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1. Introduction

Cardiovascular disease (CVD) is a major threat 
to human health and the leading cause of death 
worldwide (Thomas et al., 2018). Mortality and 
morbidity rates of CVD are increasing year by 
year, especially in developing regions. CVD 
generates a significant economic cost, estimated 
at 351.2 billion $ in the US, affecting the quality 
of life chronically (Virani et al., 2020). In the EU 
the yearly cost has been estimated at 210 billion 
€, divided between direct healthcare related 
costs (53%), productivity losses (26%), and the 
informal care of people with CVD (21%) (Timmis 
et al., 2018). An accurate and early evaluation of 
diagnosis and prognosis is crucial for improving 
and optimizing CVD outcomes.

Imaging plays a key role in every aspect of 
cardiovascular disease management, starting 
from baseline risk assessment diagnosis, staging, 
therapy planning, therapy delivery and follow-up. 
In addition, each type of heart disease (such as 
coronary artery disease, structural heart disease, 
arrhythmia, cardiomyopathy, congenital heart 
disease, cardiovascular toxicity, etc.) has led to the 
development of more advanced imaging methods 
and modalities to help the clinicians address the 
specific challenges in analysing the underlying 

disease mechanisms. These developments 
were driven by the need for a comprehensive 
quantification of cardiovascular structure and 
function across several cardiovascular imaging 
modalities such as Magnetic Resonance Imaging 
(MRI), Computed Tomography, echocardiography, 
nuclear imaging. To address this need, researchers 
have been actively pursuing the development 
of advanced image analysis algorithms, some 
of which are routinely used in clinical practice 
(Mansi et al., 2019). 

The majority of state-of-the-art image analysis 
algorithms are powered by artificial intelligence 
(AI) (Benjamins et al., 2019). The availability 
of unprecedented data storage capacity and 
computational power has allowed for the 
development, refinement and deployment of AI 
and specifically of machine learning (ML).

In CVD, AI algorithms have been successfully 
developed addressing various aspects ranging 
from the image acquisition level (e.g., scan 
workflow automation and efficiency) (Saltybaeva 
et al., 2018), to the reading and reporting level 
and prediction and prescription level (e.g., multi-
scale modelling of the heart (Kayvanpour et al., 
2015) and risk stratification in coronary artery 
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disease (Duguay et al., 2017)). For example, 
novel approaches have been introduced for 
the robust detection of anatomical structures, 
based on methods that reformulate the detection 
problem as a behaviour learning task for an 
artificial agent (Ghesu et al., 2019). Training 
of the artificial agent focused on distinguishing 
the anatomical object of interest from the rest of 
the body and on finding the object by learning 
and following an optimized navigation path 
towards the target object within the volumetric 
space. Recently also a novel method to achieve 
coronary artery labelling for structured reporting 
of Coronary CT Angiography (CCTA) was 
introduced (Fischer et al., 2020). The method 
relies on a deep learning (DL) model leveraging 
centerline labels annotated by experts for 
learning representations of coronary segments. 
Significant advancements have also been 
reported in the generation of patient-specific 
models of the mitral valve from medical images 
(Zhang et al., 2017). Several review articles have 
been published in recent years (Haq et al., 2020; 
Mathur et al., 2020), identifying challenges that 
need to be addressed to further increase the real-
world adoption of AI based applications in the 
diagnosis and treatment planning of CVD. In the 
following the focus is on two main challenges.

ML relies extensively on existing and future 
patient data to deliver accurate and reliable results. 
Thus, the first challenge refers to the fact that, 
while biomedical data is abundant, it is hard to 
circulate and access due to ethical constraints, 
also affecting the development of computer-based 
solutions (Yan et al., 2019). There are concerns 
regarding protected health information related to 
patients (Mathur et al., 2020). Medical AI systems 
are difficult to realize, as data to develop and train 
them exist, but are locked inside hospital firewalls. 
To develop robust algorithms, the databases used 
for training, validation and evaluation should cover 
the entire spectrum of pathological variations and 
combinations. If training datasets lack diversity, 
algorithms may be biased or skewed to certain 
types of patients (Haq et al., 2020).

