Romanian Spelling-Checker

Svetlana Cojocaru, Mikchail Evstiunin and Victor Ufnarovski
Institute of Mathematics of the Moldavian Academy of Sciences

5, Academiei str.,
Kishinev 277028
THE REPUBLIC OF MOLDOVA

Abstract: The implementation of the Romanian
Spelling-Checker is discussed. The structure of the
vocabulary and similarity word recognition are con-
sidered in more detail.

Keywords: natural language processing, lexical
databases, computational lexicography and lexico-
logy, grammar.

Svetlana Cojocaru was born in  Ribnitsa,
The Republic of Moldova. She graduated from the
Department of Mathematics and Cybernetics of the
Kishinev University in 1974. She obtained her doc-
toral degree in Computer Science {rom the Institute
of Cybernetics in Kiev (Ukraine) in 1982. Since
1974 she has been working at the Institute of Math-
ematics of the Academy of Sciences of the Repub-
lic of Moldova. Her present position is senior re-
search worker. Dr. Svetlana Cojocaru published
more than 30 scientific papers. Her research inter-
ests include formal grammars, compiler construc-
tion, natural language processing.

Mikechail Ewvstiunin was born in Korsakov,
Russia, in 1964. He graduated from the Department
of Mathematics and Cybernetics of the Kishinev
University in 1986. He also completed postgraduate
courses at the Software Department of the Sankt-
Petersburg University (Russia) in 1990. Since 1986
he has been working at the Institute of Mathemat-
ics of the Academy of Sciences of The Republic of
Moldova. His present position is research worker.
Mikchail Evstiunin published more than 10 scient-
ific papers. His research interests include operating
systems, compiler construction, natural language
processing.

Victor Ufnarovski was born in  Kishinev,
The Republic of Moldova, in 1955. He graduated
from the Department of Mathematics aud Mechan-
ics of the Moscow University in 1977. He obtained
his doctoral degree in Algebra from the Institute of
Mathematics of the USSR Academy of Sciences in
1981. Since 1981 he has been working at the Insti-
tute of Mathematics of the Academy of Sciences

Studies in Informatics and Control, Vol.3, No.1, March 1994

of The Republic of Moldova. His present position
is head of the Software Laboratory. Dr. Victor
Ufnarovski published more than 50 scientific papers.
His research interests cover computer algebra, com-
piler construction, natural language processing.

1. Introduction

To create a Spelling-Checker for the Romanian
language makes an interesting subject from dif-
ferent points of view. Being one of the highly
inflexional languages, the problem of compact
representation of its vocabulary is not a trivial
one. For example, even for a dictionary of 30
thousand entries, 1t s necessary that more than
300 thousand different word-forms ( the latter
will be referred as vocabulary, saving the word
"dictionary” for basic word-forms only) should
be stored. Taking into account the fact that
most of the computers now used in The Repub-
lic of Moldova have no more than IM of RAM,
it may be concluded that all the vocabulary (or
at least its main corpus) is to be stored on disk.
Of course, the problem of getting fast access to
the word-forms stored turns up.

Naturally, not only detecting spelling errors,
but also being able to suggest correct words is
a very topical problem. It would be nice to cor-
rect more than one mistake in a word, so, the
suggestion becormes a non-trivial problem too.

To formalize the problem, we introduce the
notion of binary decomposition of a vocabulary.
Special grammars’ formalisin will be proposed
to create a vocabulary.

The related problem of sunilar words, playing
an umnportant part in the suggestion, will be our
next subject.

The present approach has been made to the
Romanian Spelling-Checker, ROMSP, and some
implementation aspects such as increasing ef-
ficiency, reducing response time, internal data



representation and architecture, are discussed.

2. The Vocabulary Decomposi-
tion and Grammar

Let us suppose a vocabulary V', containing all
possible word-forms.

Definition 1 The binary decomposition of vo-
cabulary V into two sets of words (namely, roots
sel R and endings set E) and @ map f from R
to the set of all the subsels of E, salisfying two
conditions:

o for every rool r from R and every ending
e from f(r) the concatenalion re is the el-
ement of V.

o for every word v from V a decomposition is
possible: a root v from R and an ending e
from f(r) such that v = re.

Having V', R, and E, the possible map f may
be constructed taking as f(r) the set of all end-
ings e from E such that the concatenation re
be in V. One should nevertheless remark, that,
as we do not claim an uniqueness of the decom-
position of a given word, another map f for the
given V, R and E might exist. The problem
is how to construct a reasonable map f for re-
covering V from R and E, with minimum of
memory occupied (do remember: the images of
roots are sets of words!). Besides, the search
time for a given token in the vocabulary should
also be reduced .

