Modelling, Dynamic Persistence and Active Images for

Manufacturing Processes

José Barata; L.M. Camarinha-Matos
Universidade Nova de Lisboa
Monte Caparica
PORTUGAL

José Freddy Rojas Chavarria
Universidad de Costa Rica
San Jose
COSTA RICA

Abstract: This paper presents a general overview of the research approaches in the topics of modeling, dynamic persistence of objects and active
Images for manufacturing processes as carried out at the University of Costa Rica and the New University of Lisbon. This paper was prepared within
the context of the ECLA (European Communities and Latin America)co-operation programme on the CIMIS.net project. Current approaches of both
universities are presented in order to define a reciprocal cooperation towards the definition of some general concepts and the design of some tools in the

mentioned topics.

1. Introduction

Object Oriented techniques have been intensively
used in modeling manufacturing systems and
processes. OOP provides a structured modeling
approach, allowing for multiple levels of abstraction,
a convenient approach for complex systems modeling

Particularly in the area of shop floor control, OOP
can be used to model various manufacturing agents -
robots, NC machines, transportation systems or even
continuous processes equipment. Classical real-time
aspects, like asynchronous events / interrupts, device
drivers, etc., may be adequately modeled/abstracted
using an OOP approach.

Graphical interfaces stand for one important aspect
in the field of process controllers. An integration of
OOP techniques and active images provides a
convenient framework for the development of
advanced control panels and dynamic information
browsers.

On the other side, in a manufacturing environment,
many information sources - sensors, state variables of
local controllers, etc. - have their own "life",
independent of the computer that is running the
general controller, because they have local processing
power. This may lead to a concept of dynamic
persistence, that we intend to explore in modeling
manufacturing systems.

Studies in Informatics and Control,Vol.3,Nos.2-3,Sept1994

1.1 Basic Concepts
1.1.1 Dynamic Persistence of Objects.

Object Persistence is the property of extending the
life of an object beyond the running session of the
application software that created or changed it. This
characteristic is important for applications that may
interact with long lifctime objects.

The traditional way of dealing with Object
Persistence is storing the objects in secondary
memory. In some approaches, classical Database
Management Technology has been integrated with
OOP languages in order to manage the flow from
main to secondary memory and vice versa.

The concept of Dynamic Persistence of Objects is not
very different from that of normal persistence. A
basic diflcrence would be the way persistence is
supported: by the local memory of devices'
controllers,

The Object Oricnted paradigm happens to be a good
tool for modeling a manufacturing process (assembly,
welding, ..), because it can support the modelling of
both static and dynamic characteristics of the
physical entitics involved in the process. As a
manufacturing proccss is composed of intrinsically
dynamic entities, the most interesting aspect is the

173

possibility of modelling the dynamic characteristics,
those that express the behavior of the entities.

The use of reactive programming (demons) and
methods to "link" the object model to the real cell
controllers allows for a permanent update of the
dynamic object model. In this way, a special kind of
persistence is achieved - dynamic persistence. It is
dynamic because the object model reflects, at every
time, the status of the physical object. The
persistence is ensured by the "memory" present in the
device controller, There is a tight connection between
the object "living" in the main memory and the
physical controller. We can say that the object
virtualises the physical controller.

The persistence of those objects could be supported
using the traditional way of secondary memory. This
approach seems redundant because the mecmory
always present in the controllers can be used as long
as the controllers are active. On the other side, this
kind of dynamic information only makes sense or is
useful when the controllers are active. For instance,
the current position of a robot is a dynamic attribute
that is important when that robot (and its controller)
is active. If it is switched off, the current position is
not dynamic any longer (or not important at all since
a "hard home" action will be performed when it is
switched on again). Therefore, traditional persistence
may be used for the static properties of objects, but
dynamic attributes are better modelled if resorting to
the concept of dynamic persistence.

1.1.2 Active Images

Current technology of graphical interfaces offers the
possibility of designing "control panels” and dynamic
information browsers with special capabilities of
displaying all kinds of eclements such as: push
buttons, scales, bars, sophisticated instruments
(gauges) and schematic flow diagrams. When these
graphical items, and in particular the gauges, are
logically "linked" to object's dynamic attributes, they
give, at any time, an updated pictorial representation
of those attributes. Such dynamic graphics is called
"active images".