While this applies in general to all algorithms 
relying on medical data, a few specific aspects 
should be noted for CVD: significant geographic 
variations in CVD types and prevalence, and 
significant variations in imaging protocols, e.g., 
cardiac MRI (Fratz et al., 2013) and CT (Pulerwitz 
et al., 2020), have been reported.

Secondly, AI algorithms should be explainable and 
interpretable. ML algorithms are in general related 
to the concept of ‘black-box’, i.e., the rationale 
for how the outputs are inferred from the input 
data is unclear (Haq et al., 2020). Algorithmic 
decisions should however ideally provide a 
form of explainability (Bond et al., 2020). In 
general, explanations are about the attribution 
of the worth of input features towards the final 
model predictions, whereas interpretability refers 
to the deterministic propagation of information 
from input to response function. This challenge 
is consistent with recent clinically driven studies 
about transparency of clinical decision support 
(Richard et al., 2020) and agrees with a recent 
call for good practice in AI through models 
that are interpretable by design (Rudin, 2018). 
Similar to the first challenge, this applies to all 
algorithms employed in patient care, but, given the 
numerous types, subtypes and variations of CVD 
(Dey et al., 2019), the need for explainability 
and interpretability is even more pronounced in 
cardiovascular imaging.

This paper highlights the recent developments 
related to the above mentioned two challenges 
and discusses the potential impact of the existing 
solutions. Several examples are presented, related 
to the diagnosis of stable coronary artery disease, 
a whole-body circulation model for the assessment 
of structural heart disease, and to the diagnosis and 
treatment planning of a congenital heart disease. 
Section 2 addresses aspects related to privacy 
preservation in clinical AI applications, while 
explainability and interpretability requirements 
of an AI model are discussed in section 3. In the 
context of the approaches described herein, section 
4 focuses on the impact of AI in clinical practice, 
and final conclusions are drawn in section 5. 

2. Privacy Preservation in Clinical 
AI Applications

2.1 Privacy Concerns around  
Data Exploitation 

Among all types of data asSoCiated with an 
individual, medical data has some of the highest 
privacy requirements, and the currently adopted 
regulations towards confidentiality guarantees for 
personal data manipulation (e.g., GDPR in EU, 
HIPAA in US) urges for the adoption of more 
effective privacy-preserving techniques (Shokri 
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& Shmatikov, 2015). Typically, to export sensitive 
data without compromising privacy, proper 
anonymization must be performed (Obermeyer & 
Emanuel, 2016). Thus, some of the data properties 
are modified, leading to a trade-off between 
privacy and utility. In the past few years, great 
effort has been invested in the development of 
different privacy preserving techniques with the 
potential of bridging the gap between data privacy 
and utility, demanded by the recent rise of privacy 
concerning scenarios. Cryptographic techniques 
such as Homomorphic Encryption (HE) offer a 
potential solution by allowing data to be encrypted 
while being manipulated (Kipnis & Hibshoosh, 
2012). HE aims at keeping the data private by 
allowing a third party to process the data in the 
encrypted form without having to reveal the 
underlying information.

2.2 Homomorphic Encryption in 
Artificial Intelligence  

Various researches have been conducted with the 
goal of performing privacy-preserving machine 
learning through homomorphic encryption. 
Orlandi et al. (2007) proposed the first notable 
approach for combining neural networks with 
HE. The method uses a cryptosystem that 
can only handle a few simple operations, the 
remaining operations being conducted through 
an interaction between the data owner and 
server. Neural networks fitted for inferring on 
encrypted data, such as CryptoNets (Dowlin et 
al., 2016), eliminate the interaction between the 
involved parties by using a Fully Homomorphic 
Encryption (FHE) scheme combined with 
polynomial approximation of non-linear 
functions. With focus on improving the neural 
network efficiency when operating on encrypted 
data, Chabanne et al. (2017) and CryptoDL 
(Hesamifard et al., 2017) further enhanced 
CryptoNet’s capabilities by proposing different 
approximation strategies for the non-linearity 
property in neural network models. 

