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Abstract: In this work, the structural properties of a class of two level hierarchical systems where N subsystems at the lower hierarchical level
are connected through a coordinator in the upper hierarchical level, are studied. The results from this type of analysis can be used in order to
determine controllability of the overall system by the coordinator or more generally by any one of the subsystems. A special case where the
interconnection pattern is such that the optimum quadratic local control equals the optimum quadratic global control is presented.
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1. INTRODUCTION

A Large Scale System (LSS) is generally composed of a set of units or subsystems interlinked by several connections
to form an interconnected system. Examples of such LSS are power systems, digital communication networks,
economic systems and urban traffic networks. In such complex and large scale systems,to solve the control problems
for the whole system is very costly or even impossible. It is often unrealistic in a LSS for every actuator to know the
output of all sensors in the system due to insufficient information exchange between subsystems and thus, the
controllers use only partial information about the overall system. This is the concept of LSS decentralized control
(1]-[4]. :

It is well- known that in the presence of structurally constrained feedback patterns the fundamental concepts of
controllability and observability are extended to the concepts of structural controllability and structural observability
which are of major practical interest in the study of LSS. The concepts of structural controllability and observability
were introduced by Lin [5]. His results enable structural controllability (and by duality for structural observability)
of single-variable systems in a graph-theoretical approach. These results have been extended to multi-variable
systems by Shield and Pearson [6] in a purely algebraic approach.

The pole placement problem in systems with decentralized feedback control has been considered by several authors
[71-[9]. In [8], a necessary and sufficient condition for the existence of a solution under decentralized feedback
control for a LSS is given in terms of the fixed modes of a system. The question of when a decentralized local static
feedback control law is to make the closed loop system observable and controllable from a single station is answered
in [9] with graphical methods. In [10], a matrix rank test characterization of the fixed modes of a LSS under
decentralized control has been proposed. The same results are considered in [11] from an algebraic point of view.
In this paper the problem of structural controllability for a class of two level hierarchical systems at the supervising level
is considered in Part 3. In Part 4, an interconmection pattern where an optimum solution is identical with a completely
decentralized one, is investigated.

2. PRELIMINARIES

A structural model and a control algorithm have been proposed in [12], when exploring the inherent structural
properties of two level hierarchical systems. A decentralized large scale system consists of N linear subsystems
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S, 8, 8y interconnected with a common linear subsystem §, as shown in Figure 1.
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Figure 1. A Two- Level Structural System

Since in the state space description, as to be shown, the matrix describing the dynamics of this system consists of
block elements depicting an arrow structure, this system is called a Block Arrow Structure (BAS) decentralized
large scale system. The regulation of the above system can be obtained by using large scale techniques [1]-[3].
The approach in [12] makes direct use of the interconnections of the system to obtain an overlapping, partially
decentralized controller. A modified BAS method is given in [13]. It scores better than the previous one. In this
paper we study some more theoretical aspects of the structural properties of a BAS system with N subsystems §,

and a coordinator §,.
The objective is to find the controllers y; for each subsystem, in a time interval [t,,= ] in order to
1) stabilize the overall interconnected system

2) meet some predefined criteria.
Following the formulation in [13], we get the mathematical model below !

8px (D=ax()+buD+a, x (1, x(1)=%,, (1a)
yty=cx () (1b)
N
So:j a(r) = aoxv(r) +b au n(t) + E an(rt(t)’ xo(rb) =x00 ( lc)
i=1
¥, (D=c x (1) (1d)

where x (f)eR™, x (NeR™, u(eR", u (HeR™ and

y(hHeR h y,(DeR *o are the state, control and output vectors for subsystems S, and S, respectively.

When a criterion is wanted based on which different stabilizing controllers of the system (1) are to be compared, the
next associated quadratic cost functional is used

J(%ptp o u®) = (x'()Q x(t) + u'() Rutry) dt Q)

—_—
-

where Q =block diag.[q,, 4, .- 9y 4,JER™ R=block diag.[r,, r,, ..., ry, r JeR ™ are constant, symmetric,

block diagonal positive semidefinite and positive definite weighting matrices respectively. In that case the above
quadratic cost functional can be written
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N+l

J(xg tyw, u(=g J, (x,, t, = u(D) 3)
i=1

where

T (X By =0 4,0 )=} /(0 Q, x D+ /(1) R, u()ds )

4

The matrices a, € R"™ 4 e R"™, , b € R"™, b e R" and

° i L]

c, € R'™, ¢, €R ! describe the dynamics, control and output distribution for S; and S, respectively.
The interconnections (or information transfer from) between S, and S; and S; and S, are represented by the
matrices a,, € R"™ and a, € R respectively.