A programming framework combining active images
with the notion of dynamic persistence, offers a very
practical approach to designing interfaces for high
level control systems.

1.2 Requirements in Costa Rica
In Costa Rica, at the current stage, continuous
processes are more important than discrete event

systems. However, some hybrid situations can be of
interest if we plan high level plant-wide control

174

systems. For instance, in a sugar plant, most
processes have a continuous nature, but after packing
the sugar, the last phase of the process is discrete.

From an implementation point of view, the locally
developed process controllers are based on low level
libraries embedded in the programming languages or
some high level tools. Some of these systems offer
graphical elements to show the values of variables
and some capacities of handling curves of continuous
processes. These systems often work with real time
events. Sce Lab Windows, for instance.

On the other side, the installed computational park
basically consists of PCs. Therefore, the OOP and
Active Images supporting technologies, although
promising in this industrial scenario, must be
supported by small equipment.

The combination of the local experience and of the
perception of industrial needs with the concepts
devecloped at UNL is regarded as a promising
coopceration.

2. Modclling
2.1 Modclling Aspects

The Object Oricnted paradigm or its "mate" Frame-
bascd/Rcactive Programming represents a convenient
tool to model the inhcrent complexity of a
manufacturing system. This complexity results from
the amount of rclationships among components in
association with the diversity of components. The
topic of modcling is a pre-requisite for systems
intcgration into CIM. Specifically speaking about
system controllers. there is a need for a model to
support the intcraction between high and low level
controllers, and, at the same time, support the
configuration of ncw systems.

The model should emphasize the relationships
among the various components in the cell and hide
the specificity of hardware. This latter item can be
casily achicved with the Object Oriented/Frame
based paradigm using methods or demons. Methods
associated with the component can hide the
underlying hardware infrastructure.

CELL

)

Figure 1. Cell Structure

=—7

Input =
L Agent

In the following discussion the basic modeling unit
will be a cell. A ccll is a composite entity capable of

Studies in Informatics and Control,Vol.3,Nos.2-3,Sep11994

making some transformation, movement or storage
related to some product or part. In structural terms,
each cell (C) has components to support the input of
parts (I), an agent to perform the transforming
actions (A) and components to support the output of
products/processed parts (O). Therefore, a cell is the
tuple: C=(I, A, O).

An example of a cell model:

FRAME CELL
name:
base_coordination_system:
processable_products:
input_parts:
connected_from:

processor:
connected lo:

Connected_from is a relation that links the cell
model to the entity(ies) performing input activities.
The cardinality of this relation depends on the
available number of input entities.

Connected_to is a relation that links the cell model
to the entity(ics) performing output activities. Again,
the cardinality of this relation depends on the
available number of output entities.

Processor is a relation that links the cell model to
the agent performing transforming activities.

The generic cell concept can be specialized by
activity. There can be cells specialized in assembly,
painting, welding, storage, machining,
transportation, etc. A shop floor is just a set of
specialized cells.

-a i.S-ii g s is-:
Painting | [Machining blomge} Assembly
Cell Cell Cell Cell Cell

Figure 2. Examples of Types of Cells

{Tmnsponalion

Metaknowledge should be associated with each
specialized cell to represent the specificities of its
application area. For each domain the specific cell
has the same structure as the generalized Cell
concept (Input Agent, Processing Agent, Output
Agent) but the domain of the implementing
components is different in each specialization. For
example, in a Painting or Welding Cell, a vibrator
feeder is not a valid Input item, but this component is
valid in an Assembly Cell. Metaknowledge seems to
be a very important element at the configuration
phase, certifying the validity of cells.

An assembly cell can be described as:

Studies in Informatics and Control,Vol.3,Nos.2-3,5ept19%4

FRAME ASSEMBLY-CELL
is-a: CELL
val-inp-ag: vibratory_feeder, buffer,
gravitic_fceder, Index_Table, agv, conveyor
val-out-ag: conveyor, agv, buffer, index_table
val-proc-ag: robot

On the other hand a Painting cell can be described
by: i
FRAME PAINTING-CELL
is-a: CELL
val-inp-ag: buffer, agv, conveyor
val-out-ag: conveyor, agv, buffer
val-proc-ag: robot

The input and output activities can be performed by
scveral agents, i.e. to perform these activities there
are several candidates, depending on the application.

