms that start with a
population of randomly generated feasible
solutions. The solutions “evolve” towards better
ones by applying genetic operators modelled on
the genetic processes occurring in nature.

GAs have been quite successfully applied to
optimization problems like wire routing,
scheduling, game playing, cognitive modclling,
transportation problem, travelling  salesman
problem, adaptive and optimal control, fuzzy
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control  problems, pattern recognition, neural
networks, machine learning, etc.

This paper has two purposes. First, it provides a
survey of GAs. We discuss what they are, and
how they work. Secondly, there are reported
some applications of GAs in process
identification and control,

The paper is organized as follows. Section 2
presents the theorctical foundations of GAs,
Scction 3 describes  some applications, and also
the  major  problems  encountered  on
implementing GAs, and some possible solutions
to these problems. Scction 4 gives an example of
a GA applicd to a fuzzy control problem,
Section 5 draws conclusions and points to
dircctions for future work.

2. Genetic Algorithms

Genetic  algorithms (GAs) belong to a class of
adaptive algorithms whose search methods are
based on simulation of natural genetics and
survival pressure. They pronouncedly differ
from random algorithms in that they combine
elements of direct and stochastic searches. If
associated with difTicult optimization problems
they get superior to hill-climbing methods by
simultancously providing the best solutions and
exploring the search space. Such a property
renders them robuster than the existing directed
scarch  mecthods. The genctics based search
mcthods  characterize by as an important
property as domain-independence.

In general, a GA performs a multi-directional
scarch by maintaining a population of potential
solutions, and encourages information gencration
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and exchange between these directions. This
population enters a simulated evolution : on each
generation,  relatively  “good”  solutions
proliferate, while  relatively “bad” solutions
expiate. In order to evaluate a solution quality,
a special function, playing the role of the
environment , is used. The structure of a simple
GA is shown in Figure 1.

Running a genetic algorithm is to iteratively
simulate by a global population P(t) = {xj(t),
Xp(t),..., Xp(1)}, where xj(t) is a feasible
solution, t is an iteration number, and n is
size of the population. With each generation ,
stochastically best solutions will reproduce and
replace the false ones.

procedure genetic algorithm
begin

t=0

initialize P(t)

evaluate P(t)

while ( not termination-condition ) do

begin
t=t+1
select P(t) from P(t-1)
recombine P(t)
evaluate P(t)

end

end

Figure 1. A Simple Genetic Algorithm

The approaches to implementing a simulation
are not few. Our choice has been made for the
generational approach, where, at each iteration,
stochastically higher evaluated solutions are
first selected with replacement to form a new
population, and then reproduction operators
(crossover and mutation) are used to alter the
members of the population.

The crossover combines the features of two
parent structures to form two similar offsprings.
Crossover operates by swapping corresponding
segments of a parent string. For example, if
parents are represented by five - dimensional
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vectors, say Xx) = (a}, by, ¢y, d}, €}) and X} =
(ag, by, ¢y, dp.ep ), then crossing the vectors
between the second and the fifth components
would produce an offspring (aj, by, ¢, dj, €3)
and (ap, by, ¢}, dj, €1)-

A mutation operator arbitrarily alters one or
more components of a selected structure - thus
increasing  the variability of the population.
Any position of each solution vector in the new
population undergoes a random change with a
probability equal to the mutation rate, which
keeps constant throughout the computation
process.

A genetic algorithm  solving a problem must
have five components:

1. A genetic representation of solutions to
the problem;

2. A way of creating an initial population
of solutions;

3. An evaluation function that plays the
role of the environment, rating solutions
in terms of their “fitness”;

4. Genetic operators  altering  the
composition of offsprings during
reproduction ;

5. Values assigned to the parameters used
by genetic algorithm ( population size,
probabilities of applying genetic
operators, stopping criteria, etc.).

Suppose a maximization of a function of k
variables, f(xj,..., Xp) : Rk > rn takes place.
Suppose that each variable x; gets values from
a domain D= [a; , bj] C R We wish to
optimize f by some precision : suppose six
decimal places for the variables’ values are
intended.