The key downside of these privacy-preserving 
neural network solutions is the computational 
overhead: deeper networks need more 
computations, resulting in longer running time. 
In addition, an encoding strategy for floating point 
numbers has been used to empower computations 
on real-world data. Not only does the encoding 
strategy explicitly restrict the utility of these 
methods, but it also has a direct impact on the 

outcome of the computations. As a consequence, 
these methods use only encryption for the 
inference phase.

2.3 Privacy Preserving in Practice with 
Homomorphic Encryption

As a way of enabling computations to be 
performed on real data in practical medical 
applications, approaches that use some simpler 
homomorphic encryption cryptosystems based 
on linear transformations have been proposed in 
the specialized literature. This class of methods 
appears to be currently the only practical approach 
for performing privacy-preserving computations 
in real-world applications (Vizitiu et al., 2020). 
Consequently, Vizitiu et al. (2020) proposed 
a recent solution for privacy preserving deep 
learning based on a fully homomorphic encryption 
scheme. The standard steps are followed, i.e., the 
input data is encrypted and then sent to the server 
for training or prediction (Figure 1).  

Figure 1. Workflow of the proposed privacy-
preserving deep learning-based application relying on 

homomorphic encryption (Vizitiu et al., 2020)

The workflow relies on a variation of the Matrix 
Operation for Randomization or Encryption 
(MORE) encryption scheme, capable of operating 
directly on floating point data, allowing both 
training and inference similar to that of classical 
neural networks directly on homomorphically 
encrypted data. Evaluation was performed on 
the Modified National Institute of Standards and 
Technology (MNIST) dataset (a digit recognition 
benchmark problem) and on medical applications.

To demonstrate the feasibility of the proposed 
approach within CVD, a whole-body circulation 
(WBC) hemodynamic model of the cardiovascular 
system was chosen. The WBC model, displayed 
in Figure 2, contains in addition to the heart 
model, the systemic and pulmonary circulation. 
This hemodynamic model can determine different 
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clinically relevant quantities of interest under 
personalized conditions: arterial compliance, 
arterial resistance, ventricular/atrial/arterial 
elastance, dead volume of the left/right ventricle, 
pressure-volume loop, arterial ventricular 
coupling, etc. To ensure that model results 
are patient-specific the model parameters are 
calibrated iteratively based on the non-invasive 
measurements. This leads to an execution of 
up to one minute for computing the patient-
specific quantities of interest. Thus, the authors 
investigated the possibility of training a deep 
learning model, under encryption conditions, for 
computing in real-time the measures of interest 
output by the WBC model. 

Figure 2. Whole-body hemodynamic model  
(Vizitiu et al., 2020)

To train such a model a database of synthetically 
generated patient-specific samples has been 
considered. For each sample, the personalization 
framework was run with the WBC model to assess 
the output measures of interest necessary to train 
the deep learning-based model (Vizitiu et al., 
2020). A schematic of the workflow is displayed 
in Figure 3.

Figure 3. Proposed deep learning workflow relying 
on synthetic data (Vizitiu et al., 2020)

2.3.1 Methodology

In the MORE encryption scheme, a symmetric 
key is employed, and each numerical value is 

mapped to a matrix following the encryption. The 
MORE cryptographic approach is displayed in 
Figure 4 and the fully homomorphic behaviour is 
obtained through matrix algebra. Thus, the secret 
key encrypts the training data, and, next, the deep 
neural network is trained using only the ciphertext 
data, while the plaintext data is kept private at the 
data provider. 

Figure 4. MORE encryption scheme setup for 
rational numbers (Vizitiu et al., 2020)

A typical training pipeline is employed to train 
the model on the encrypted data, with support 
for floating-point computations, and with all 
mathematical operations being performed in the 
deep neural network on ciphertext data. Finally, 
a model is obtained which outputs ciphertext 
predictions, which can be interpreted only by the 
party which has the secret key. Importantly, during 
inference, the inputs need to be encrypted with the 
symmetric key that was also used to encrypt the 
training data.

