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1. Introduction

With the development of industry 4.0, multi-
objective procurement plays an important role 
in the supply chain management, especially in 
supplier selection and order allocation (Asdecker 
& Felch, 2018). Procurement decisions for 
supplier selection and order allocation involve the 
optimization for multiple objectives which may 
conflict with each other (Xu, 2002, 2007; Gou 
et al., 2017; Yaghin & Darvishi, 2020; Sillanp 
et al., 2021). Considering the confliction of the 
optimization objectives, including quality, cost, 
delivery, service, etc., the corresponding multi-
objective optimization procurement models for 
manufacture industry were proposed (Zhou et al., 
2019). In the automotive industry, an important 
goal of multi-objective procurement is to meet 
the needs of purchasers with high service level, 
high quality of products and lower total cost. To 
further improve the purchaser satisfaction, more 
factors are considered under the background of 
industry 4.0, such as the uncertainty from the 
complex environment, the discount policy and 
the reputation of suppliers, etc., (Han et al., 2018; 
2019; Caiado et al., 2020). The purchasers not 
only care about quality and cost, but also consider 
the reliability from the trust relationship between 
purchasers and suppliers which involves the 
suppliers’ reliable performance of financial status, 

ability for technical innovation and production 
capacity, advancement products, service level, etc.

Reliability reflects purchaser satisfaction for 
products or trust in suppliers. Its features 
contain not only the sustainability of service, 
quality and financial stability (Kellner & Utz, 
2019; Sarkar et al., 2020), but also cover the 
comprehensive performance integrated by the 
technique reliability, stable production and 
environment sustainability (Zhou et al., 2020). 
To improve the reputation of suppliers, reliability 
has been treated as one of the procurement 
objectives to be optimized in supply chain 
management (Tirkolaee et al., 2020; Dai et 
al., 2021). The existing reliability objective 
focuses on maximizing the average quantities 
of the products delivered by the suppliers to the 
purchasers. However, the existing optimization 
methods for the reliability optimization are 
unsuitable for the emerging industry procurement 
because the reliability in the context of industry 
4.0 involves multiple evaluation criteria that 
refer to more than average quantities of the 
products. In industry 4.0 environment, the 
reliability should be a comprehensive objective 
produced from supplier reliability performance of 
multiple evaluation criteria including suppliers’ 
financial and technology stability, production and 
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environment sustainability as well as service and 
quality reliability. 

In the industry 4.0 environment, due to the 
heterogeneity of intelligence technology for 
the equipment, the dynamic of market and the 
limitation of decision makers, the provided 
procurement information is always uncertain, 
which presents a significant challenge for the 
supply chain management. Thus, uncertain 
procurement information has been introduced 
in the multi-objective procurement models to 
improve the application in fuzzy environment 
scenarios (Seyed Haeri & Rezaei, 2019; Pamucar 
et al., 2020). There are several uncertain factors, 
such as fuzzy demand, imprecise defect rate 
and inaccurate production capacity, etc. These 
uncertainties are often expressed by imprecise 
terms such as “pessimistic”, “most likely” and 
“optimistic”, and these fuzzy elements are always 
converted into accurate values in computational 
procedures (Chatterjee & Kar, 2018). Although 
fuzzy objective weights were expressed in 
triangular fuzzy values in Yu et al. (2012), fuzzy 
objective weights are not limited to the expressions 
of “pessimistic”, “most likely” and “optimistic” 
for decision makers, which are usually expressed 
as a dynamic range in real cases. 

This paper develops a fuzzy multi-objective mixed 
integer programming (MOMIP) model which 
optimizes total cost, quality and comprehensive 
reliability to find the optimal order allocations 
for suppliers. In this model, a reliability function 
introducing a reliability performance parameter 
is built which can be determined according to 
synthetical evaluation criteria consisting of 
reliable financial status, sustainable technique and 
production, reliable quality, service and product 
environment. In addition, fuzzy factors, quantity 
discount and budget limitation are also considered 
in this model and these elements enable the model 
to be applied to more complex environment. An 
interactive algorithm is developed for solving 
the proposed model, in which procedures 
for generating possible objective weights are 
introduced to enable the feasible of the approach 
under the uncertain objective weights. The model 
is applied to a case of sensor parts procurement 
of SOKON Industry Corporation Ltd. The 
contributions of this paper are as follows:

1.	 This paper introduces a comprehensive 
reliability function to extend the reliability 
objective integrated with financial status, 
technique of product, quality stability, service 
and environment sustainability, which better 
meets the operational requirements for the 
industry environment.

2.	 By introducing a procedure of an interactive 
weight determination with computational 
experiments assuming uncertain prior 
weights, this paper yields a set of objective 
weight that is better implemented by decision 
makers. Thus, a preference order of the 
objective weights will suffice in finding an 
optimal solution.

3.	 By analyzing the solution’s frequency 
under uncertain objective weight, this paper 
provides an effective approach of objective 
values prediction (i.e., total cost, quality and 
reliability), and further may help decision 
makers to adjust plans afterwards.

The paper is organized as follows: Section 
2 reviews the related literature. Section 3 
elaborates the methodology to solve supplier 
selection and order allocation containing the 
establishment of the fuzzy MOMIP model and 
an interactive algorithm to solve the model 
with uncertain objective weights. In Section 4, 
this model is applied in an automotive sensor 
parts procurement case of Chongqing SOKON 
Industry Group Stock Corporation Ltd in China. 
Subsequently, Section 5 discusses the solutions 
and objective values with uncertain objective 
weights and analyzes the overall achievement 
level and order allocations for different 
preference orders of objective weights. Finally, 
the conclusions are drawn in Section 6. 