Each domain D; should be divided into (bj
-a-l)“lo6 equal size ranges. Let méi) be the
smallest integer such that (bj-a;)*10° <= 2m(i)
- 1. Then, a representation having each variable
coded as a binary string of length m(i)
satisfies the  precision requirement. Such a
string is interpreted by the following formula :

x; = aj + decimal(stringy)* (b; -a; )/(2m(i) -1)
where decimal(string ), represents the decimal
value of that binary string.
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Each potential solution (chromosome) is
represented as a binary string of length

m=3m(i)
i
where the group of m(i) bits maps into a value
from range [a;, b;].

For initializing the population, a number,
pop_size, of chromosomes is randomly set in a
bitwise fashion. Another method would be to
provide some initial potential solutions.

The algorithm operates as follows : for each
generation, it evaluates each chromosome (using
the function f on the decoded sequences of
variables), selects a new population according to
the probability distribution based on fitness
values, and recombines the chromosomes in the
new population by mutation and crossover
operators. After a number of generations,
when no further improvement can be noticed .
the best chromosome will represent an optimal
solution. Practically,after a fixed number of
iterations, determined by speed and resource
criteria, the algorithm stops.

Let us assume the intention of maximizing
the following function (the example is taken
over from [11] ):

f(XI, X2, X3) = 3.5(){1 -2.1}(3 )3 -

\/X|X2 + Iogz ( X; + 1)*sin2 (x3 +1I)

where -3.0 <= X]<=121,4.1 <= X9 <= 5.8, and
0 <= x3<= 50.0. The required precision is of
four decimal places for each variable.

The x; domain has length 15.1; the precision
required implies that [-3.0,12.1] shall be divided
into 15.1*10000 equal size ranges. That means
that 18 bits are needed for this part of the
chromosome :

217 <151 000 <218

Similarly, for the X3 part of the chromosome,
15 bits are required, whereas for the X3 part of
the chromosome, 19 bits are required . So, the
total length of a chromosome is of 18+15+19=52
bits.

Let us consider a sample chromosome -
GIU)OI(X)IOIIOI(IIDIH110‘31010‘.}010101010(20310001(1)101
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The first 18 bits: 01000100101 1010000 represent
X]1=-3.0+ decima](OlO()OlOOlOl1010000)2 *
(12-(-3.0)/4218 - 1)=1.052425.

[l

Similarly, the next 15 biis represent Xp
5.755320, and the last 19 bits represent X3
32.864857.S0, the chromosome

0100010010110100001111100101000101010100
001000100101 corresponds to (x|, X2, X3) =
(l.052426,5.755330,32.864857). The fitness
value for this chromosome is f(x1, x,
X3)=-4704.82.

The functior f optimization by a GA needs a
population of such chromosomes be generated.
All 52 bits of each chromosome are randomly
initialized . Each chromosome is evaluated and
a new population is formed by selecting the
more fitted individuals according to their
fitness. Some chromosomes from the new
population would undergo reproduction by means
of crossover and mutation to form new
chromosomes (new solutions),

3. Applications of Genetic Algorithms
This section presents some applications of GAs
in process identification and control. But, first,
let us see some problems raised by the
implementations of GAs.

3.1. General Applications and Practical
Problems

Sometimes such problems set back, if not block,
the finding of the optimal solutions with the
desired precision. Ways of dealing with these
problems are also shown.

The original concepts of GAs have been shown
o provide ncar-optimal  heuristics  for
information collection in complex search
spaces. They frequently outperform other
more direct methods such as gradient descent
ones when  difficult problems should be coped
with , i.e. those methods involving highly non-
linear, high dimensional, discrete, multimodal
or noisy functions. Gradient descent methods are
more efficient in  finding out solutions when
scarching convex function spaces with tight
constraints, e.g. continuous, low-dimensional,
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unimodal spaces. Empirical simulations have
frequently demonstrated the efficiency and
robustness of GAs in different optimization tasks
(see [12], [13], [6D)-

No guarantee, however, exists that GAs  will
find the global functional optima because )
the limits of precision of the encoding process
can largely affect the solution’s accuracy, and (2)
the search process does not ergodically cover and
search the state space. One main deficiency
consists in the precision being limited by the
length of the population bit-strings. Methods
such as dynamic parameter encoding, have
addressed the former issue and have achieved
good results on a variety of function optimization
problems ( see [14] ). In the GA domain, the
second deficiency has hardly been solved.