Al this slage it is convenient to make a distinction
between the concepls of agent and
componcnt/manufacturing resource.

For instance, the model of a robot component is a
context indepcndent description of its static and
dynamic characteristics. A robot agent is a model of
a robot and associated resources, like tools or
auxiliary sensors, when inserted in a particular
context. A robot can play different roles in different
contexts. The (expected) behavior of a robot in an
Assembly context is different from its behavior in a
spot welding context.

On the other hand, when a robot is performing a
given role, it resorts to auxiliary resources, like tools,
scnsors, bullers, etc, that extend the robot
functionality in order to fulfill the functionality
required by this role. A robot agent is, therefore, a
modcl of the robot when playing a particular role,
extended by sclected attributes inherited from the
auxiliary resources.

Lct us consider an example (Figure 3):

Assembly
Role

performs

played_hy

Figure 3. Structure of a Robot Agent

An example of a robot component model:

175

FRAME ROBOT_COMPONENT
is-a: manufacturing_component
Base_coordinate_system:
Controlled by:

Applications; assembly, gluing, ..
DOF: 6
Working_area:
Load:

Repeatability:
Current_position:
Cost:

Manufacturer:
Cycle_Time:
Next_maintenance:
N_working_hours:
Weight:

Resolution:
Max_speed_by_axes:
etc.

In this model, Controlled by is a relation that links
the model of the robot to the model of its controller.
An example of this model is presented below:

FRAME ROBOT_CTRL_COMPONENT
is-a: controller
move_wc: method move_we_fn(x, y, z, q)
move_jc: method move_jc_fn(ml,m2,m3,m4)
hardhome: method hardhome_fn
acceleration: demon if write accel_dem
speed: demon if_write speed_dem
input; byte demon if needed input_dem
output: byte demon if write output_dem

controlled_by

Robot
Component

‘ controls

Figure 4 . Controlled by and Controls Relations

RELATION CONTROLLED_BY
is-a: relation
type: intransitive
inherits: inclusion (move_wc, move_jc,
hardhome, acceleration, speed)
inverse_relation; controls

The operations specified in the inherits slot arc
inherited by the robot component.

Example of role definition:

FRAME ASSEMBLY_ROLE
is-a: role
tools_domfain: (grippers, screwdriver)
aux_res_domain: (buffers)

Jorce _sensor.

current tool:

176

available tools: grl, gr2, sd2
aux_resource: bufl, buf2
assembly_device: fixturel
main_attributes: force_sensor, current_tool,
available_tools,
available_resources
component_attributes: Base_coordinate_system,
Controlled_by, Working_area, load,
Current_position

Main_attributes is a slot related to the inheritance
mechanism of performs relation. In this case, it
specifies which are the characteristics of assembly
role that will be relevant to a processor agent.

Component_attributes has the same functionality as
main_attributes, but, in this case, associated with the
rclation played by, This slot describes the most
relevant component attributes that are important to
the processor agent.

Tools domain and aux_res_domain represent
domain-knowledge that is important during
confliguration time.

Current tool is a relation that associates the main
player of this role (robot component) to a particular
tool.

Assembly_device is an attribute describing where
asscmbly opcrations are really executed. Fixturel is
an instance of a component specialized in holding
parts.

RELATION CURRENT_TOOL
is-a: relation
type: intransitive
inherits: inclusion (tool operations, tcp,
tool_status)
inverse_rclation: used_by

Finally, an cxample of an agent is:

FRAME ASSEMBLY_ROBOT
is-a: agent
performs: ASSEAMBLY ROLE
plaved by: ROBOT _COAMPONENT

The relation performs associates an agent with a
specific role, an example is:

RELATION PERFORMS
lype: intransitive
inherit_slot: main_attributes
inverse_rclation: performed_by

The slot specified in the inkerit_slot contains the slot
namcs 1o be inherited by the processor agent.

Studies in Informatics and Control,Vol.3,Nos.2-3,Sept1994

The relation played by associates an agent with its

intrinsic propertics (components). An example is:
RELATION PLAYED_BY
is-a: relation

type: intransitive

ACELL1

i

[P

TCELL 1

inherit_slot: component_attributes
inverse_relation: plays

The slot specificd in the inherit_slot contains the slot
names to be inherited by the processor agent.