2. Literature Review

Automotive parts purchasing is a complex 
decision-making process which includes activities 
of supplier selection and order allocation (Manello 
& Calabrese, 2018). For automotive parts 
procurement, sensor part is the core part in the 
industry 4.0 context which consists of “pressure 
sensor”, “temperature sensor”, “fuel sensor”, 
“knock sensor”, etc. (Setiawan et al., 2020). In the 
industry 4.0 environment, sensor part suppliers are 
required to provide more intelligent equipment, 
which not only collect data, but also process, 
store and send data (Baroudi & Haque, 2021). 
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Since the Industry 4.0 has become a flag for a 
competition of industrial procurement, which not 
only changes technologies but also guides new 
commercial mode to find trusted businesses 
relationships (Frank et al., 2019). The activities 
of supplier selection and order allocations under 
the new trend of automotive industry have been 
studied during recent years, especially for the 
automobile parts procurement (Galankashi et al., 
2016; Ghadimi et al., 2019).

Under the environment of industry 4.0, 
buyers and sellers always consider reputation 
as a crucial factor to build their relationship 
(Manello & Calabrese, 2018; Salam & Ali, 
2020). As such, a few studies focus on reliable 
supply chain recently. Tang et al. (2014) 
developed an endogenous reliability model 
that considers supply risk mitigation strategies 
in a decentralized supply chain setting, where 
supplier’s reliability was decided by the perfect-
yield probability and the imperfect yield rate. In 
another study, Poudel et al. (2016) established a 
reliable model that helped the governance of a 
bio-fuel supply chain network which minimizes 
the total costs and considers the maximum 
reliability that can be reached with availability. 
Based on mixed-integer programming (MIP), 
Mohammadi (2020) presented a reliable model 
in which the procurement lot-sizing with 
discount and multiple transportation modes 
are considered. Since sustainability theory 
is asSoCiated with reliability in the supply 
chain management, scholars investigated the 
two theories simultaneously in supply chain 
management up-to-date. A sustainable and 
reliable hydrogen supply chain network was 
developed by Fazli-Khalaf et al. (2020), which 
maximizes the reliability of the network against 
disruptions through the concurrent establishment 
of reliable and unreliable hydrogen 
manufacturing facilities. A recent study by 
Tirkolaee et al. (2020) proposed a novel hybrid 
method to solve sustainable-reliable supplier 
selection which minimizes total cost of the chain 
and maximize the weighted value of products and 
the reliability of the supply chain. The authors 
maximized reliability through maximizing the 
average quantities of the products delivered by 
the suppliers to the purchasers. Concluded from 
the above, although reliability has been regarded 

as an optimal objective in existing models, 
the existing models fail to take reliability as a 
comprehensive objective containing multiple 
dimensions of information. Therefore, this 
paper focuses on establishing a comprehensive 
reliability objective that integrates the multiple 
information of reliability from systematic 
reliability evaluation criteria for automotive 
parts purchasing.

Uncertain information is an important factor in 
establishing a model for purchasing optimization, 
and it has also been considered as a vital element 
for solving multiple objectives optimizing models 
(Chen & Xu, 2015; Xu & Wang, 2016; Gupta et 
al., 2019). Uncertain information for procurement 
includes uncertain demand, imprecise delivery 
time, inaccurate defect rate and uncertain 
objective weight, and these fuzzy information 
have been investigated in the models for supplier 
selection (Yu et al., 2012; Khalilzadeh et al., 
2020). Uncertain objective weight which reflects 
the preference for the optimization objective has 
been regarded as important information in the 
algorithm for finding optimal solutions (Yu & 
Goh, 2014; Kaviani et al., 2020). Amid et al. 
(2009) developed a weighted additive fuzzy 
multi-objective programming (MOP) model 
for purchasing management optimization, the 
authors considered three weighted additive cases 
with different preferences of objectives from 
decision makers. Based on that model, Yu et al. 
(2012) adopted a fuzzy multi-objective vendor 
selection model in which the objective weights 
were imprecise and expressed as triangular 
fuzzy numbers. After that, Krishankumar et al. 
(2020) established a decision framework with 
unknown weight information for solving green 
supplier selection which focused on calculating 
attributes’ weights when the information is 
completely unknown. The existing literature 
solved only the fuzzy purchasing model with 
limited weight senses, although Yu et al. 
(2012) adopted triangular fuzzy numbers for 
uncertain objective weights in the model, but 
the uncertain objective weights are not limited to 
three possible values (i.e., “pessimistic”, “most 
likely” and “optimistic”). Therefore, the work 
from the present paper is dedicated to developing 
an approach to get an objective weight set with 
all possible weight senses when the preferences 
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for objectives are known but the specific 
objective weights values are uncertain. Here, the 
preference order for objectives may change with 
the variation of external environment.

This paper aims to fill the gap that the existing 
researches in the literature have not properly 
solved (the automotive parts purchasing 
problems with synthetical reliability property), 
and is dedicated to developing a fuzzy multiple 
objective mixed integer programming model 
to optimize three objectives containing cost, 
quality and synthetical reliability. This paper 
improves the reliability objective proposed by 
Tirkolaee et al. (2020) by adopting synthetical 
evaluation criteria for obtaining supplier 
reliability performance which contains financial, 
production technique, quality, service and 
product environment. For solving the fuzzy 
MOMIP models with uncertain weights, an 
extended inteRactive algorithm which improves 
the algorithm of Yu et al. (2012) and Yu & Goh 
(2014) is proposed by introducing the procedures 
for generating possible weights of objectives to 
find the optimal solution.