If V is the word-form vocabulary of a lan-
guage, there is some hope that taking E and
R naturally (in a grammar sense, as they are
usually described in manuals, with suffixes in-
cluded in the roots), the above method leads
to a reasonable map. In this case, a list L of
all possible values of subsets f(r) will not be
so large (if compared with the size of V). So,
it will be sufficient to keep on list L, for every
root r, only the index of its subset f(r). The
memory capacity for the vocabulary will cover
two main parts: roots set £ memory (every root
index memory) and memory of possible sets of
endings for list L.

Given the type of decomposition, more than
one candidate to the possible roots (or endings)
can be found. To avoid ambiguity (and improve
access time), some restrictions should be made.

Let V be any set of words.

54

Definition 2 Let E be the set of words, includ-
ing the empty word. The set R = Rg(V), con-
sisting of the minimal left segments r of words
w from V, such that the corresponding right seg-
ment e (w = re) be in E, is named the roots set
for V relative to E.

It goes without saying that on selecting a
maximal right segment of w, a possible ending is
uniquely determined and only one root checking
will do.

We have suggested a decomposition of the
vocabulary into two parts. It would be more
reasonable to proceed directly on decomposing
instead of creating the full vocabulary and se-
lecting roots and endings sets later on. The ap-
proach below dawns upon the idea.

Let us consider a grammar rule:

[/]‘[#][NI]GIEGZ e -an-lg::l—aﬂ —

L | T —

ahay...a,_1bn_1a, Na,

where a; , a; are arbitrary words and either b;
is a non-empty word or the special symbol *
stands for b;. N; — endings set numbers. The
interpretation of this rule is as follows.

Let w be the word producing word-forms (ba-
sic word-form).

Every sign / indicates dropping the last letter
from w. The (after deletions) obtained word v
is considered to be a root (if Ny exists) and N;-
its index on list L of endings sets. In any case,
the word v should have the form

foarfrasfs .. an—1fa1anfn,

where every f; is arbitrary (possible empty)
word, not containing (fori = 1,2,...,n—1) the
veto subword b;. If there exists more than one
representation of this kind, the first one (scan-
ning v from the left to the right or vice versa if
the sign # is present) should be selected. The
special character  instead of b; admits an arbi-
trary f; .

After being substituted, the word
foayfia, . ..a, f, serves as a second (or first, if
N, is absent) root and N is its endings set num-
ber.

Note that the special (but frequently occur-
ring) case of this rule

(/17— Na,

gives the possibility of including v directly.

Studies in Informatics and Control, Vol.3, No.1, March 1994



Using these grammar rules, we can formalize
the process of creating the decomposed vocab-
ulary. According to the classification in [1], it is
possible that grammar rules for every group are
set up. Sometimes more than two roots emerge
and more than one grammar rule is needed.

Veto for b; depends on the position of the sub-
word a; to be substituted. It seems that for
the Romanian language, veto subwords can be
avoided (being only restricted by asterisks).

Example 1 Consider one group of masculine
nouns, as described in [1]. One represeniative
word of this group is the word ”ied” (a kid).
Let us tniroduce the notations for some mor-
phological features of the Romanian language:
N — nominative; A — accusalive; G — geni-
tive; D — dative; S — singular, P — plural, V
— vocative. Besides, the noun word-forms have
two different forms in Romanian: definile form
and indefinite form. Let us denote them by FD
and FI respeclively. Using these nolations, we
shall list all word-forms for the noun "ied” (the
declinalion faces the allernation "d-z”):
ied — NASFI or GDSFI,
iezi — NAPFI or GDPFI,
tedul — NASFD,
tedulut — GDSFD,
tezii — NAPFD,
tezilor — GDPFD or VP,
tedule — V§.

Here are two roots: "ted” with the endings
sel:

Ty = {-, ul,ului, ule},
and "iez” with the endings sei:
Ty = {4, ii, ilor},
and the grammar rule for the whole group:
Tid — 2 Ts.

Example 2 Here is the grammar rule for
words belonging to one of the most complicated
verb groups:

J# Tz axa—axa Ty

#axa—axe T;.

An equivalent form of this rule is:

Studies in Informatics and Control, Vol.3, No.1, March 1994

dadaa — aaea Ts.

where velo conlezls others than the slars were
employed.

Three roots are generated for this group
(for the sake of brevily, the three correspond-
ing endings sels are overlooked). So, for the
verb "ddrdpdna” (1o collapse), the rools are
"dirdpdn”, ddrapin”, "ddrapen”.

It is important that the actual list of possible
endings sets is not too large: the same ending
sets serve for different groups. For example, 100
different groups of masculine nouns use just 15
different sets.