ACELL2

KT

1l

— I

connected_to

performs

played_by

processor

PROCESSOR TC]
© agent

Conveyor
BOSCH - TP1
TS2_SE2

connected_fo

performs

performs

processing
conveyor
role

played _by

played_by

Figure 5. Two Assembly Cells Connected by a Transportation Cell

A manufacturing system can be composed of several
of the previously described specialized cells. The
connections among them are possible by: (1) sharing
of input/output agents or (2) via a transportation cell,
A cell can have several input and output agents, i.e. a
cell may have more than a single input or output
point. The raw- materials flow and the
assembly/subassembly parts are both managed by
input and output agents.

In a multi-cell complex system the Connected to and
Connected from relations describe how cells are
inter-connected.

A very interesting cell case that should be pointed out
is the transportation cell. It can be used to connect
other types of cells ensuring the flow of raw-
materials and the assemblies/subassemblies or parts.
The cell's processing agent could be a Robot, an Agv
or a Conveyor. What makes this concept interesting,
allowing more flexibility, is the fact that a conveyor

Studies in Informatics and Control,Vol.3,Nos.2-3,Sept1994

or an agv is not an input or output component, but
they can play as transportation cells agents.

In order to clarify these concepts, an example of an
assembly system with 3 cells: 2 assembly cells and a
transportation ccll are presented (Figure 5).

ACELLI is an asscmbly cell with a gravitic feeder to
supply parts and a robot to assemble those parts.
Processed parts are placed in a conveyor to be
transported to ACELL2. In ACELL2 some
processing activities are done by an agent robot and
dclivered to an output bufferr TCELLI is a
transportation cell which connects assembly cell 1 to
asscmbly cell 2.

ACELL1 and TCELLI share a physical picking
point. The output point of assembly cell 1 (ACELL1)
and the input point of transportation cell 1 (TCELLI)
is the conveyor input point (ref _origin). The output
point of transportation cell 1 and the input point of

177

assembly cell 2 (ACELL2) is the conveyor output
point (destination_ref).

BOSCH conveyor component is shared by 5 different
agents (OUTPUT-AC1, INPUT-TCI1, PROCESSOR-
TCl, OUTPUT-TC1 and INPUT-AC2), via
played by relations.

An example of the instances involved in the
Transportation Cell TCELL1 is presented:

FRAME TCELL1
instance_of: conveyor-transportation-cell
name: TCELLI1
global_referential: ref0
processing_products: pallets
input_parts: pallets
Connected from:. INPUT-TCI
processor. PROCESSOR-TCI1
Connected to; OUTPUT-TC1

This frame was created during configuration phase
using Metaknowledge included in the
TRANSPORTATION CELL model.

FRAME BOSCH_TS2_SE2
instance_of: conveyor_component
brand_name: BOSCH
transportation_family: TS2
unit_type: SE2
ordering_number: 3842999120
system_designation: TP1
track_width: 240
length: 3000
powered_by: electric
transportation_speed: 12
motor_power: 370
reversible: false
belt: non-conductive
controlled_by: SONY_CTRL
base_coordinate_system:
origin_ref: refl
destination_ref: ref2
current_product:
transports: WT2
load_method: by_robot
unload_method: by_robot
forward: method forward_fn
backward: method backward_fn
stop: method stop_fn

FRAME INPUT_CONVEYOR_ROLE
is-a: role
available_part:
main_attributes: available_part
component_attributes: transports, load_method,
origin_ref, base_coordinate_system

Attributes available in INPUT-TCI, via perforins and
played by relations are:

178

FRAME INPUT-TC1
is-a: agent
origin_ref: refl
performs: INPUT_CONVEYOR_ROLE
played by: BOSCH-TS2-SE2
[transports]: WT2
[load_mecthod]: by_robot
[base_coordinate_system]: reft

Attributes within brackets are inherited.