3. Methodology

At the heart of the proposed methodology is a 
fuzzy multi-objective mixed integer prog-ramming 
(MOMIP) model which improves the model of 
Yu et al., (2012) and Kellner & Utz (2019). This 
model extends the functionality of traditional 
reliability to the supplier selection and order 
allocation, and considers fuzzy factors, quantity 
discount policy and variable cost constraint in the 
model (subsection 3.1). Furthermore, an extended 
interactive algorithm is proposed to solve the 
order allocation model with uncertain weights 
(subsection 3.2).

3.1 Fuzzy Multi-Objective Mixed 
Integer Programming Model for 
Order Allocation

The proposed optimization model has three 
objectives: to minimize total purchasing costs, 
to minimize unqualified automotive parts and 
to maximize total reliability value. The indices, 
decision variables and parameters used in the 
model are listed in Table 1.

Table 1. Indices, decision variables and parameters 
used in the model

Indices:
1,2,...,mj =  Suppliers

1,2,...,i n=  Automotive parts 

Decision variables: 

ijy  0–1 variable determined by whether part i is supplied 
by supplier j (j=1 if supplied; j= 0 if not supplied) 

ijx Orders distributed to supplier j for part i
Parameters:

jC  All-unit quantity discount coefficient provided by 
supplier j

ijK  Unit variable cost for part i supplied by supplier j
ijL  Capacity of part i for supplier j
ijA  Fixed cost for part i from supplier j
ijq  Defect rate of part i provided by supplier j
jp  Reliability performance for supplier j
jE  Minimum order for supplier j

iS  Number of selected suppliers for part i
N  Maximum value of selected suppliers given by 
decision makers

jB  Financial constraints for variable cost from supplier j

Objectives

Total cost



1
1 1 1

 ( , ) (1 )
n m m

j ij ij ij ij
i j j

Min Z x y C K x A y
= = =

= − +∑∑ ∑
    

(1)

Quality



2
1 1

 ( )
n m

ij ij
i j

Min Z x x q
= =

=∑∑
                                     

(2)

Reliability



3
1 1

 ( )
m n

ij j
j i

Max Z x x p
= =

 
=  

 
∑ ∑

                               
(3)

Fuzzy constraints：



1
(1 ) ,

m

ij ij i
j

x q D i
=
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(4)



ij ij ijx y L≤                                                            (5)
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n n
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(6)
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(8)

{ } , ,ijy i j∈ 0,1 ∀                                                (9)
, ,ijx i j≥ 0 ∀                                                     (10)
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Equation (1) minimizes the overall purchasing 
costs, which consist of variable and fixed costs. 
Variable costs are costs for per unit selling prices 
under all-unit quantity discount policy. Fixed costs 
are costs for maintaining the relationship with 
suppliers and they are not affected by the variation 
of purchasing quantity. Equation (2) minimizes 
the unqualified items which reflect the quality 
of automotive parts. Equation (3) maximizes the 
total comprehensive reliability performance of the 
suppliers selected. The reliability performance of 
supplier j ranges between 0 and 1.

In the model, the constraint (4) requires that the 
quantity of qualified products purchased from 
selected suppliers should meet the demand; the 
constraint (5) restricts the allocated quantity of the 
part i for the supplier j so that it does not exceed its 
capacity; the constraint (6) provides the minimum 
order quantity if purchased from the supplier j; 
the constraint (7) enforces the upper limit number 
of selected suppliers for part i; the constraint (8) 

requires that the variable cost from the supplier 
i should not exceed the allowed values; the 
constraint (9) defines the binary characteristic of 
the decision variables; the constraint (10) sets the 
purchasing quantity as a positive integer.

3.2 Using an Extended Interactive 
Algorithm to Solve the Order 
Allocation Model

In this section, an interactive algorithm is 
proposed to solve the order allocation model with 
uncertain weights (see Figure 1). Assume that 
there are objectives which consist of minimization 
objectives and maximization, demand constraints. 
Suppose that the preference order for the 
objectives has been given by the decision maker. 
The steps of the algorithm are as follows:

Step 1. Use the triangular membership functions 
and the centroid method to defuzzify the fuzzy 
capacity, fuzzy defect rate and fuzzy demand for 
each automotive part.

Note: S : Optimal solution set for valid solution;
hδ : The h-th valid optimal solution;

*δ : The finally optimal solution;
b
µλ : Weight for µ -th objective of the b-th group.

Figure 1. Logic flow of interactive algorithms for solving the model
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Step 2. For the minimization objective functions 
( ) ( 1,2,..., )lZ x l P= and the maximization 

objective functions ( ) ( 1,2,..., )kZ x k G= , the 
lower bounds lZ − , kZ −  and the upper bounds 

lZ + , kZ + are calculated separately by using the 
max-min approach (Zimmermann, 1987) by the 
following equations:

 ( 1,2,..., ) max ( ) ,  ,   ( 1,2,
..., ) min ( ),   ,

l

l

a

d

l lZ l P Z x Z l
P Z

x X
x Xx

+ −∈=
∈

= =
=     

(11)
           

( 1,2,..., ) max ( ),   ( 1,2,
..., ) min ( ),  

,  
 .

d l

l a

k kZ k G Z x Z l
P XZ

x
xx

X+ −∈
∈

= = =
=    

(12)

where lZ −  and Zk
+  are obtained by solving the 

model as a single objective for only one objective 
at each time. Here, dx X∈  shows that solutions 
must satisfy constraints while aX  is the set of all 
optimal solutions through solving the model as a 
single objective (Amid et al., 2006).