GAs are not designed to ergodically sample and
cover the state space in a maximally efficient
way [15]. Doubt is expressed as to whether they
are ergodic after all, but the prime benefit of
GAs becomes palpable during each gencration
when all individuals can be evaluated in parallel,
making GAs excellent candidates to a running
on fine grained parallel processing hardware.

One of the problems encountered by GA
applications is premature convergence of the
entire population to a non-global optimum. If a
too fast convergence occurs , then the valuable
information possessed by a part of the population
is often lost. This problem is primarily related to
the existence of local optima, and depends on
both function characteristics and sampling of the
solution space.

In general, most approaches to improving the
convergence of GAs brought about some
modifications on the selection routine. In [16]
and [17] , an approach is proposed , which
relaxes this problem by decreasing the speed of
convergence during the early stages of population
existence.

GAs evince inherent difficulties in performing
local search for the numerical applications. As
observed by Grefenstette: “Once the high
performance regions of the search space are
identified by a GA, it may be useful to invoke a
local search routine to optimize the members
of the final population”.
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For improving the fine local tuning capabilities
of a GA, which is a must for high-precision
problems, in [11] it is proposed a  special
mutation operator whose performance is quite
different from the traditional one. This
non-uniform mutation operates as follows @ as
the population ages, bits located further to the
right of each sequence coding one variable, have
higher probability of being mutated, while those
on the left have smaller probability.

For some years, GAs have been experimented
for solving real-world problems. In 1980, SF.
Smith created a poker-playing set of rules using
genetic breeding. L.B.Brooker created a system
where a simulated animal learned how to find its
way around a machine “world”. J.Koza and
M.Keane have adapted genetic techniques to
kecp abroom balanced. J.Koza has also written
on genetic approach to economic modelling. He
has been especially interested in having GAs
discover scientific equations. T.Bogg and
B.Huberman have been using GAs to  stabilize
somchow the chaos in networks. They have
found that if there is chaos caused by having
many agents on a nctwork competing with each
other for a resource, then rewarding the best
predictive agents  will stabilize that network.

GAs have been quite successfully applied to
oplimization problems like wire  routing,
scheduling, game playing, cognitive modelling,
the transportation problem, the travelling
salesman problem, adaptive and optimal control,
fuzzy control problems, pattern recognition,
neural networks, machine learning, etc.

Other applications of GAs include :

e GAs for drawing directed graphs ( see
[18])

e GAs based approach to partial match
retrieval based on hash functions ( see
[191)

e GAs for automated parameter tuning for
interpretation of synthetic images ( see
[20])

o GAs for solving the linecar and
non-lincar transportation problems ( see
[21). [22]. [23])

e GAs for training fecdforward neural
networks ( see [24], [25], [26] ).
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3.2. Applications in Process
Identification and Control

3.2.1. GAsfor Identification of
Dynamical Systems

We assume that the process of which dynamics
is to be identified can mathematically be
described as :

A@ Dy=q"kB(g"uw)+CcqHeq),

where y(t) is the output and u(t) the input at
time ¢ e(t) is white noise and q'1 is the
backward shift operator, i.c. q‘ly(t)ﬂ/(t—l). The
involved polynomials are given by :

A(ql)=1+a)q’! +ayq2 +..+ap,q N4
B(q‘l)=b0+blq'l+...+ban'nb
C(q'1)=1+c1q‘1+...+cncq‘“°

Different identification models will all fit a
model of the data :

A@hy®=q*B @ Huw @ e,
where e’(t) is called the residual. Different
methods correspond to different forms of the
filter H’(q™)). A'(q’ly and B’(q'l) are defined
analogously to A(q'l) and B(q‘l). The unknown
polynomial coefficients of the model are collected
in a parameter vector p.

For the least squares (LS) method we have
H’(q‘i) = 1, and the unknown polynomial
coefficients (a;’, bj’) are  determined by
minimizing

N
Vis= Z e'? (t)
t=m
where m = max(na, nb+k), N=number of
samples.