2.3.2 Results

An identical accuracy was obtained for the 
medical and for the MNIST datasets by the 
plaintext and ciphertext deep learning models. 
Table 1 lists for the WBC model the MAPE 
(Mean Absolute Percentage Error) and the 
correlation (Pearson) coefficient obtained by 
evaluating the outcomes of the encrypted deep 
learning model, together with a statistical analysis 
demonstrating that the predictions are identical 
when being performed on encrypted and plaintext 
data. Following Levene’s test for equality of 
variances, an F-statistic of zero was obtained, 
with a p-value close to 1. Thus, the test assumes 
equal variances between the predictions provided 
by the encrypted and plaintext WBC model.  
Therefore, the results of an independent samples 
t-test with the assumption of homogeneity of the 
variances were reported in Table 1. For all WBC 
parameters, the p-value provided by the t-test was 
close to 1, which implies that the means in every 
group were equal. In particular, these results 
indicate that there is no difference in performance 
between the encrypted and the plaintext WBC. 
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The ciphertext solution leads to a larger runtime 
when compared to the plaintext version, but the 
overhead is significantly smaller compared to that 
of classic FHE schemes (Table 2).

Table 2. Execution times expressed as mean values 
± standard deviations for the plaintext and ciphertext 
deep neural network models trained for performing 

the hemodynamic analysis

Operation

Runtime 
(s) on 

ciphertext 
data

Runtime 
(s) on 

plaintext 
data

Encrypted – 
Unencrypted 

ratio

Training (1 
epoch)

0.66 ±
0.09

0.021 ±
0.001 31.4

Inference 
(2000 

samples)

0.102 ±
0.01

0.006 ±
0.0009 17

The WBC model allows for a detailed assessment 
of time-varying measures of interest during 
one heart cycle. Pressure-volume (PV) loops, 
computed in real-time, represent one clinically 
relevant example. The left ventricular (LV) PV 
loop allows for a through characterization of 
the cardiac function. Different measures of the 
systemic circulation and the heart like cardiac 
output, stroke, volume, myocardial contractility, 
ejection fraction, cardiac oxygen consumption 
can be quantified therein. Other aspects like 
the ventricular-arterial mismatch, the degree of 
ventricular remodelling, and the LV end-diastolic 
PV relationship (Spevack et al., 2013) are 
correlated with congestive heart failure. Dilated 
cardiomyopathy, left ventricular hypertrophy and 
mitral and aortic valve regurgitation and stenosis 

(Hall, 2011) are pathologies which all induce 
changes in the PV loop.

2.4 Other Approaches

Although there are many promising recent studies 
for employing HE in AI workflows, it remains a 
difficult task, displaying significant limitations. To 
this extent, other approaches that are not relying 
on HE, have been also proposed. The original 
data may be secured using a special obfuscation 
operation that hides the sensitive components 
while preserving the statistics, such that it 
remains usable in a DL workflow. Obfuscation 
may be performed by adding a special type of 
noise (Romanelli et al. 2020) or by employing 
adversarial networks (Gong & Poellabauer, 2018; 
Abadi & Andersen, 2016).

2.5 Conclusions 

CVDs are characterized by significant complexity 
and geographic variations in types and prevalence. 
Moreover, data acquisition in general, and medical 
imaging protocols in particular vary by region, 
vendor, etc. On the other hand, the development of 
robust AI algorithms for CVD requires access to 
large amounts of data from numerous sources. The 
approach described in this section and depicted 
in Figure 1 provides a practical solution to the 
challenges faced by large data collection initiatives 
in the context of strict privacy regulations.