Step 3. Obtain the pessimistic values  (vM v− =  
1,2,..., )V , the probable values  ( 1,2,...,vM v =  

)V  and the optimistic values 1,2, ..., )(v vM V+ =   
from decision makers for the demand of 
automotive parts.

Step 4. Build membership functions for 
fuzzy objective functions and fuzzy demand 
constraints, respectively. The membership 
functions ( )  ( 1,2,..., )( )l x lF Z P= for fuzzy 
minimization objectives, ( )  ( 1,2,..., )( )k x kF Z G=
for fuzzy maximization objectives and the 
membership functions ( ( )) ( 1,2,..., )vF M x v V= for 
fuzzy demand constraints are given below (Amid 
et al., 2006):

1  ( )       
( )( ( ))  ( )  

0  ( )         

l l

l l
l l l l

l l

l l

if Z x Z
xF Z x if Z Z x Z

Z
if Z x Z

Z Z
Z

+
+

+ −

−

−

+
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v
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v
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v
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M

if M x M

M
M
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−
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+
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(15)

In equations (13)-(15),  1,2, ,l P= … , 1,2,k =
,G…  and  1,2,...,v V= .

Step 5. Obtain R groups of objective weights by 
the procedures presented in Figure 2. Here, the 
weight of demand constraint  ( 1,2,..., )v v Vϕ =    

is a determined parameter obtained from 
decision maker.

Note: p : Numbers for the objectives;
b
µλ : Weight for µ -th objective of the b-th group;

b
µλ : Valid weight for µ -th objective of the b-th group.

Figure 2. Procedures for generating the weights  
of objectives

Step 6. Reformulate the model as a single 
objective model by aggregating the weighted 
achievement levels (Yu et al., 2012) for 
each weight group  ( 1,2,..., )b b R= . In the 
expression (16),  ( 1,2, , )g pµ µ = … stands for 
the achievement level for the objectives and 

1,2 , ,( )vd v Q= …  stands for the achievement 
level for the demand constraints.

1 1

  
p

v

v V
b

v
v

Max g d
µ

µ µ
µ

λ ϕ
= =

= =

+∑ ∑
                                 

(16)

( ( )),  1,2,...,g F Z x pµ µ µ≤ =                          
(17)

( ( )),  1,2, ,v vd F M x v V= …≤                         (18)

[ ], 0,1 ,  1,2,..., 1,2,...,vg d p v Vµ µ∈ = =，     
(19)

11

1,  , 0
Vp

v
v

vg gd dµ µ
µ ==

+ = ≥∑∑
                           

(20)

Step 7. Solve the single objective model and 
find the optimal solution *δ by using the  
following expression:

* *

1 1

arg  max( ( ) ( )),  ,
p v V

b
h v hv h

v

g d S
µ

µ µ
µ

δ λ δ ϕ δ δ δ
= =

= =

= + ∈∑ ∑
 
(21)
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where { }1 2, ,..., HS δ δ δ=   is the optimal solution 
set consisting of ( )H H R≤   groups of valid 
optimal solution ( 1,2,..., )h h Hδ =    obtained 
from equation (16).

Step 8. Judge whether the solution *δ  is 
acceptable and the corresponding objective 
weight *b

µλ  is available or not. If *δ  is not 
acceptable or *b

µλ   is unavailable, then we adjust 
the range of b

µλ   and then go to the step 7; if  
*δ  is acceptable and *b

µλ is available, then a 
proposed solution is obtained.

The algorithm proposed in this paper introduces 
procedures for generating the weights of 
objectives which is the core technique improving 
the previous approach, the purpose of that is to 
make the algorithm feasible for the situations 
when the objective weights are uncertain. In this 
algorithm, the scale of the weight group R is given 
by the decision maker which is usually a large 
positive integer, so that all possible weight senses 
for objectives are included.  

4. Case Study: A Real Application for 
Order Allocation in Automotive 
Industry

4.1 Problem Description

In this subsection, the model is applied in the case 
of SOKON Industry Corporation Ltd of China. 

The company needs to select no more than three 
suppliers from seven candidate suppliers and 
purchase four automotive sensor parts A to D 
including “temperature sensor”, “fuel sensor”, 
“knock sensor” and “pressure sensor”. The 
company requests that the sensor parts supplied 
by the suppliers must meet the requirements 
of industry 4.0. The decision maker wishes to 
optimize three important goals including total 
cost minimization, unqualified parts minimization 
and reliability maximization. In this case, the 
decision maker considers that reliability is the 
most important, cost is of second importance and 
quality is the last important. The specific objective 
weight values are uncertain for decision makers. 
The demand for each part is hard to be precisely 
determined and the fuzzy demand is expressed as 
“pessimistic”, “most likely” and “optimistic”. The 
purchasing manager gives the values of triangular 
demand for the four parts that are A (2420, 2620, 
2720), B (2320, 2520, 2670), C (1820, 2120, 
2370), and D (1770, 2020, 2220). If buyers choose 
a supplier, the orders should be greater than the 
minimum value (200, 200, 160, 180, 170, 140, 
165) for each of the candidate suppliers. Experts of 
the company define evaluation criteria for supplier 
reliability performance containing financial, 
technique and production, quality, service and 
product environment. The details of evaluation 
and the weights of the evaluation criteria are given 
in Table 2.