FRAME PROCESSING_CONVEYOR_ROLE
is-a: role
main_attributes: nil
componcnt_attributes: forward, stop, backward

Attributes available in PROCESSOR-C1, via
performs and played_by relations are:

FRAME PROCESSOR-TC1
is-a: agent
performs: PROCESSING_CONVEYOR_ROLE
played by: BOSCH-TS2-SE2
[forward]: method forward_fn
[backward]: method backward_fn
[stop]: method stop_fn

FRAME QUTPUT_CONVEYOR_ROLE
is-a: rolc
main_attributes: nil
componcnt_attributes: transports, load_method,
destination_rcf, base_coordinate_system

Attributes available in OUTPUT-C1, via performs
and played_by rclations are:

FRAME OUTPUT-TC1
is-a: agent
performs: OUTPUT_CONVEYOR_ROLE
plaved by: BOSCH-TS2-SE2
[destination_ref]: ref2
[transports]: WT2
[toad_method]: by_robot
[basc_coordinate_system]: reft

For ACELLI, a particular aspect regarding the
output agent is excmplified by:

FRAME OUTPUT_POINT_ROLE
is-a: role
moving: false
main_attributes: moving
component_altributes: origin_ref,
basc_coordinate_system

FRAME OUTPUT-AC1
is-a; agent
performs: OUTPUT_POINT_ROLE
plaved by. BOSCH-TS2-SE2
[origin_ref]: refl

Studies in Informatics and Control,Vol.3,Nos.2-3,Sept1994

[base_coordinate_system]: reft

For ACELL2, a particular aspect regarding the input
agent is exemplified by:

FRAME INPUT_POINT_ROLE
is-a: role
available_part:
main_attributes: available_part
component_attributes: destination_ref,
base_coordinate_system

FRAME INPUT-AC2
is-a: agent
performs; INPUT_POINT_ROLE
played_by: BOSCH-TS2-SE2
[destination_ref]: ref2
[base_coordinate_system]: reft

This modular approach to cell representation
facilitates the development of complex systems by
simple "concatenation" of cells.

A particular manufacturing unit is made up of
several subsystems (Transportation Cells, Painting
Cell, Assembly Cell, ...). A manufacturing unit could
be modeled by a SYSTEM entity, which has access to
all characteristics and to the functionality of all
subsystems involved in the Unit via the
has_subsystem relation. The applications
(controllers, for instance) are accessing the unit only
through SYSTEM.

. role_cntrl
role_maint

[SYS_MAINJT (SYS_DIAGH (SYS_CNTR]

Figure 6. Different SYSTEM Views

The way applications see the unit varies with their
needs. An application concerned with maintenance
activities has different needs from SYSTEM than an
application concerned with supervision activities,
These differences could be easily reconciled using the
view concept. Using this concept an application only
sees the information relevant to its activity.

This is a very convenient concept because it supports
information structuring and consistency. Every
component belonging to a basic cell unit has all
kinds of information, but not all this information will
be used within the same context. Thinking of a robot,
an attribute that counts the number of its working
hours, will be important in case of a maintenance
application, but it would be irrelevant to a direct
control application.

Studies in Informatics and Control,Vol.3,Nos.2-3,5ept1994

These views represent the roles performed by
SYSTEM. The role relationships encapsulate the
information needed to provide views. Every relation
has a kind of Metaknowledge specifying what
information is inherited by each view. Every view
corresponds to a different entity (SYS_MAINT,
SYS_DIAGN, SYS _CNTRL). Applications have
access to the specilic view they are interested in. The
validity of each access should be confirmed by the
view entity.

We can even think of applications in the same
activity arca, i.e. accessing the same view, but having
different requirements. In this case the access is
dctermined not only by the role of the client but also
by its status.

i

p{ r atusfor mations

Aubary

—
=]
C==—)
=)
___ ==y
—_—
T
e
=]
B
—
=)
1
| 1y o= l.
l|

Figure 8 . Partial Taxonomy of Roles

179

The status of applications may differ in accessing a
view entity, having conditioned access determined by
their status.

In order to create and configure cells it is convenient
to have catalogs of components/manufacturing
resources and roles organized as taxonomies.

Figure 7 illustrates a partial taxonomy of
components.

The components are fully described in this taxonomy.
This description contains all the information
available about the component, from mechanical to
electrical/electronic characteristics, not only those
that are relevant to the control but also those relevant
to configuring a system.

The taxonomy is organized by components'
functionality.