The experiments show that 866 grammar
rules and 320 endings sets have been sufficient
for the Romanian language to realize the vocab-
ulary decomposition, using 312 endings.

3. Similar Words Detecting

It is well-known that every natural language
contains some irregular words (e.g. auxiliary
verbs in English or Romanian), which are excep-
tions to the rules of inflexion. As far as grammar
rules constructing is concerned, they are quite
unsuitable and sometimes, keeping every word-
form separately, instead of constructing rather
complicated rules, is to be preferred.

The question is how to determine the degree
of irregularity of the word-forms, and (provided
that it is not high) how to set up the corre-
sponding grammar rules. Answering this ques-
tion is sufficient for estimating the similarity of
two given words.

The possibility of determining the similarity
of two given words may be useful for different
purposes. For example, it is helpful to real-
ize the correct word suggestion when the given
word has one or more mistakes. But, even in
this case, different criteria operate. There may
be at least three different causes of mistakes:
mistakes arising from a bad knowledge of the
word (here similar words are those which sound
similarly); mistakes arising from scanner errors
(here similar words are those of which letters
look similar in a given alphabetic design) and,
at last, mistakes arising from wrong key press-
ing (here similarity depends on the arrangement
of the keyboard). As to the grammar rules, sim-
ilar letters are those which are essential for the

55



grammatical alternation (see ”d” and ”z” i Ex-
ample 1).

The similarity problem has been suggested
as liable to a separate two-fold solving. First,
the similarity problem-solving for letters only,
of which result is a similarity letters matrix M.
Given the purpose, this matrix can be filled in
independently (in our programs, by integers be-
tween 0 and 9).

The second task will be to identify an algo-
rithm capable of calculating the similarity de-
gree of two given words. A common solution
will be to assign this function a maximal value
if the words differ in at least one letter or in
one permutation of two neighbouring letters. In
other cases, the function takes zero values. (It
can solve the problem of one mistake and be sat-
isfactory for the simplest Spelling-Checker sug-
gestion).

In order to detect more than one mistake (or
to set up a graminar rule) more complicated
algorithms are to be employed. First of all,
let us consider the following variation of the
well-known algorithm for searching the maximal
common subsequence of the two given words v
and w (n and m long correspondingly).

Consider n by m matrix L, where by induc-
tion L[i,j] = max(L[i — 1,7],L[i,j — 1], L[i —
1,5 — 1] + M[v[2], wlj]]), and L[0, ], L[Z.0] are
considered to be equal to zero. Taking L[n,m]
as a similarity criterion, a rather good similar-
ity function (e.g. f(w,v) = L[n,m]/(n + m))
is obtained. Iowever, for the suggestion pur-
pose, this method cannot be considered as a
satisfactory one: it makes use of too many use-
less calculations. To tinprove it, let us restrict
our suggestion to a reasonable bound: a sii-
lar word should be found if the mistakes made
numbered but two. The possibility of correct-
ing three mistakes still remaing, but only n the
case of "natural” mistakes. This restriction lets
us construct only 5 diagonals from L[7, j] matrix
(where the difference between ¢ and j is at most
2, L[i,j] being zero in other cases). DBesides,
it is not necessary to calculate all diagonals: if
the values are too small, we should expect niore
than two mistakes and stop calculations. Ac-
tually, the main idea prevailed, even if the real
method was slightly more complicated (sugges-
tion should not be too talkative). To accelerate
the search, similar roots and sinilar endings are
looked for separately.

One last remark is that that instead of the

56

letter similarity matrix M, the corresponding
woid similarity tree could be used (it helps, for
instance, a more adequate display of the alter-
nation of a letter with several others, which is
typical of the Romanian language).

4. Implementation Notes

We will discuss some implementation aspects,
unless the morphological information is avail-
able. It should be taken into account that two
opposite objectives are aimed at:

1. to reduce the database volume;

2. to reduce the access time for achieving rea-
sonable work time.

Obviously, Lempel-Ziv, Lempel-Ziv-Welsh
packing methods and their modifications give
a good compress coefficient but they do not
liold in our case because of a long response
time. We have therefore decided on using se-
mantic information during the word packing
into a consistent hase as only this contains the
main words fund, of which volume is huge. Note
that compacting the size of database allows it
to be scanned more quickly for approaching
objective 2.

Consider the representation of a word in the
database.

UL|{NT S

[7L — length of a source word root (including
the first two letters ('] and C'2)

NT — valid termninations set index

S — common source word root for all termina-
tions in the pointed set (without C'1 and C2)

Figure  1: Consistent DBase Page

Elcment Structure

[t can be seen that a word is divided into three
parts:

. the first two characters saved separately
{this point will be discussed later);

2. the rest of the root;

3. the set index of valid terminations for this
root.