Table 2. Evaluation criteria for supplier reliability performance

Criteria Details of evaluation Weights

Financial (C1)

1. Business volume and profitability in the past three years
2. Total value of fixed assets
3.Scale of borrowing and asset-liability ratio
4. The possibility of being acquired
5. Whether overly dependent on a few large customers
6. Whether own sufficient capital to complete the orders

25

Technique and production 
(C2)

1. Maintenance and ageing degree of production equipment
2. Production capacity
3. Response and flexibility to urgent or additional demand
4.The ability technical innovation for future requirement

20

Quality (C3)
1. The proportion of products satisfying ISO 9000 standard
2. The advancement and reliability of products
3. Suitability of products

25

Service (C4)
1. Return unqualified products in time
2. Deliver products within allowable time
3. Average number of products delivered from suppliers to purchasers within given time

15

Product environment (C5)
1. Green design 
2. Stable environmental management system including ISO 14001, EMAS

15
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Then experts give the evaluation scores of the 
candidate suppliers, and the original scores of 
the supplier stability performance are given in 
Table 3. By calculating the ratio of sum score of 
the criteria C1-C5 to the total weights of these 
criteria, the reliability performance coefficients for 
the candidate suppliers are obtained as follows: 
(0.93, 0.95, 0.94, 0.93, 0.93, 0.95, 0.92).

Table 3. Original evaluation score of supplier 
reliability performance

Supplier
Score of reliability performance
C1 C2 C3 C4 C5

1 23 19 24 13 14
2 22 19 25 14 15
3 24 19 24 13 14
4 25 18 23 13 14
5 23 19 24 14 13
6 24 19 24 14 14
7 23 19 24 13 13

Fixed and variable costs for the four automotive 
parts are given in Table 4. In this case, each 
candidate supplier provides the four sensor parts 
and suppliers’ triangular fuzzy production capacity 
for the parts A to D are given in Table 5.

Table 4. Fixed and variable costs of the automotive 
parts A-D

Supplier
Unit variable cost for automotive parts Fixed 

costA C B D
1 32 176 23 250 1300
2 50 185 30 235 1200
3 47 190 42 220 1500
4 39 198 26 245 1600
5 31 170 38 247 1000
6 37 171 40 237 1100
7 45 183 45 243 1350

The defect rate for the automotive parts is 
inaccurate in production and the triangular fuzzy 
defect rates for the automotive parts of the seven 
candidate suppliers are given in Table 6. To reduce 
excessive dependence on a supplier and reduce the 
risk, buyer limits the variable cost of purchasing 
from a supplier through the value of variable costs 
in historical transactions with suppliers. The upper 
limit values of variable costs from the candidate 
suppliers are (¥510000, ¥520000, ¥530000, 
¥560000; ¥550000; ¥520000; ¥390000). 

In order to encourage buyers to purchase more 
automotive parts, candidate suppliers propose all-
unit quantity discounts that are shown in Table 7.  
The minimum orders for the seven candidate 
suppliers are (200, 200, 160, 180, 170,145, 165).

Table 5. Triangular fuzzy capacity of suppliers for the parts A-D

Supplier
A B C D

P M O P M O P M O P M O
1 1770 1920 2020 1670 1720 2030 1370 1420 1720 1280 1430 1530
2 1670 1820 1920 1570 1820 2070 1320 1470 1670 1370 1530 1730
3 1720 1770 1820 1670 1770 1920 1470 1670 1820 1480 1630 1830
4 1870 1920 2070 1770 1920 2120 1270 1520 1770 1880 1930 2080
5 1520 1770 2030 1620 1870 2170 1420 1620 1870 1780 1980 2130
6 1920 2030 2130 1570 1720 1970 1520 1720 1820 1580 1730 1930
7 1970 2120 2220 1820 1920 2120 1630 1780 1930 1430 1580 1730

Note: A: temperature sensor; B: fuel sensor; C: knock sensor; D: pressure sensor; P: Pessimistic; M: Most likely; O: Optimistic

Table 6. Triangular fuzzy defect rate for the automotive parts A-D

Supplier
A B C D

P M O P M O P M O P M O
1 0.041 0.031 0.012 0.035 0.020 0.011 0.051 0.036 0.018 0.049 0.034 0.016
2 0.037 0.025 0.010 0.042 0.027 0.018 0.028 0.014 0.004 0.030 0.016 0.005
3 0.035 0.023 0.008 0.051 0.036 0.020 0.036 0.026 0.011 0.032 0.017 0.006
4 0.050 0.035 0.017 0.033 0.018 0.009 0.045 0.035 0.017 0.035 0.018 0.007
5 0.043 0.033 0.015 0.030 0.016 0.006 0.034 0.019 0.010 0.037 0.020 0.009
6 0.030 0.015 0.007 0.029 0.015 0.005 0.027 0.015 0.005 0.039 0.022 0.010
7 0.032 0.017 0.009 0.044 0.033 0.016 0.029 0.017 0.007 0.041 0.024 0.012

Note: A: temperature sensor; B: fuel sensor; C: knock sensor; D: pressure sensor; P: Pessimistic; M: Most likely; O: Optimistic
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4.2 Order Allocations for Suppliers

In this subsection, the fuzzy MOMIP model 
is built and the interactive algorithm is used to 
solve the model according to the methodology 
mentioned in Section 3. The steps of the algorithm 
to solve the model are as follows:

Step 1. Defuzzify the triangular fuzzy values 
of demand, defect rate and capacity. The 
defuzzification of demand for parts A to D is 
(2586.7, 2503.3, 2103.3, 2003.3). The values 
of defuzzification of defect rate and production 
capacity for the parts A-D are shown in Tables 8-9.