As can be seen from (1), these state equations are representative of a class of two level hierarchical and/or
decentralized systems where N+1 subsystems are interconnected in a way such that N from the subsystems is at

the lower hierarchical level while the subsystem left is at the upper hierarchical level and acts as a coordinator for
the system. The transition matrix A for the overall system has the following form, which depicts an arrow

constructed from the block matrices a, a,, 4,, ... 4, ,hence the name Block Arrow Structure (BAS),

-"1 “low
ey 0 ay
A= ~ i € R™ &)
Q Sy Yo
Bor %2 ™ % %

while the input and output matrices are respectively
B = block diag. [ by, by, . by b, 1 € R™ C = block diag. [ ¢,, ¢« pp €, 1 € R™ 6)

Another useful representation of the overall system (1), which indicates the partitioning of the system into
N+1 subsystems is the following:

Nel
() = A x(t) + ¢ Bu, () (7a)
i=1
y, (1) = C, x() (7b)
where
]
i
B,=[b| eR™ , C =0 ¢, O € R ¥ 1212, N1 ®)
i
[

The problem of eigenvalue placement of such a BAS structured system is of great importance, since
such types of systems are common in practice where,due to physical or cost restrictions, N subsystems
can only exchange information through a supervisory subsystem. If there are no interconnections
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between subsystems
(4,=0+ a,,=0) ¥ i=1,2,..N. ®

the problem of eigenvalue placement for the system concerned is broken into N subproblems of lower
dimensions, to be solved independently from one another.
If only some of the interconnection matrices are identical with a zero matrix of the same order

(a,=0v a,=0)for i=i,i,..1, where i i .0, € (1,2,.N:. (10)

it is obvious that the eigenvalues of the overall system are the eigenvalues of the subsystems for which
(10) holds together with the eigenvalues of a lower order BAS subsystem consisting of the rest of the
subsystems.

To prevent such trivial cases as the above discussed ones, it is assumed that

(a,*0+ a,#0)V i=1,2,..N (11)
It is also useful to develop the next
Notation.

For N-channel systems, N denotes theset { 1,2,.. N } and ¢ is a non empty subset of N with

elements iy, I, ... i, ordered so that i, <i, < ... <i,. B, and c, are defined
By = B, B, - B, (12)
and

C,= €, C, - O, (13)

@ (N) 1s a power set of N, which is the set of all subsets of N,

N-¢ =¢x|xeN » =xe<d:, p(4) 1s the rank of matrix A and o (4) is the spectrum of
eigenvalues of A.
When the system consists of N+1 subsystems N+1 denotestheset { 1,2,.. N, N+1}.

3. The Single Channel Controllability Problem in a BAS Structured System

In this paper we consider the problem of determining the conditions under which a BAS system of form
(7) can be made observable and controllable from the input and output variables of one channel by static
feedback applied to the other channels. These conditions are characteristic of the given system and are

validin case that the controlling channel is the coordinator 8, , or even one of the subsystems s, . The

first case, of course, is the most interesting one.

The general problem of single channel controllability of a system consisting of N interconnected
subsystems was first considered in [9] using a geometric approach. The same problem has been considered
in [10],[11] from an algebraic point of view.

It is assumed that all the subsystems are "locally” controllable and observable, so a complete decentralized
solution is always possible. It is also assumed that the overall system is completely observable and
controllable from a fictitious measurement and control station, or (4,[B B,....B,,B 1) is fully

controllable and (4,[C.C,,...C,.C 1) is completely observable. But the system (7) is neither completely

observable nor controllabl: from any one of the N+1 subsystems.
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We shall begin by trying to find out the conditions under which the system, after closing the feedback
loops u, = k, x, in the lower level subsystems, can be made completely controllable from u,(r) . In this

case the system is

N
2(1) = [A > B‘K,]x(r) + B u (1) (14)

i=1

In the general case, the system can become observable and controllable from every subsystem,
irrespective of its belonging to the upper or lower hierarchical level [10],[11]. Next theorem gives us a
necessary and sufficient condition for controlling a BAS system from a single station.

THEOREM 1

Given the BAS system (7), there exist feedback matrices K, e R™, 1=1,2,..N+1 making the

system completely observable and controllable from a single control station if and only if for all
¥ ¢ P(N+1) wehave

Chvieg A =AYV B, # 0 (15)
and
LI-4 B, 16)
p zn V XLeod) (16
CN+I-‘.'€ Q
Proof

In [10], an algebraic characterization of fixed modes for a general decentralized controlled system which
consisted of N subsystems ( or control stations ), is made. Usin g these results, it is derived that a necessary
and sufficient condition for

N
A dFed E 5 Bpky 0 (17)

i=1

to have rank < n- o« for all & . » some fixed complex A and a non-negative « is that for some

partition ¥ ¢ o (N) there holds

AM-A B,
. T (18)

CN«I—S! Q

That means that if such a partition exists, the controllability of the interconnected system from the N+1
th station gets loose. In [11], a more general case where an interconnected system can be made
controllable from every station is considered.