Studies in Informatics and Control, Vol.3, No.1, March 1994



The UL field contains the length of the root
in characters including C'1 and C2. The root §
is saved in a special encoded form. Thanks to
the possibility of calculating the encoded length
from the source one (this is irreversible), we use
the source words length opposed to the encoded
word length.

This field is used for an effective word search.
There is no need to compare words when their
length is different. It spares a very large string
comparison. In case the length and the root are
the sdme, we have to find out whether there is a
source word termination in the set pointed out
by field NT. The user’s base has been subject to
an oversimplification. The word is not divided
into a root and a termination either.

UL|ST

UL — length of a source word root (including

C1 and C2)
ST — encoded word without C1 and C2

Figure 2: User’s Base Page Element

Structure

The size of the element for the word is limited
and consistent. So, the following three cases are
possible: the size of a word

1. is equal to the element size;
2. is less than one;

3. is greater than one.

The first case is the ideal case. The second
case presents an unused memory. This is not
very efficient, but it does not matter after all.
The third variant is the most complicated one.
The remaining of the word which is not con-
tained in the first element will overlap the next
one. So, we must be able to make the distinction
between the beginning of a word and its contin-
uation. For this purpose we shall consider the
structure of a page.

The first field will show how many roots are
stored on the page and the second field will show
how many elements are occupied by the roots.
Pages as well as elements have a fixed size. So,
it is possible that an indexing file should be ac-
cessed directly by the page number. Hence we

Studies in Informatics and Control, Vol.3, No.1, March 1994

NLE{NBE|CLC2| i |I3]|... |In| E1| E2

En

NLE — logical elements quantity

N BE - physical elements quantity

C1,C2 — the first two characters of each word
on the page

I; — indirect indexed vector

E; — page element

Consistent and User’s
Database Page

Figure 3:

get fast access only by means of an operating
system.

The next field keeps the first two characters
of all the words saved on the page. This al-
lows for saving some memory without any loss
of efficiency. Vector I; was introduced for sim-
plifying both the database modification and the
acquisition of new words. Using this vector is
to distinguish between the beginning of a word
and its continuation. Using it as an indirect ad-
dress map sets out the lexicographical order of
the elements. A direct element indexing is pos-
sible due to a fixed element size. Summarizing
the above, we can use binary search methods.
Note that such methods allow for both effective
searching and words’ acquisition. As known, if
there are N elements, we can find out the nec-
essary one by log2(N) comparisons. Suppose we
have W words in the database and P words on
the page, then D = log, % = log, W — log, P
disk access is needed. Hence, by minimizing pa-
rameter D, the time of access to the database
is smaller. The following method has been de-
veloped. The first word on each page is stored
in the special table named HASH-table.

The size of this table will be of D elements.
By controlling P we can altogether bring the
HASH-table in RAM. Since the pages of the
consistent base contain word roots, the volume
of pages will grow. A binary search applied to
HASH-table makes the page possibly contain-
ing the searched word be spotted. Once the
page read, we become aware of its containing or
not the necessary word. Thus, D is reduced to
1 (i.e. there is only one disk access). The fol-
lowing database general structure is obtained.

57



Hy|Hy|...|H,

H; — table element

SA|NP

SA — word in ASCII code, the first on the
pointed page
NP — page number in the database

Figure 4: The HASH-table Structure

H, 0 Py
Hz P:l
Hn-l \ Pn—-l
s — Py

Figure 5: The General Database
Structure

Efficiency has increased when using the fol-
lowing method. The most frequently used words
have been separated in a database under RAM.
Its structure is shown in Figure 6.

Figure 6: Database Structure of the Most
Frequently Used Words

58

Ly | Li2 Wy
Ly | Lo —~_| W2
Lin-11{Lm-12 Waoi
Lml Lmz Wn

Using words length and array L,;, a HASH-
function minimizing the operation number of a
binary search, results. All words are represented
in ASCII code because of the rather small vol-
ume of this database.

As a conclusion, we make an evaluation of
ROMSP. All measurements have been made
on IBM- PC/ AT- compatible computers —
12 MHz, 40 MB HDD, 28 msec average seek.

e Searching speed — 70-100 words per sec-
ond;

¢ The volume of the database containing
about 330,000 words (3.6 MB) is equal to
700 KB;

¢ The ROMSP software volume — 300 KB;

¢ Programming language — TurboPascal.

REFERENCES

1. LOMBARD, A. and GADEI, C., Diction-
naire morphologique de la langue rou-
maine, The Academic Publishing House,
Bucharest 1981.

Studies in Informatics and Control, Vol.3, No.1, March 1994