Table 8. Defuzzification of defect rate for the parts  
A to D

Supplier A B C D

1 0.028 0.022 0.035 0.033 

2 0.024 0.029 0.015 0.017 

3 0.022 0.036 0.024 0.018 

4 0.034 0.020 0.032 0.020 

5 0.030 0.017 0.021 0.022 

6 0.017 0.016 0.016 0.024 

7 0.019 0.031 0.018 0.026 

Note: A: temperature sensor; B: fuel sensor; C: knock sensor; 
D: pressure sensor

Table 9. Defuzzification of capacity for the parts  
A to D

Supplier A B C D

1 1903.3 1806.7 1503.3 1413.3

2 1803.3 1820 1486.7 1543.3

3 1770 1786.7 1653.3 1646.7

4 1953.3 1936.7 1520 1963.3

5 1773.3 1886.7 1636.7 1963.3

6 2026.7 1753.3 1686.7 1746.7

7 2103.3 1953.3 1780 1580

Note: A: Temperature sensor; B: fuel sensor; C: knock 
sensor; D: pressure sensor

Step 2. Solve a single objective model by using 
the max-min approach (Zimmermann, 1978) 
for each objective of the model separately. The 
maximum and minimum values for each objective 
are shown in Table 10.

Table 10. Maximize and minimize objective values  
for objectives

Supplier Cost (¥) Quality Reliability

Max 2289325.0 476.6 20294.6

Min 964914.1 155.3 8811.0

Step 3. Establish membership functions for 
the three fuzzy objectives and fuzzy demand 
constraints. The graphical membership functions 
are shown in Figures 3 and 4.
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Figure 3. Membership functions for three objectives: 
cost, quality and reliability
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sensor; D: pressure sensor

Figure 4. Membership functions of demand functions 
for the automotive parts A to D

Table 7. All-unit quantity discounts provided by candidate suppliers

Supplier Quantity Discounts
1 [0, 1100); [1100, 2200); [2100, 3100); [3100, +∞) 0.0%; 7.3%; 11.6%; 16.6%
2 [0, 900); [900, 1900); [1900, 2900); [2900, +∞) 0.0%; 6.1%; 10.5%; 15.6%
3 [0, 750); [750, 1750); [1750, 2750); [2750, +∞) 0.0%; 8.1%; 11.8%; 16.9%
4 [0, 870); [870, 1870); [1870, 2870); [2870, +∞) 0.0%; 6.7%; 11.0%; 16.0%
5 [0, 1220); [1220, 2220); [2220, 3220); [3220, +∞) 0.0%; 9.1%; 12.2%; 17.0%
6 [0, 680); [680, 1680); [1680, 2680); [2680, +∞) 0.0%; 5.7%; 10.1%; 15.0%
7 [0, 950); [950, 1950); [1950, 2950); [2950, +∞) 0.0%; 6.3%; 10.8%; 15.9%
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Step 4. Generate 1400 groups of objective weights 
by the weight generation method proposed in 
Section 3. The weight for demand constraint is 
assumed as 0.15 by decision makers and it remains 
unchanged. The distribution of 1400 group’s 
objective weights for cost, quality and reliability 
is shown in Figure 5.

Figure 5. Distribution of objective weights for cost, 
quality and reliability

Step 5. Reformulate the fuzzy multi-objective 
programming model as a crisp single objective 
model. The model has been solved on a Pentium 
(2.9 GHz) personal computer. The solutions for 
the model are computed by using LINGO 15.0.

Step 6. Apply the single objective model obtained 
for 1400 groups of objective weights obtained in 
step 4. After removing the weight groups without 
solutions, 1246 valid optimal solutions are 
obtained. The result of the ascending sort of the 
three objectives and the overall achievement levels 
for the valid solutions are shown in Figure 6.
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Figure 6. Ascending sort of the three objectives and 
overall achievement levels for valid solutions

Step 6. Apply the single objective model 
obtained for 1400 groups of objective weights 
obtained in step 4. After removing the weight 
groups without solutions, 1246 valid optimal 
solutions are obtained. The result of the 
ascending sort of the three objectives and 
the overall achievement levels for the valid 
solutions are shown in Figure 6.

Step 7. According to equation (21), the maximum 
value of the overall achievement level is obtained 
and it is 99.9%. The optimal objective weights 
for the three objectives are (0.039, 0.006, 
0.805) which is consistent with preference order 
described in subsection 4.1. Finally, the decision 
makers obtain the satisfactory solution of the 
optimal order allocations which is shown in 
Table 11.

Table 11. Solution of the optimal order allocations for 
the A to D automotive parts

Part 
Orders for suppliers Objective 

values1 2 3 4 5 6 7
A 0 0 0 0 0 2026 641 Z1=964331.6

Z2=159.9

Z3=8933.5

B 0 0 0 0 809 1753 0
C 0 1486 0 0 0 667 0
D 0 1543 0 0 0 516 0

5. Discussions

The validity of the proposed model is verified in 
this section. Firstly, the optimal supplier selection 
and order allocations and objective values with 
uncertain objective weights are analyzed, then 
the uncertain objective weights are divided into 
four categories. Secondly, the overall achievement 
level and optimal order allocations for different 
preference orders of objective weights are 
discussed. The two important aspects are 
elaborated below.