Applying the above to a BAS system shows that when (15) and (16) hold the system can be made
controllable from every subsystem when a local feedback control is applied to N other subsystems.

The above theorem provides a necessary and sufficient condition for A, € o(4) as to be a
decentralized fixed mode of the system if there exists at least one complementary subsystem such that

Por -4 B,
[ Cne 2
( There exists 2%*"-2 complementary subsystems for the system (1) ).

P <n (19)
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This result let us get an insight into the reason why fixed modes occur. A, is a decentralized fixed mode
of system (7) if there exists a disjoint partition of the system in two aggregate stations a and b such that A,

is simultaneously uncontrollable by one of these stations and unobservable from the other one.
Example 1

We have the following BAS system which consists of three interconnected subsystems, and where the
overall system matrices A,B,C are:

6 0 0 0
10 20 X 0o 1
........... — : el
A= g2 0 2 0 0
0025 1.0
4 0i0 0 o 0 03
o o0i 1 0 0 -1 02
2 o 1
0 o o
S — r——
B= |, ©° c= A T I
TR W T SR 0 O ]
oo M0 0 0 PR
4 o L o 1

From these matrices one can easily derive the matrices corresponding to a specific subsystem. For
example, the matrices of subsystem 1 are:

SN R O 4 I

0100000]

1

Bj=g2000000,) C,-=
0000000

Subsystems are all controllable and observable when they get disconnected from each other
rank(ctrb(a,b)) = n, and rank(obsv(a,c)) = n, for i=1,2,0 where ctrb(a,b,)) and obsv(a,c) are the
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controllability and observability matrices of the i system respectively. When the interconnections are taken

into account the system is neither controllable nor observable from a single station, or rank(ctrb(A,B)) <

n or rank(obsv(A,C))) <n for i=1,2,0 e.g. rank(ctrb(A,B,)) = 6 and rank(obsv(A,C,)) = 5.

The system is globally controllable and observable, rank(obsv(A,[C,;C;Co])) = 7 and

rank(ctrb(A,[B,;B2;B,])) = 7.

After checking the conditions of theorem 1 for the 2¢*"-2 = 6 and for the seven eigenvalues of matrix A,

( 6¥7=42 matrix ranking tests ) we conclude that the system can be made controllable from a single station.

Indeed, the gains k1 k2 of the linear quadratic regulator problem for subsystems with g; and r; identity

weighting matrices of appropriate dimensions, at the lower hierarchical level make the system controllable

from the co-ordinator. The new transition matrix is AA and

rank(ctrb(AA,B,)) =7, rank(obsv(AA,Cy))=7

The response of a state to a step input is shown in Figure 2. Dashed line indicates the optimum response

of state x, which belongs to the second subsystem in a step input applied to u, which is an input of the first

subsystem. Continuous line indicates the response of the same state when the system is controlled from

the coordinator while the static closed loop feedback gains for the subsystems 1 and 2 are correspondingly
k, = -[ 26,1921 52.7873 ]

k, = -[ 319926 0.0031 20.2847 ].

.0

e.03}

c.0af

X-20 3

—-0.0% |

=-0.02 |

—-o.a3}

—c.0e
OO‘ » a 3 - E3

Figure 2. Step Response of State x,
It can be shown that there are cases where the interconnections play no role in system's performance
(s~ they can be omitted), while in other cases they play a significant role not only in system's
performance but also in system's stability.

4. The Neutral Interconnections BAS Information Pattern

It is well- understood that when (9) holds, each subsystem can built its own local observer and controller
and this is the optimal solution for the overall system. Beyond this trivial case, there exists a whole class
of interconnection patterns which does not move the eigenvalues of the system from this optimal
completely decentralized location, as the next theorem shows. The study of such interconnection patterns
is of great importance, because in that case the solution of the overall system can still be broken into N+1
lower order problems.
THEOREM 2

Given the N+1 completely observable and controllable systems  ( ¢,a,b, ) i=1,2,..N, (e¢,a,b,),

eTeT
with a separable quadratic cost criterion (3), the class of BAS interconnection patterns

a,=H,P, a,=-HTP, i=12.N (20)

ol

where P, (P,) is the solution of the Riccati equation for system S, (S,) and H; arbitrary, does not change
the solution of system (1) against the optimum decentralized one.
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Proof

When there are no interconnections between the subsystems, the solution of the overall problem is given
by:
PA+ATP-PBR'BTP+Q =20 21
where A = block diag. [ a,, @y wy Gyy a, ], B = block diag. [ b, b, ..., b,, 5,1,

Q = block diag. [ q,, 450 +s 4pp 9,1, R = block diag. [ r,, rp .., 7 r, 1.
The solution of (21) results in a diagonal matrix P = block diag. [ P,, P, ... P,, P, 1,

where every P, satisfies one of the N+1 Riccati equations of type (21) corresponding to each of the
subsystems.