The development of highly accurate AI 
algorithms requires significant effort related to 
problem understanding, data pre-processing and 

Table 1. Deep learning model results for the whole-body circulation model

Circulation Parameters MAPE 
(%)

Pearson 
corr. (%)

Levene’s Test 
for Equality of 

Variances

F-statistic × 10-16 
(p-value)

t-test for equality of 
mean

T-statistic × 10-16 
(p-value)

Systemic

Dead volume [ml] 7.03 0.9997 0.2 (0.999) 0.1 (0.999)
Time at max. elastance [s] 0.13 0.9995 0.2 (0.999) 0.4 (0.999)

Resistance [g/(cm4·s)] 0.17 0.9999 0.1 (0.999) 0.4 (0.999)
Compliance [10-6 cm4·s2/g] 2.45 0.9867 0.4 (0.999) 0.2 (0.999)

Ratio of prox. to distal resistance 1.36 0.9782 0.3 (0.999) 0.7 (0.999)

Pulmonary

Dead volume [ml] 9.88 0.9991 0.6 (0.999) 0.2 (0.999)
Time at max. elastance [s] 0.10 0.9994 0.2 (0.999) 0.1 (0.999)

Resistance [g/(cm4·s)] 0.32 0.9998 0.5 (0.999) 0.3 (0.999)
Compliance [10-6 cm4·s2/g] 0.67 0.9983 0.5 (0.999) 0.1 (0.999)

Ratio of prox. to distal resistance 0.18 0.9999 0.4 (0.999) 0.6 (0.999)
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filtering, model definition, results analysis, etc. 
These activities can only be performed on non-
encrypted data. Hence, practically speaking, the 
following scenario might be imagined: the 3rd 
party in Figure 1 is first granted access to a non-
encrypted dataset which is used for setting up data 
pre-processing pipelines, defining the AI model 
architecture, etc. to ensure an optimal prediction 
performance. In the second step (fully automated), 
the model is trained on large scale encrypted data 
collected from multiple sites, thus ensuring robust 
performance across all types of data.

3. Explainable Clinical  
AI Applications

User interfaces with explanations should 
accompany all AI algorithms, to display the 
rationale for interrogatable and transparent 
decisions taken by the algorithms, and to increase 
trust. Automation bias, i.e., naively trusted and 
accepted advice given by a machine (Bond et 
al., 2018), may also be mitigated by exposing 
such explanation user interfaces. Methods for 
explaining machine learning algorithms can be 
categorized into:

	- Feature attribution: attributing the 
classification to a small number of numeric /  
semantic features. These algorithms are 
usually interpretable by design (Thomas et 
al., 2018; Naghavi et al., 2017); 

	- Saliency maps: sparse components of the 
original signal are identified, that have 
most influence on the model predictions, 
e.g., Local Interpretable Model-Agnostic 
Explanations – LIME (Virani et al., 2020); 

	- Activation maximization: for example, based 
on Generative Adversarial Networks (Romiti 
et al., 2020);

	- Metric learning: it consists of deriving a 
metric from a classifier and using it to map 
out the data structure (LeCun et al., 2015). 
Additionally, explicit Siamese Networks have 
become very popular recently (Bertinetto et 
al., 2016).

In general, deep learning models are much more 
straightforward to apply as they eliminate the need 
for specific feature extraction methods, but they 
may be harder to interpret, and require much more 
training data as they rely on the optimization of a 
large number of parameters.

CVDs are characterized by numerous types, 
subtypes and minor variations (Dey et al., 2019), 
which are continuously updated in the clinical 
guidelines. Hence, to obtain trust, it is important 
for AI algorithms to not only capture these subtle 
differences but to present them to the clinicians.

In the following the uncertainty quantification 
is referred to as a concept closely related to 
explainability (subsection 3.1) and to the use 
of computational models in combination with 
machine learning models to enhance output 
explainability (subsections 3.2 and 3.3).

3.1 Uncertainty Quantification

Uncertainties are an inherent part of the world 
and they are inevitably propagated to data-driven 
systems. Uncertainty is also closely related 
to explainability and interpretability since AI 
model results displayed together with uncertainty 
measures potentially increase the trust, the 
acceptance and the adoption of the model in 
routine clinical practice. 

Different types of uncertainties can be 
distinguished in AI applications:

	- Data uncertainty: label noise (inherent class 
overlap) - a property of the underlying problem;

	- Model uncertainty (epistemic uncertainty) - 
model complexity and out-of-sample behavior;

	- Distributional uncertainty - systematic 
difference between the distribution of the 
training data and the distribution of the test 
data (Quionero-Candela et al., 2009).