Figure 8 illustrates a partial taxonomy of roles.
2.1.1 UNL Experiences

UNL has been involved, for several years, in
manufacturing systems modeling and CIM
information systems [1], [2], [4].

The obtained results include an Express-bascd
Engineering Information Management System,
featuring multiple representation interoperability and
a multi-user integrating infrastructure into support
the integration of a heterogeneous community of
application modules in CIM.

A supervision architecture built on top of EIMS
provides a first step towards a platform enabling
concurrent engineering.

Modelling experiments of robotized cells have been
made using Express, frame representation systems
and OOP. Current activities address the dynamic
persistence aspects and the modelling of cells from a
monitoring point of view. The objective is to develop
machine learning techniques for monitoring, error
diagnosis and recovery.Cell adequate models arc a
prerequisite of the development of a learning cell
controller [6]. Another complementary direction in
cell modeling is that towards the development of a
distributed multi-agent dynamic scheduling system

(71
2.1.2 UCR Experiences

Nowadays in Costa Rica the use of computers to
control industrial processes is not generalized and
few places use them. Most of the systems are based
on "personal computers" and the main opecrating
system is DOS. Some other systems are bascd on

180

UNIX or OS8/2, in particular for modelling and
simulation ol hydraulical or paper plants.

Somc companies are working with leased equipment,
or have invested in the use of PLCs (Programmable
Logical Controllers) with or without a link to a PC.

The most common logical link between computers
and processes is based on the use of some languages
like: Pascal, C, C++, Assembly language. In all these
cases it 1s necessary that a lot of codes for using the
computer resources should be generated (code for
interrupt routines, manipulation of stacks, queues,
drivers, and so on). As a result, libraries of basic
resources are now available and, together with PLCs,
do offer a starting platform for the next stage of
inlcgration. From the point of view of hardware, the
main link between computers and PLC information is
provided by communication processors. Specific
resources libraries to "encapsulate” this link had to be
developed.

As an example, one experimental prototype
developed by UCR and called SLMTR was presented
at the COPIMERA workshop. This system is like a
Shell written in the Assembly language, C and C++,
comprising a Real Time-Multitasking environment, a
Rcal-Time hardware driver for data acquisition and
control, an object oricnted graphical interface and a
database to be used in DOS with the C language.

Currently, some people are working with OS/2,
UNIX and it is possible to have leased workstations
for process control. Some applications are ready for
Microsolt Windows for PC linked with PLC and
therc are some other applications based on Lab
Windows and Lab View for PC.

Most of thesc experiences were related with
continuous processes and not with discrete
manufacturing. Current goal is to develop a mixed
platform to support both continuous and discrete
processes in order to implement a CIM concept in the
typical industrial scenario of Costa Rica.

2.2 Physical Connection with Data Sources

2.2.1 UNL Experiences

The Intelligent Robotics Group of UNL has got
experience in using reactive programming to connect
framc bascd models with local controllers of
manufacturing cquipment 1], [3]. Figure 9
illustrates the basic principle. Each time we try to
access the Location attribute of the object/frame
Robot, a demon is fired and a connection with the
robot local controller is established. This approach
was uscd. for instance, in an experimental set-up for
the exccution supervision of assembly tasks

Studies in Informatics and Control,Vol.3,Nos.2-3,5ept1994

“{frama Robot

demon

if-read
demon

Control

Figure 9 Use of Reactive Programming To Support Dynamic Persistence

The robotic assembly cell is composed of one robot
SCARA (SONY SRX 4CH), three robot tools
(grippers), magazine and corresponding tool
exchange mechanism, two special purpose feeders
and one fixture, a force torque sensor and several
binary sensors.

The actual communication link, in a UNIX
environment, is supported by Remote Procedure Calls
(RPCs) - Client-Server model. In fact. a Cell Front
End composed of a set of server processes, was
developed under UNIX environment and provided
the interface with different parts of the Asscmbly
Cell. One of these processes is dedicated to
interfacing the Robot Controller. The main functions
made available in this server process are rclated o
robot movement commands:

* move to a point

* move to point in linear interpolation

= move to point in circle interpolation

» relative movement in each axis

« relative movement in four axes

« forward shift

« point definition

* set velocity

= set overtime

» set acceleration time

* set hand system

« delay

* step stop

An interpreter of these commands was written in the
Robot Controller language. The input and output
ports of the Robot Controller, each having 16
independent bits, can be used to actuate other
resources of the cell, such as robot tools, feeders and
fixture and to obtain status information from simple
sensors like proximity sensors. Therefore, the Robot
Controller Server also provides read and write
operations in those I/O ports.