5.1 Solutions and Objective Values 
Analysis with Uncertain 
Objective Weights

In this subsection, the objective weights generated 
from Section 4 are divided into four categories 
and the ranges of the weight for reliability for the 
four categories are [0, 0.2), [0.2, 0.4), [0.4, 0.6) 
and [0.6, 0.85]. The weight ranges for cost, quality 
and reliability are shown in Table 12 and the 
distribution of the weights for the three objectives 
is displayed in Figure 7.



	 15

ICI Bucharest © Copyright 2012-2021. All rights reserved

Automotive Parts Purchasing Using the Fuzzy MOMIP Model of Reliability Objective with Uncertain Weights

Table 12. Weight range for cost, quality and 
reliability for the four categories

Category
Weight range (min, max)

Scale
Cost Quality Reliability

(a) (1.7×10-4 , 
0.83)

(0.2×10-4 , 
0.83)

(3.4×10-4 , 
0.20) 544

(b) (0.9×10-4 , 
0.64)

(6.5×10-4 , 
0.61)

(2.0×10-1 , 
0.40) 447

(c) (3.6×10-3 , 
0.43)

(0.2×10-4 , 
0.42)

(4.0×10-1 , 
0.60) 270

(d) (2.7×10-4 , 
0.23)

(2.6×10-4 , 
0.24)

(6.0×10-1 , 
0.85) 139

Figure 7. Distribution of weights for cost, quality 
and reliability for the four categories

Then, the model proposed in Section 3 is applied 
for the four weight categories and the optimal 
solutions and optimal cost, unqualified parts and 
reliability values are obtained as shown in Table 
13. From the result, it is obvious that the solutions 
of the optimal order allocations are the same for 
categories (b) and (d), in which the suppliers 6, 7 
are selected for part A, the suppliers 5,6 are selected 

for part B, the suppliers 2, 6 are selected for parts C 
and D. Meanwhile, the supplier selection for parts 
A to D of category (a) is consistent with that of 
categories (b) and (d). The supplier selection for 
parts A, B, C for category (c) is consistent with that 
for categories (a), (b) and (d), but different for part 
D in which the supplier 3 is selected.

It is worth mentioning that decision makers 
always wish to predict cost, quality and reliability 
in the procurement. In order to analyze the 
most probably values of cost, unqualified parts 
and reliability when the objective weights are 
uncertain, the frequency for the values of the three 
objectives is computed for the valid solutions 
obtained by applying the model for the categorized 
weights displayed in Figure 7. The distribution of 
frequency for the values of the three objectives for 
the four categories is displayed in Figures 8 to 10.

Figure 8. Frequency distribution of cost for the 
weight categories (a) to (d)

Table 13. Solution of the optimal order allocations for the A to D automotive parts

Category Part 
Orders for suppliers

Objective values
1 2 3 4 5 6 7

(a)

A 0 0 0 0 0 2026 641 Z1= 964130.1

Z2= 159.9

Z3= 8932.6

B 0 0 0 0 809 1753 0
C 0 1486 0 0 0 667 0
D 0 1543 0 0 0 515 0

(b), (d)

A 0 0 0 0 0 2026 641 Z1= 964331.6

Z2= 159.9

Z3= 8933.5

B 0 0 0 0 809 1753 0
C 0 1486 0 0 0 667 0
D 0 1543 0 0 0 516 0

(c)

A 0 0 0 0 0 2026 640 Z1= 964331.6

Z2= 159.9

Z3= 8933.5

B 0 0 0 0 809 1752 0
C 0 1486 0 0 0 666 0
D 0 1543 512 0 0 0 0
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Figure 9. Frequency distribution of quality for the 
weight categories (a) to (d)

Figure 10. Frequency distribution of reliability for 
the weight categories (a) to (d)

From the results, it can be observed that 
most of frequency distribution of cost varies 
between (¥95900, ¥97800), (¥96700, ¥98500), 
(¥96300, ¥97600), (¥96500, ¥98000) for the 
weight categories (a) to (d). Most of frequency 
distribution of unqualified parts varies between 
(156.8, 170) for the weight categories (a), (b) 
and (d), and (156.8, 169) for category (c). Most 
of frequency distribution of reliability value for 
the weight categories B, C and D varies between 
(8920, 8930), and between (8910, 8930) for 
category (a). These most frequency distribution 
values of cost, unqualified parts and reliability for 
the weight categories (a) to (d) provide valuable 
information for decision makers.

Then, the maximum and minimum values of 
cost, quality and reliability with uncertain 
weights are obtained as shown in Figure 11. The 
result shows that the rise of weight of reliability 

dominates the decline of the maximum value of 
cost and unqualified parts, under the opposite 
internal effect between quality and cost. 
Simultaneously, the result also implies that 
the rise of weight of reliability doesn’t affect 
the minimum value of unqualified parts, but 
dominates the rise of the minimum value of cost 
and reliability performance.

Note：f1: Reliability; f2: Unqualified parts; f3: Cost; 
CAT1: Weight category (a);

 CAT2: Weight category (b); CAT3: Weight category (c); 
CAT4: Weight category (d)

Figure 11. Maximum and minimum value of three 
objectives with uncertain weights

From the results, the minimum value of cost is 
¥940626.9 which can be obtained in the weight 
scene (0.49, 0.20, 0.16); the maximum value of 
reliability is 8989.1 and it can be obtained in the 
weight scene (0.37, 0.21, 0.27); the minimum 
value of unqualified parts is 156.8, and it can 
be obtained in non-uniqueness weight senses as 
shown in Figure 12. The result shows that the 
weight scenes for the optimal value of quality 
are non-unique, but when the cost or reliability 
are optimal, the weight scene is unique. From 
the result, it is clear that among the weight 
scenes for the minimum unqualified parts, the 
weight value of cost is all lower than 0.45, 
which proves that high quality is always at the 
expense of cost.