For the maximum likelihood (ML) method
we have H’(q'l)‘—-C’(q'l). The parameter vector
p is determined as the minimum point of

N
VML= S e'? (t)
t=]
An analytical minimization of Vg (p) is not
possible since the dependence on the G’
parameters is strongly nonlinear. In most cases, a
Newton-Raphson method is used for the
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numerical minimization, but this algorithm could
be complex and cumbersome.

Taking into account the robustness of GAs, and
the fact that they require little knowledge of the
problem itself, these algorithms could be used for
the identification of linear systems. This
approach consists in finding the best structure,
orders and parameters using input-output data of
the system.

The main problems that such an approach has
1o consider are:

L. the codification method

2. the possibility of using an initial population
of solutions

3. the definition of the genetic  operators.
Physical  considcrations and  human
cxperience  impose some restrictions which
have to be considered. The use of special
genctic operators would be compulsory ( see
123]).

3.2.2.The Use of GAs for Evolving
Neurocontrollers

There are processes of which complex dynamics
makes them have time delay, time varying
parameters, unknown and wvariable structures,
etc., in such a way that it is almost impossible or
very dificult to obtain an analytical model of
them.

A neural nctwork (NN) based approach is a
valid tool in tackling the process control without
an explicit analytical model. The property of NNs
for building an adaptive model of a complex
plant let  this technique be used in control
problem-solving where traditional techniques
will otherwise fail.

The ncurocontroller is included in a closed
loop and responds straightforwardly to the
process obscrved behaviour by supplying control
paramcters. The  neurocontroller task  will be
learning to supply the appropriate  control
parameters for the desired targets given as
input.

One can distinguish three possible ways of using
GAs for evolving NN
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1. the evolution of connection weights
the evolution of neural network
architecture

3. the evolution of learning rules

Most of the researches have been carried out in
the first two directions. The obtained results
have shown that using a GA as a replacement of
back-propagation does not,seem to be competitive
with the best gradient method, e.g. quickprop.
But GAs seem to be an useful learning method
when we deal with discontinuous optimality
criteria or discontinuous node transfer functions.

Some attempts have been made to adaptively
adjust standard training algorithms’ parametcrs
using an evolutionary approach. For example,
such parameters may be the learning rate and the
momentum of a standard back-propagation
algorithm.

A more difficult approach is to evolve learning
rules. Paper [27] aims at pursuing this direction
of research in two ways. The first one is to
optimize a standard unsupervised learning
algorithm, such as Kohonen’s self-organizing
map, and the sccond one is to evolve general
unsupervised learning algorithms.

This work would permit the understanding of the
complex rclation between evolution and learning,
and would also be helpful .

Domains of further rescarch are :

1. the codification method
2. a method for supplying initial potential
candidates
3. defining problem specific  genctic
operators
An example of using GAs for evolving NNs can
be found in [28]. This paper proposcs the
evolution of adaptive noise-tolerant dynamical
neural networks, which are recurrent and operate
in real time. These networks are used for
controlling autonomous robots.

3.2.3. Usc of GAs in Analysing Robust
Stability Problems

Stability of polynomials is a key issue in the

analysis and design of automatic control

systems. One basic approach to the robustness

of lincar systems, considers the characteristic
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polynomial in the presence of parameter
uncertainties.

Consider a system characterized by state space
form :

X (O)=A(@)x(t)
where q is a vector of uncertain parameters.

The characteristic polynomial is
P(s,q)=det[sI-A(q)]=D a(q)*s

The system is said to be robustly stable if the
roots of P(s,q) are contained in Re s < 0, for any
q. We could apply a GA based optimization
scheme to finding the maximum root of P(s,q).
If this maximum root is positive then the system
is unstable, otherwise it is stable ( see [29] ).

3.2.4. GAs and Optimal Control

The task of designing and implementing
algorithms for optimal control problem-
solving is a dilficult one. Some rescarchers
have studied ihe application of GAs to
discrete-time optimal control problems. They
have proved that the GA applies to more general
problems, and appears to be more competitive
with scarch-based methods (sce [30] ).

3.2.5. GAs and Fuzzy Systems

Fuvzy logic is an innovative tcchnology with a
broad range of applications. Fuzzy logic is used
for the control of home appliances, video
cquipment, automobiles, proccss control and
industrial automation.

Some attempts have been made at using GAs in
fuzzy systems, We will only report on two
applications.