When the interconnections are taken into account, the solution of the problem is produced by an

equation of type (21), but this time the matrix A is of the BAS form
a, 9
a, Q0 ay
A= . i € R™ (22)
0 An %N
Fo1 %02 = Gy 9y

The structural perturbation of adding interconnections a,, a,, makes the new system matrix

L1

-"1 %10
a, Q 220
A+ A = . + Q i € R™ (23).
0 N %50
] 4 Por %2 " %av

Generally, this will result in the solution of (21) changing to P + P so that the new Riccati equation
for the system is

(P+P) (A+A) + (A+A) (P+FP) - P+PYBR'BT (P+F) + 0 = 0 (24).
We claim that for the interconnection pattern (20), # = 0 . In order to let this happen, it is necessary

that P4 + AP =0 ,0r

. ]"-
I a, o1 P,
P, 0 a,, Goy P, 0
“ 1} P+ 0 i - =0 (25)
0 P, ay, R
Po_ %01 T2 " v ] ‘"1,(; a;.' a;; L P°4

30 Studies in Informatics and Control,Vol.3,No.1,March 1994



which is true when
(26)

P, "n*": Ey S0 vi=12,..N

and this is the case, easily observable, when the interconnection pattern is as given in (20) ™
Example 2

Once again consider the three subsystems of example 1, but this time interconnect them with a pattern
as given in Theorem 2 with P; the solution of the "local" Riccati equations and

01
00 .. . .
H, = 5 i H, =100 . The new transition matrix A is;
10 \
6 0 i t 0 0
10 20 b 04991 14159
T i A Ol |
: 10 0 8 04991  -1.4159
A= 12 -10 2 10 0
2 | 1
e eemm O 025 V45759 04991
0 0 T731.992 ~ 00031 ~20.284 F=% 3377
26393 69.637 | 51.126  0.0003  31.9926 " 0.2

The matrix B is as before, while the weighting matrices are Q =1, and R=1,.
The solution of the Riccati equation for the overall problem is:

1 ]
13.0960 26.3937 1 :
263937 69.6375 1 0 i o
T i bt e
:51.1261 0.0003 31.9926 |
P= 10.0003  0.0500 0.0031 i
0 )
! i
s 9926 T0003] .. DOBIT. oo e
T 145759  0.4991
1] e | '
)
1 ) 0.4991 1.4159
and the feedback gain X = -R"'B7 P is
l '
26.1921 52.7873 : 0 o
------------------------- t A e e S
K= 1319926 0.0031 20.2847 0
——-—-———----l'—-'——---—-—-q——-—-—ﬁ--.-—- —— ———
\
0 g 0 ) -0.0415  -1.366
| '
| 1o 0

The above two block diagonal matrices consisted of blocks which are solutions to the complete decoupled
subsystems. In this way the seventh order overall problem has been broken into three lower order
problems, two of the second order and one of the third order. Even if the Theorem 2 type of patterns are
unlikely to meet with in practice, this in no way reduces the significance of the result.

5. CONCLUSIONS

This paper is an analysis of the inherent structural properties of the two- level hierarchical controlling
scheme proposed in [12]-[13] . Although previous work related about some appealing characteristics of
the BAS regulator such as the possibility of parallel implementation [12]-[13], the structural flexibility
of other more generalized structural approaches [14] or the simulation of a given system and the

Studies in Informatics and Control,Vol.3,No.1,March 1994 31



32

comparison of the results with other approaches, say the two time scale approach, little was done as to

some theoretical structural analysis.

In this work, some criteria about when a BAS two- level hierarchical system can be made observable and

controllable from a single station irrespective of this station being at the lower hierarchical level or the

coordinator, have been given. It is possible, therefore, that a control centre for the overall system is set up
in one of the subsystems (mainly in the coordinator), while static closed loop feedback control is

exercised on the other subsystems.

An interconnection pattern of great theoretical importance, where the optimum quadratic local control
coincides with the optimum quadratic global control, has been investigated. In that case, local controllers
of much lower order than the order of the overall system provide the best solution. It is reasonable to
expect that the decentralized solution for a BAS system deviates between acceptable margins, even though
the interconnection pattern slightly differs from that in (20), and so, can also be used in such cases.
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