Figure 12. Objective weights for the minimum 
unqualified parts
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5.2 Overall Achievement Level and 
Order Allocations for Different 
Preference Orders of  
Objective Weights

Since the overall achievement level is a vital 
factor in selecting suppliers and order allocations, 
the overall achievement levels of objectives are 
computed for the weight categories (a) to (d) which 
have been mentioned in subsection 5.1. The results 
are shown in Figure 13. It is clear that the overall 
achievement level is gradually increasing from 
the weight categories (a) to (d), and the maximum 
values of the achievement level for the four groups 
are all close to 1 and the minimum value is not 
lower than 0.65 for the four categories.

Figure 13. Overall achievement level for objectives 
for weight categories A to D

The achievement levels in category (d) are higher 
when compared to the other three categories, 
which may be caused by the highest weight of 
reliability in this category. In order to analyze the 
overall achievement level of the three objectives 
with different preference orders, the 1400 
objective weights are classified into six scenarios 
(see Table 14).

Table 14. Preference order classification for all the 
objective weights

Scenario Preference orders for the objective weights
(i) W3>W2>W1
(ii) W3>W1>W2
(iii) W2>W3>W1
(iv) W1>W2>W3
(v) W2>W1>W3
(vi) W1>W3>W2

Note: W1: weight for cost; W2: Weight for quality; W3: 
Weight for reliability

Next, the overall achievement level and the 
corresponding order allocations for preference 
order classification of weight scenarios are 
obtained as shown in Figures 14-15. It is observed 
that the supplier selections and order allocations in 
the weight scenarios (ii) and (vi) are the same in 
which the suppliers 6 and 7 are selected for part A, 
the suppliers 5 and 6 for part B, the suppliers 2 and 
6 for parts C and D. The total purchase quantity of 
the parts B, C and D is (2667, 2562, 2153, 2059).

Figure 14. Optimal order allocations for the six 
weight scenarios of different preference orders

Figure 15. Overall achievement level for the six 
weight scenarios of different preference orders

The supplier selections of the weight scenarios (i), 
(iii) and (v) are the same but the total quantities 
of parts A, B and C of the three scenarios are 
slightly different. The supplier selections and 
order allocations of the weight scenarios (iv) are 
different from those of the other scenarios.

From Figure 15, the overall achievement levels 
of almost all weight scenes are close to 1 in the 
preference order W3>W2>W1, W3>W1>W2, 
W2>W3>W1 and W2>W1>W3, and distributed 
between 0.9 to 1 in W1>W2>W3, and between 
0.92 to 1 in W1>W3>W2. The results indicate 
that excellent overall achievement level will 
be probably obtained when the decision makes 
consider the reliability or quality more important 
than cost, meanwhile inferior achievement level 
may be gained if the preference for cost is greater 
than that for quality and reliability.
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6. Conclusion

This paper proposes a multiple objective decision-
making model for automotive parts purchasing 
for Chongqing SOKON Industry Group Stock 
Corporation Ltd in China. The model takes three 
purchasing objectives into consideration: total 
cost minimization, defective parts minimization 
and reliability maximization. A novel evaluation 
criteria system is adopted for obtaining supplier 
reliability performance and fuzzy factors. All-unit 
quantity discount and variable cost constraint are 
also considered in the model. For solving the 
model, an extended interactive algorithm which 
includes procedures is proposed for generating 
the weights of objectives when the preferences 
of objectives from decision makers are uncertain. 
The model is applied into a case of sensor parts 
purchasing for Chongqing SOKON Industry 
Group Stock Corporation Ltd and the validity 
of the proposed model is discussed. The results 
reveal that the proposed model can efficiently 
help decision makers to select suppliers and find 
optimal order allocations, and further predict 
the ranges for cost, quality and reliability when 
objective weights are uncertain. This paper has 
overcome three limitations:

1.	 Information loss of reliability is avoided 
by adopting a synthetical evaluation 
reliability system in obtaining the reliability 
performance, which improves the model.

2.	 The problem of inefficiency for finding the 
optimal solution for the fuzzy purchasing 

model under uncertain weights is solved 
by integrating procedures for generating 
possible weights of objectives in the extended 
interactive algorithm. 

3.	 Optimizing cost and quality together with 
comprehensive reliability which integrates 
multiple reliable criteria for auto-part 
suppliers in the model enable its usability for 
automotive industry.

For future research, the presented model can 
be investigated in the following directions: (1). 
The risk of automotive parts purchasing which 
may contain quality risk of raw materials or 
interruption of supply for the purchasing can be 
investigated as a part of the problem. (2). The 
price of automotive parts fluctuates with market 
changes could be worthy to be studied in the 
later work. (3). The inventory capacity limitation 
for the buyers could be a valuable factor to be 
investigated in extending the model.

The model in this paper can be transformed into 
a software and applied to the three scenarios. 
Firstly, the software can be applied when choosing 
suppliers for automotive manufacturer with long-
term cooperation at the end of each quarter. 
Secondly, it can be applied to the situation that 
automotive enterprises need to evaluate the 
reliability of suppliers, and further adjust the order 
allocation to find the right solutions. Thirdly, the 
software can be used to predict total cost, supplier 
quality and stability in the context of rapid market 
changes, which further helps the decision maker 
avoiding risk in the future work.
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