Recently, a method for quantifying data and 
model uncertainties was proposed, yielding 
superior results compared to the state-of-the-
art on three medical image classification tasks 
(Saltybaeva et al., 2018). Along with the class 
probability, the model estimates the uncertainty 
level reflecting the prediction confidence: a strong 
correlation between high predicted uncertainties 
and miss-labeled data has been demonstrated 
through a multi-radiologist-consensus user 
study. Uncertainty modelling can thus increase 
the trustworthiness of automated systems, 
making them more confident in their predictions 
while being able to identify uncertain situations 
requiring input from the clinician. 

Distributional uncertainty can be detected using 
methods such as Normalizing Flows (NF) 
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(Kobyzev et al., 2020) in a pre-processing step. 
In the NF framework, an invertible mapping 
is learned between samples x ~ p(x) and latent 
variables z~ p(z) such that the likelihood of z is 
maximized under a chosen prior. Such techniques 
can perform exact log-likelihood computation 
and, therefore, input samples with low probability 
under the original training distribution can be 
flagged, and the output of the model for these 
samples can be regarded as unreliable.

Many of the current clinically integrated CVD 
related AI algorithms are semi-automated, relying 
partially on user input or editing. The approach 
described above, based on NF, may be employed 
to automatically detect erroneous user input, thus 
ensuring a robust performance of the algorithms 
when integrated in clinical workflows. For 
example, in a use case where the segmentation 
of the heart chambers is performed automatically 
but can be edited by the user, an NF based method 
may detect an erroneous / unlikely edit, thus, 
preventing a faulty prediction of a measure of 
interest (e.g., ejection fraction).

3.2 Non-invasive Assessment of Stable 
Coronary Artery Disease

The gold standard for quantifying the severity of 
CAD (Coronary Artery Disease) is the functional 
index Fractional Flow Reserve (FFR). FFR is 
measured invasively using a catheter but may 
be computed noninvasively using physics-based 
simulations performed on anatomical models 
reconstructed from medical images (computer 
tomography / X-ray coronary angiography). 

Physics-based simulations typically require long 
runtimes, which limits the clinical adoption. 
An alternative approach for computing FFR is 
based on machine learning models (Itu et al., 
2016) (Figure 5). Therein, coronary anatomies 
are generated synthetically, and the ground truth 
values required for the training of the ML model 
are determined using the physics-based approach. 
FFR is predicted at each centerline point in the 
reconstructed anatomical model. ML-based FFR 
predictions were validated against the physics-
based results and against catheter-based FFR 
in 125 lesions from 87 patients. An excellent 
correlation between the physics-based and 
machine-learning based predictions was obtained 
(0.9994, p < 0.001) and the Bland-Altman analysis 
found no systematic bias. The runtime, when 
compared to the physics-based approach was 
reduced by approximately 80 times, allowing for 
a real-time computation of FFR. Clinical studies 
subsequently successfully validated the ML-based 
FFR computation (Coenen et al., 2018).

The Instantaneous wave-Free Ratio (IFR) is 
another coronary diagnostic index employed for 
CAD assessment and decision making. A physics-
based approach for computing IFR (c-IFR) was 
introduced by Passerini et al. (2017). The method 
relies on reduced-order fluid structure interaction 
hemodynamic computations and on coronary 
anatomical models reconstructed from X-ray 
coronary angiography. Two coronary angiograms 
at least 30° apart are selected and an end-diastolic 
frame is chosen for each of them. Next, the vessel 
centerline is manually traced on these frames by 
selecting a minimum of three points. The lumen 

Figure 5. Example of a CT based coronary anatomical model reconstruction: (a) coronary tree color coded by 
physics based computed FFR values, with computed FFR = 0.84 and invasive FFR = 0.83, (b) coronary tree 

color coded by machine learning based computed FFR values, with computed FFR = 0.85
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segmentation is then automatically computed and 
edited manually if required, and, next, the three-
dimensional anatomical model is reconstructed 
from the lumen boundaries and the centerlines 
(Figure 6). 