Another server process is the Teach Pendant
Emulator, which, according to its name, emulates the
Teach Pendant of the robot. This is achieved by
sending through the serial line of the Teach Pendant
signals simulating its buttons. As this robot

Studies in Informatics and Control,Vol.3,Nos.2-3,Sept1994

controller is not wvery friendly regarding its
intcgration into a higher level system, this process
accomplishes several tasks of great importance. In
the first place, to download a program to the Robot
Controller and make it operational, obviously, it is
nceessary to observe a handshake protocol involving
the Teach Pendant and the Programming Unit.

In our casc the program that will run in the Robot
Controllecr is a command interpreter (a
materialization of the scrver commands) that has
been previously stored there. The Teach Pendant
Emulator is used to render the command interpreter
the default program and then start its exccution.
When some fault occurs which causes breakdown of
the Robot, the Tcach Pendant is normally used to
rcinitialize it. The Teach Pendant Emulator is used to
perform the same task automatically.

Finally, the Force/Torque Secnsor Server process
performs all communications with the Force/Torque
Sensor Controller. Its main functions are:

* scnsor calibration

» consult Force/Torque values in an instant

= tracc Force/Torque valucs over a period of time.

Via Remote Procedurc Calls (RPC), these server
processes make the commands of the controllers of
the cell resources available in UNIX. Another layer
above this. the Virtual Cell Controller, combines the
commands in order to produce a sct of services that
represent the global functionality of the assembly
cell.

The frame/OOP bascd model of the cell components
get access 1o these front end scrvices via demons
attached to the dynamic attributes.

A large scale experimentation is now being carried
out for the Pilot FMS/FAS Unit of the Center for
Intclligent Robotics of the UNINOVA Institute.

2.2.2 UCR Experiences

In Costa Rica the connection between the
environment of physical processes and the data
structurcs is often made using low level drivers.

181

Those systems are frequently based on hardware
interrupts which usually asked for all codes being
written from scratch.

The most common design models are based on two
layers: one for a physical connection with hardware
and another for providing a logical connection

between the logical driver and the application, The
physical connection has a low level handler which
rcacts to hardware interrupts. This handler does not
know anything about the main application; it is
normally a hidden object.

Graphical
Interface

tApplication}
Jt 1
A

(Cell Control Functions)

t

virtual
Cell
Controller,

Rcbhot
Controller
Server

'y I 3

Teach
Pendant
Exulator

Force/Torque
Sensor Server

\d A
Force/Torque
Robot Sensor
Controller Controller
L 3
Asserbly Cell
Rescrces
i Ropot
I { Tools
kit I Y
I o
i:eede:s Binary I Force/Torgque
r—————— Sensors | Sensor
Fixture
Sensors

Figure 10. Infrastructure for Control of a Cell

A logical connection is the way how to link the
results of the hardware interrupts (layer one) with the
application. It is a data structure which hides the
physical world and only presents an input/output
driver (black box) for the application.

To build the logical connection between software
and hardware, OOP techniques are used. In this
way, the system user needs know nothing about the
physical connection. In particular, EXPRESS like
representations, integrating information originated
from digital sources is being explored in order to
read a common integration platform

3. Active Images

As mentioned before, the main idea is to associate
"dynamic" images, like gauges, with the objcct/frame
attributes that represent the dynamic aspccts of a
modeled system. Each time the internal model is
changed, i.e. a dynamic attribute gets modified,and
its corresponding graphical visualisation should
implicitly be updated.

182

3.1 UNL Expericnces

UNL's cxperiences with active images have consisted
in a frame modeling system and in reactive
programming.

Figurc I1 illustrates the gencral approach. Demons
arc uscd to updatc gauges logically attached to
dynamic attributcs. Plcase note that the same
allributc -- as a dynamic one -- may be linked, also
via reactive programming, to the local device
controller.