3.2.5.1. The Fuzzy Classifier System

In [31] it is proposed a fuzzy classifier system
( FCS ) which is motivated by the fuzzy
controllers concept, but owes to other attempts
the manner in which it creates new rules and
adjusts the contribution of the cxisting rules to
the system outputs. The FCS adapts the credit
assignment mechanisms of common  classifier
systems to its use of fuzzy rules. Its fuzzy rules
are represented as binary strings on which a GA
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operates, and so, they allow for the evolution of
adapted sets of rules. So, a GA selects the
classifiers  for reproduction according to their
strength: stronger classifiers are more frequently
selected than weaker ones. For more details
the interested reader is referred to [32] and [33].

3.2.5.2. GAs for Tuning Fuzzy Logic
Controllers

Low cost, small size and reliability are main
advantages of fuzzy logic control systems. They
also provide the simplest solution and the
easiest operation. A fuzzy logic controller is
very robust and more performant than a
conventional PID controller. It can be
implemented on very little silicon surface.
Special fuzzy logic chips are available, and they
can easily be interfaced to sensors and
actuators,

Fuzzy controllers are typically highly non-linear
systems. Therefore, a fuzzy controller is difficult
to understand and analyse. The key problem
with fuzzy logic controllers is that they are
difficult to calibrate.

Some approaches of this problem using GAs
[34], [35] make the assumption that the
mathematical model of the process is available,
or that it could be obtained by using some classic
identification algorithm. In the proposed fuzzy
representation, the knowledge is distributed at
three different levels: symbolic rules, numerical
weights, and fuzzy linguistic definitions. In
order to obtain an optimal fuzzy controller with
respect to some performance ratio, the search
must be guided at all three levels simultancously.
The GA is used for both extracting the
necessary knowledge and tuning the existing
knowledge of a fuzzy logic controller.

The genetic operators involved are random
mutation, dynamic mutation designed for
better local exploration, single crossover on
whole genes, and arithmetical crossover
averaging selected genes. For evaluation
purposes, different objective functions, reflecting
various criteria, are used, The resulils indicate
that the modifications made by the GA could lcad
to optimizing the fuzzy controller both in terms
of simplifying the symbolic structure (and thus
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increasing  its comprehensibility) and  of
optimizing the structure using the numerical
weights.

What to do when the process model is not
available? In order to cope with this situation an
architecture of a hybrid geno-fuzzy control
system was introduced in [36]. It is presented in
Figure 2. The function of process identification
is performed on-line by a GA, called GAI (GA
Identifier), which is providing each time step ®,
an estimate of the process model, by minimizing
a performance ratio V. This model is used by
another GA, called GAT (GA Tuner) which
adapts the fuzzy logic controller (FLC), with
respect to a performance ratio J. The adaptation
takes place simultancously at all the three levels
of knowledge described above. The GAT
provides IT, the sct of tuned controller parameters
(numerical weights, fuzzy definitions, fuzzy
rulcs).

ﬁgpﬁ FLC PLANT
ec

Il
s

% GAT W_ 7 GAI
©
/1

Figure 2. Geno-fuzzy Control System

N

The functions of identification and tuning could
be performed by the same GA, thus resulting a
direct geno-fuzzy control system.

3.2.5.3. GAs for Learning the
Algebraic Modecl of the Fuzzy
Controller

The large number of parameters to be adaptively
modificd is a drawback of the previous approach.
So, this problem has led the authors of [36] to the
idca of aggregating these paramcters into a
smaller number of parameters. This would result
in an casicr tuning procedure and would reduce
the time necessary for computing the inputs to
the process.
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The idea was to use for this purpose the algebraic
model of the fuzzy controller, introduced in [37].
Suppose that the defuzzified output of the fuzzy
controller is 8, where 8 is in [-1,1]. If the inputs
to the fuzzy controller are T Ty s s the
functional relationship between the defuzzified
output 8 and the inputs, 3=F (rl,rz, ... ) is called
the algebraic model of the fuzzy controller. For
example, if the inputs of the fuzzy controller are,
as in most of the now cases, the error ¢ and the
change of error, ec, the output of the controller
would be 8 = F (e,ec). IfF is known , and this
function is not very complicated, it may be used
for computing the process input, and fires no
fuzzy rules. Also, this algebraic model would
aggregate all the fuzzy controller parameters into
a much smaller number of numeric cocfficients,
thus making the adaptation process faster. In
[38] there are reported some situations where the
construction of F was possible. This was possible
when a small number of rules, and special logic
to evaluate the fuzzy control rules, were used.
There are some important cases in what regards
the structure of F. If §=a *e+ B *ecand a
and P are constants, then F is linear. If F has
the same structure as above, but o and f are
functions of ¢ and/or ec, then the fuzzy controller
is a non-linecar PI controller.
reported many experiments on the sensitivity of &
with respect to various parameters, such as the
defuzzifier, the fuzzy logic, the scaling constants.