Figure 6. Example of an RCA lesion: (a) invasive 
FFR is 0.65 and c-IFR is 0.76, (b) end-diastolic 

frames of two different angiograms, (c) reconstructed 
coronary model with c-IFR color coded values 

(Passerini et al., 2017)

A hybrid decision making approach, which 
combines invasive FFR and c-IFR, was assessed 
against an invasive FFR-only approach in 64 
patients and 125 lesions. Within the hybrid 
approach, lesions were deemed functionally 
significant for c-IFR < 0.86, non-significant for 
c-IFR > 0.93, and for intermediate values an 
invasive FFR based classification was performed. 
Overall, 43 lesions were functionally significant 
(FFR ≤ 0.8). When evaluated against the invasive 

FFR-only strategy, the hybrid approaches led 
to an accuracy of 96%, with the requirement of 
measuring FFR invasively in only 43 lesions (34%).

3.3 Treatment Planning in  
Aortic Coarctation

Computational modelling may also be used 
to predict the outcome of cardiovascular 
interventions, allowing for the evaluation 
of various treatment approaches and for the 
selection of the optimal treatment. A framework 
was proposed that combines CFD and ML 
based techniques for robustly and automatically 
personalizing aortic hemodynamic computations 
for the assessment of pre- and post-intervention 
aortic coarctation (CoA) patients from 3D 
rotational angiography (3DRA) data (Armstrong 
et al., 2019). The key features are: (i) a parameter 
estimation method for calibrating arterial 
wall properties, and inlet and outlet boundary 
conditions, to obtain computational results which 
match the patient-specific measurements, and (ii) 
a machine learning based pressure drop model 
which predicts pressure losses accurately for 
large variations of anatomical CoA models and 
flow conditions (Figure 7). The case series paper 
provided, besides a feasibility assessment, an 
initial validation of the framework against invasive 
measurements in three patients: a difference of less 

Figure 7. Physics based workflow for aortic coarctation assessment from 3DRA: (a) 3DRA (the arrow 
indicates the aortic coarctation), (b) aortic segmentation, (c) reconstructed 3D anatomical model, (d) definition 
of boundary conditions, (e) pre-stent hemodynamic results, (f) implantation of virtual stent, and (g) post-stent 

hemodynamic results (Armstrong et al., 2019)
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than 5mmHg between computed and measured 
peak-to-peak trans-coarctation pressure drop was 
obtained for both the pre- and the virtual post-
operative assessment.

4. Clinical Impact

AI based solutions can impact clinical care in 
various directions:

	- doing what is right for the patient by 
focusing on the outcomes that matter for the 
patient: prioritize complex or acute cases 
(e.g., identify and prioritize acute coronary 
syndromes), avoid unnecessary interventions 
(e.g., minimize percutaneous coronary 
interventions while optimizing long term 
patient outcomes);

	- transforming care delivery through improved 
efficiency and productivity: increase 
productivity through automation (e.g., CCTA 
based CAD gatekeeper: automatically detect 
patients without significant CAD), optimize 
clinical operations;

	- expanding precision medicine through 
increased quality of care: patient and risk 
stratification (take the right clinical decision 
in terms of diagnosis and treatment), optimize 
the outcome (e.g., perform virtual treatment 
planning for aortic coarctation patient to 
select best treatment for minimizing the 
residual trans-coarctation pressure drop).

The recent theoretical and hardware related 
developments have lifted the potential of AI 
based solutions to a level where all of the above 
can be addressed. One of the most important 
remaining challenges is the access to data that 
cover the entire spectrum of possible pathological 
variations and combinations. The use of novel 
privacy preservation techniques may represent 
a very efficient and elegant answer enabling the 
access to more data. As discussed in section 2, 
the whole-body circulation model could thus 
perform robust predictions for patient stratification 
in dilated cardiomyopathy, left ventricular 
hypertrophy, mitral and aortic valve regurgitation 
and stenosis. While initial results of such solutions 
are promising, some challenging aspects still need 
to be further explored:

	- maintaining a high level of accuracy when 
privacy related mechanisms are involved: 
currently a trade-off between accuracy and 
security is required;

	- computational cost: although efficient in 
terms of security, current solutions suffer from 
increased run-time and computational cost.