This illustrates an intcgration of the dynamic
persistence and of the active images concept.

3.2 UCR Experiences

In Costa Rica the use of graphical environments with
active images is not new, however, the research on
such concepts is not large and often comes to
support some special applications. Wide- spread
commercial environments are: Lab Windows

Studies in Informatics and Control,Vol.3,Nos.2-3,5ept1994

(National Instruments), Windows (BC++), Lab
View, and so on. SLMTR has its own small
graphical active images interface to support the real-
time multitasking tool. The most common
applications with active images are oriented to
benefit the user and only some of them have been
devised to work with a real- time process
environment.

Some people are working with Lab Windows
(National Instruments), but this software has some
inconveniences when sophisticated applications are
intended. In the case of Microsoft Windows, the
applications are made in Borland C++ but take a
long time effort to implement and overcome some
problems with the concurrent environment of
Windows. For OS/2 the process of designing some
applications is just at the beginning..

In the framework of CIMIS.net and of the joint co-
operation UCR/UNL, an integrated prototype for
alarms control based on the presented concepts, is
being developed, in parallel with a CIM approach 1o
information integration .

4, Conclusions

The combination of OOP/Frame-Based modeling,
dynamic persistence and active images concepts
provides a very convenient tool for enabling the
development of advanced controllers of
manufacturing systems.

Starting from two complementary experiences, both
in terms of application domains -- discrete and
continuous processes -- and tools -- Al or low level
based approaches -- a fruitful co-operation the two
groups of UNL and UCR embarked upon. Reaching
a common understanding of the problem and finding
a common glossary, have been the first phasc
objectives. Next phase will pursue the development of
a general methodology for the use of dynamic
persistence and active images in manufacturing
processes as well as for a decper integration of
continuous and discrete event systems.

Acknowledgments
This work was funded in part by the Europcan
Communities (B-LEARN, FlexSys and CIMIS.net

frame MACHINE_i

SPEED:

if_write_demon
updatc_gauge

projects), and JNICT (SARPIC and CIM-CASE
projects).

REFERENCES

1. STEIGER-GARCAOQ, A. and CAMARINHA-
MATOS,LM.,, Design of a Knowledge-based
Information System, in . Bernhardt, Dillman,
Hormann, Ticrney (Eds.) Integration of Robots
into CIM, Chps. 21 & 22 CHAPMAN & HALL,
1992.

2. CAMARINHA- MATOS, LM. and SASTRON, F.
Information Integration for CIM Planning
Tools, Proceedings of CAPE’91 IFIP Conference
on Computer Applications in Production and
Engincering, ELSEVIER Publishers, Bordeaux,
France, 10-12 Scptember 1991,

3.CAMARINHA-MATOS,.L. M. and SEIGER-
GARCAO. A., Knowledge Architecture for
Flexible Programming of Robotic Cells,
Proceedings of the 20th International Symposium
on Industrial Robotics, Tokyo, Japan, 4-6 October
1989.

4. CAMARINHA-MATOS, L.M. and OSORIO, L.,
CIM Information Management System - An
Express-based Integration Platform,
Proccedings of the IFAC Workshop on CIM in
Process and Manufacturing Industries
CHAPMAN & HALL Publishers, Espoo, Finland,
23-25 November 1992,

5.0S0RIO, A.L. and CAMARINHA-MATOS, L M.,
Information- based Control Architecture for
CIM, Proceedings of IFIP International
Conlference Towards World Class Manufacturing,
Phocnix, Arizona, USA, 12-16 Scptember 1993.

6. CAMARINHA-MATOS, L.M,, LOPES, L.S. and
BARATA. J.Exccution Monitoring in
Assembly with Learning Capabilities, IEEE Int
Conference on Robotics & Automation, San
Dicgo.CA, USA, May 1994,

7. RABELO. R. and CAMARINHA-MATOS, L M.,
Control and Dynamic Scheduling in Virtual
Ovrganization of Production Rescarchers, IFIF
Int Conference on Evaluation of Production
Management Mcthods, Porto Alegre, Brazil,
March 1994.

Gauge dnver
rouune

el

Speed gauge

Figure 11. ReActive Programming as a Tool To Implement Active Images

Studies in Informatics and Control,Vol.3,Nos.2-3,Sept1994

183