There were

An interesting opportunity to determine the
structure of the function F is to use a GA for this
purpose, and to further use the algebraic model
(AM) of the fuzzy controller for tuning purposes.

[36] introduces an architecture using this
approach (see Figure 3). One can observe the
GAT and GAI blocks which have the same
purposes as in Figure 2. There exists GAM (GA
Modeller) which receives as input the look-up

table A of the fuzzy logic controller (FLC), which
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is known to perform well on the respective class
of processes.

1J 6aM [t—— FLC

L
r - y

AM PLANT >

eC
5l

J

—a GAT GAI

oo

Figure 3 Algebraic Modcl Based Geno-fuzzy
Control System

The GAM performs off-line and provides €, an
AM of the fuzzy controller, by minimizing some
performance ratio I. This AM is further used for
controlling the process, and for tuning purposes,
based on GAI and GAT.

4. A Case Study

4.1. Test Problem

The experiments consisted in testing the
algebraic model based geno-fuzzy control system
on a servo-system [36]. The task to be executed
was to rotate the shaft of a servomotor to a set
point. The fuzzy controller has two inputs, error
e and error change ec, and one defuzzified
output. The error e is defined as the difference
between the set point r and the output y from the
shaft encoder : e = r - y. The error change is
defined as follows: ec = ¢, -¢ where e, is the
crror at the time step t,, and ¢, is the error at the
time step t,. The input to the process is called u,
and it is a voltage output, defined as ut) =u
(1-A) + 8 (1), at times t= A, 24,..., where A is the
sampling time.

For the linguistic values, there are used the same
fuzzy sets for error, error change, and control
change specified in [-1,1]. They are presented in
Figure 4 . They have the following meaning :
SN = “small negative”, ZE = “zero”, and SP =
“small positive”.

Studies in Informatics and Control,Vol.3,No.4,Dec. 1994



SN ZE SP

-1 0 1
Figure 4. Linguistic Values and
Their Fuzzy Sets

Table 1 shows a simple fuzzy controller which
contains three fuzzy control rules,relating the
output & to the inputs e and ec. This controller is
known to perform well and is further denoted by
FCl.

Table 1. Human Expert Generated Rules for FC1

Error  Change in error ec
e SN ZE SP

SN SN

ZE ZE

SP SP

First, the corresponding look-up table for FCI
was created, by uniformly quantizing the
universe of discourse for e and ec, which is the
interval  [-1,1], and by computing the
corresponding output, using Zadch logic for
inference and the center of gravity mcthod for
defuzzifier.

4.2. Genetic Representation

The following model was fitted to data obtained
by creating the look-up table of the fuzzy
controller.

5817181 %e+g3 e
84 +85*e +gg *ec
87 +8g*e+gg *ec

+ (D
810 *811*e+g), *ec

213 ¥e*ec

814 7815 %€ +g 5 *ec

+
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The evaluation function I, used for rating
potential solutions, was chosen to be a quadratic
index :

P
I'=(1/P) X (1p-mp)? (2)
p=l

where p is the pth cntry of the look-up table,
p=L.P, m_ is the output  of the potential
algebraic m%dcl (chromosome) for e and ec
corresponding to this entry and r_ is the output
from the pth entry of the look-up g]ble. The best
algebraic model should have the smallest 1. So,
in this casc the GA operates for minimizing 1.

4.3. Genctic Operators

All the operators used in the reported
experiments are based on floating  point
representations of the chromosomes [11].