Hence, it can be concluded that a trade-off exists 
between accuracy, security, and computational 
cost. While hardware developments will further 
reduce the computational cost, theoretical 
developments allowing for simultaneous high 
accuracy and security are required. A different 
approach for addressing the data challenge may 
be the use of synthetic data, which, in principle, 
does not raise any privacy concerns, but has 
other inherent challenges. Some examples 
are outlined in the previous sections: the AI 
models providing real-time assessment of the 
whole-body circulation and of coronary artery 
disease are trained on synthetically generated 
data. Furthermore, regardless of the amount of 
retrospectively collected data, to ensure that the 
models are trustworthy over time, they must 
continuously learn and readapt to changes that 
may occur in the statistical properties of the 
data caused by the shifts in patient population, 
treatment protocols or even symptoms.

The recent developments in AI explainability 
represent an important step forward for increasing 
the clinical acceptance of AI based solutions. To 
gain trust and ensure the acceptance by clinicians, 
the development of explainable AI models should 
actively involve end-users, i.e., clinical personnel, 
in the creation process. For the decision-making 
process related to aortic coarctation for example, 
being able to inspect the computed pressures at 
all locations along the aorta not only increases 
explainability, but also offers additional insight 
potentially leading to a better clinical decision.

While AI models are in general regarded as 
black-box models, clinical applications may 
be based on end-to-end or modular AI models. 
Modular applications divide the overall task of 
the application into smaller tasks, and inherently 
allow for a superior explainability, as the output of 
each task can be quantified, verified and validated. 
When referring to the diagnosis of coronary artery 
disease from computer tomography medical 
images, in an end-to-end approach, the AI 
model takes as input the 3D volume and outputs 
directly the diagnosis or the measures of interest 
(e.g., FFR). In a modular approach, different 
components are responsible for coronary artery 
centerline detection, lumen segmentation, and 
functional assessment.
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Finally, the uncertainty of the model output is 
closely related to explainability and interpretability. 
AI model results should, whenever possible, be 
displayed together with uncertainty measures to 
increase the trust in the model, potentially leading 
to a higher acceptance and adoption of AI models 
in routine clinical practice. A hybrid decision 
making strategy could be devised, where AI based 
decisions with high confidence (low uncertainty) 
can be approved automatically without human 
interaction, whereas decisions with low confidence 
(high uncertainty) have to be reviewed or corrected 
by the physician. For example, referring again to 
the computation of FFR: if the confidence interval 
of the predictions does not contain the diagnostic 
threshold value of 0.8, the clinical decision may be 
taken automatically.

5. Conclusion 

CVD is a major health problem around the world 
and will remain the most significant cause of 
mortality in the next two decades (Hu et al., 2016). 
So far, the use of AI has shown great potential 
in diagnosing, managing, and treating CVD. 
Cardiovascular imaging and its interpretation 
are likely to be changed by AI technologies, to 
enhance quality control, quantification, diagnosis, 
reporting, and workflow efficiency and ease of 
use. As the technology and its clinical validation 
progress, the integration of AI in clinical practice 
will further increase. 

Herein, the present work has presented an overview 
of current approaches for privacy preserving AI, 
and has identified the potential next steps to be 

taken to reach maturity, i.e., clinical adoption: novel 
hardware solutions for reduced computational 
cost, and novel theoretical developments allowing 
for simultaneous high accuracy and security. 
Moreover, the knowledge gained from the use 
of AI models in routine clinical practice, will 
enable the development of more reliable and 
more complex and more accurate AI models. 
Regarding AI explainability and trustworthiness, 
two possible approaches have been detailed, i.e., 
the assessment of uncertainty and the integration 
with computational models (Niederer et al., 2019), 
which may reveal diagnostic information that 
otherwise would remain concealed.

Machine learning, deep learning, and AI in 
general are changing the way in which medicine 
is practiced. While remaining challenges are 
being addressed, physicians need to embrace 
and be prepared for the AI era, paving the way 
toward better diagnosis and precision medicine in 
cardiology and cardiovascular imaging.
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