Uniform mutation is an unary opcrator and
sclects a random component (gene) of a selected
potential solution (chromoseme), which is also
sclected randomly with a probability equal to the
uniform mutation rate. The sclected gene is
modified at random. Dynamic mutation is an
unary operator which is responsible for the fine
tuning capabilitics of the sysicm. For a parent x,
il the clement Nk is sclected for dynamic
mutation, the result js x° = (xl,...,x’k,...,xn),
where X’y = Nk + D (Lug-xy), if a random digit is
0.and x’y = Nk * D (txg-ly), if a random digit is
1, and Iy and u arc the lower and upper limits of
Xk. The function D(ty) returns a value in the
range [0,y] such that the probability of D(t,y)
being close to 0 increases as t increases (t is the
generation number),  This property causes this
opcrator to scarch the space very locally when t is
large. An example of D is :

D(t.y)=yr(1-vT)b 3)

where 1 is a random number in [0,1], T is the
maximal gencration number, and b is a system
parameter ( usually b=6).

Simple crossover is the classic crossover operator
which is operating by swapping corresponding
scgments of two parcnts and producing two
offsprings. The whole arithmetical crossover is
defined as a lincar convey combination of two
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parents, i.e. if x1 and xp are choseq to be the
parents, the resulting offsprings are x 1=ax)+(1-
a)xy, and x p=ax 1+H(1-a)xp, where a is a random
number in [0,1].

4.4, Experimental Results

The step response of the servo-system with FC1
is presented in Figure 5. For FC1, the obtained
algebraic model is denoted by AM1, and is as
follows:

- 00326437279 +¢— 00025+«
T 49249 +16736%e+0.0054 *ec

—0.0015+0.9076* ¢ +0.0099 * ec
+ 4)
44573+0201*e+28231%ec

N 10359 *e*ec
47052+ 0.0052 * e +4.0244 *ec

and the corresponding value of the performance
ratio was 1=0.019756. The step response of the
servo-system controlled with AMI is presented in
Figure 6. This model was further tuncd by a GA
which minimized the following performance
ratio.

E=Z el (5

where e is the error at time /£, and is as follows:

_ 0.04696+9.9999%¢ +2.399*ec
=33101-9.9999%¢ +0.0054*ec
| -0.0015+1.0738*e +9.9999*ec
*TT1.4139-0.8834*¢ +0.5255*ec
2 5.4436%e*ec
0.2083+3.1907*¢ +8.3747*ec

(6)

The performance ratio for AM1 is E=12.200.
The tuned AMI1 ensures E=2.404019, and the
step response of the control systems with this
tuned algebraic model is presented in Figure 7.
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Figure 5. Step Response with FC1
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Figure 7. Step Response with Tuned AM1
For both experiments, the population size was 40,
the uniform mutation ratc was chosen to be 0.1,
the dynamic mutation ratc was set to 0.15, the
simplc crossover probability was 0.6, and the
arithmetic crossover ratc was 0.2. The initial
population of solutions was created randomly.
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S. Conclusions and Further Research

In this paper the use of genetic algorithms for
process identification and control, was
discussed. First, we described  the theoretical
foundations of GAs. Secondly, we concentrated
on describing some applications to process
identification and control, and on presenting a
case study.

GAs require little knowledge of the
problem itself, Therefore, computations based
on these algorithms are attractive to users
with no  numerical optimization background,
An interesting area of further rescarch is the
comparison with related techniques, such as
simulated annealing ( see [15] ),

While the GA methods are likely to be slower in
execution than the traditional methods when
operating on well-behaved objective functions,
moving on to difficult problems compensates
much  better approximations for the resources
waste. This could be reasonable and acceptable if
real-time performance Were not crucial, as in
Mmany cases of practical optimization problems
(see [23]). We think that the domain of GAg
would  strongly  benefit from trying to
implement these ideas in  more complex
problems. This would require  that, on
implementing new genetic operators, knowledge
about the problem js available. Another area of
interest would be, in our opinion, the design of
some methods for providing  an initial
population of solutions. These methods would be
problem-dependent, and will cause a higher
operation speed, which could be very uscful.
Also, implementing new genetic operators for
coping with linear and non-linear constraints, is
anew research direction . The implementations
of GAs on parallel processing computers look
Very promising.
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