Beyond the Object Oriented Analysis

Luca Dan Serbanati
Freelance consultant in informatics

Via Piero Foscari 40, Pa. A, Sc. C, In. 10
00139 Roma
ITALY

Abstract: Developing a computer-based system s
cssentially a transformation process of a conceptual
representation emerging from the user’s informal requirements
into an operational system. As known, the user's requirements in
the early phases of the system development are imprecise,
incomplete, often inconsistent or partial wrong, themselves in
evolution. The impossibility of having from the start an accurate
description of the user's application universe is mostly due to the
analyst's particular universe of discourse in which the user
recognizes with difficulty how his or her real and future systems
were mapp=d. It is visible for the last two decades a permanent
tendency of approaching the analyst universe to the user's real
world. It is very true that the object-oriented (OO) approach
brought nearer the two points of view, but the OO paradigm is
still too general or abstract to be easily operational for non-
professionals. Moreover, the OO paradigm is inadequate for many
business applications or at least for some components of them.
That is why, to improve the impact of the OO paradigm and to
tune its undoubted breakthroughs in analysis, more nuanced QO
analysis methods are needed.

The paper introduces a method of system analysis for eliciting the
requirements and functionalities of systems in the early stages of
system development life cycle. The method is aimed to bring the
analyst's universe nearer to the user. It differs from them in some
premises and in their argumentation as well as in requirements
specification languages.

Keywords: System development life-cycle, analysis method,
structured analysis, object oriented analysis, conceptual approach,
conceptual decoupling of concerns, object facet, facet cluster,
algebra environment, DFD, ERD, STD.

Luca Dan Serbanatl received the M.Sc. degree in Process
Control from the Polytechnical Institute of Bucharest in 1966,
the M.Sc. degree im Mathematics from Bucharest University in
1972, and the Ph.D. degree in Computer Science from the
Polytechnical Institute of Bucharest in 1980, He has taught for
20 years at the Polytechnical Institute of Buchatest courses in
theoretical informatics, programming languages, compiler
design, and software engineering.

Since 1990 bhe has been working in Italy as independent
consultant in informatics providing software products for
industry, consulting and training in computer programming,
system analysis and design, software house organization,
and software technology migration to industry. He is author
of the monography Programming Languages and Compilers
(Romanian Academy Press ,1987) and of several textbooks
and lecture courses in informatics and computer
programming. His latest book titled Integrating Tools for

Studies in Informatics and Control,Vol.3,No.1,March 1994

Software Development is on the software process modelling
and software engineering environments and was published in
1992 by the prestigious Yourdon Press Computing Series. He
is curmently interested in formal models and curricula in
software engineering,conceptual-oriented system analysis,
object-oriented software technologies, and CASE tools. He is
member of IEEE,ACM , and IEEE Computer Society.

I. Introduction

Developing a computer-based system is
essentially a transformation process of a
conceptual representation emerging from the
user's informal requirements into an operational
system. During this process, transitions from the
user's real world to that of the computer and from
there backwards in the real world are needed. But
the two universes are so far apart from each other
that such straight transitions would be abrupt and
unexpected in their consequences. That is why all
system development life cycle models suggest
intermediate conceptual universes to be smoothly
crossed. According to various methodologies the
development process and the project itself should
cross, one after another, such universes as:
informal requirements, functions, data structures,
algorithms, and programming languages.
Throughout these transitions, the developer
should bear in mind and continuously refine the
user's requirements specification which describes
as accurately as possible the application universe:
that imaginary (often visionary) world born in the
user's mind and aimed to be the solution for the
user's present problems. All subsequent
conceptual universes should maintain straight and
permanent links with the user requirements
specification, in fact mappings between the
deliveries of the intermediate stages of the
development process and the user's requirements.

59

During the last décade, to the two previous main
objectives of any methodology: how to manage the
universe transitions and how to conserve the user's
requirements semantics throughout the
development process, another objective, obvious
for any engineering technology, was added: how
to reuse already existent components in the new
system.

As known, the user's requirements in the early
phases of the system development are imprecise,
incomplete, often inconsistent or partial wrong
themselves in evolution. The impossibility of
having from the start an accurate description of
the user's application universe is mostly due to
the analyst's particular universe of discourse in
which the user recognizes with difficulty how his
or her real and future systems were mapped. For
the user, the application universe consists of
images, sensations and much acquired practical
knowledge about real things, beings, events, and
their relationships. The analyst works with
collections of data flows, data files, system states,
entities, and attributes. Where the user is
accustomed to view automated and manual
operations or certain activities able to accomplish
a certain behavior of the system, the analyst finds
functions, state transitions, processes, services, or
methods.

It is visible for the last two decades a permanent
tendency of approaching the analyst universe to
the user's real world. It is very true that the
object-oriented (OO) approach brought nearer the
two points of view, but in our opinion there are
other steps to be taken. Many users find the OO
approach too flat, still far away of their
application universe. The OO universe uniformity,
which is so important for the analyst, is precisely
what bothers the user. In other words, the OO
paradigm is still too general or abstract to be
easily operational for non-professionals.
Moreover, the OO paradigm is inadequate for
many business applications or at least for some
components of them, While it matches perfectly
the wuser interface prerequisites, for other
components as database management and process
control it is less suggestive and less efficient than,
for instance, the transactional approach. That is
why, to enhance the impact of the OO paradigm
and to tune its undoubted breakthroughs in
analysis more nuanced OO analysis methods are

needed. These methods should also incorporate
many aspects of the conventional analysis
methodologies. Valuable approaches (see [1], [2])
could be found in many recent research works.
The paper introduces some ideas aimed to bring
the analyst's universe closer to the user. The
approach is based on our research work on the
software process modeling done in the last '80s
[3]. This work has shown us how poor is our
analysis workshop when the application universe
is complex, as the software development process
is. The method we have used for software process
modeling is similar to other methods and
methodologies emerged last years. It differs from
them in some premises and in their argumentation
as well as in specirication languages aimed to be
used by analysts together with well-known
analysis tools like data flow diagram (DFD),
entity-relationship ~ diagram (ERD), data
dictionary (DD), Petri nets (PN) and state
transition diagram (STD).

In Section 2 the method paradigm is introduced.
Section 3 discusses the method steps and
illustrates by means of some examples how the
method addresses the specification language.

2. The Basic Model

We consider a computer-based system as several
agents (people, organizations, computers, physical
or abstract data processing devices) performing a
variety of activities (sorting, monitoring, 1/O,
controlling, etc.) that act upon the system objects
(raw- materials, intermediate forms of the final
product, orders, alarm events, peripheral relays,
product documentation,etc.) eventually using
some specialized tools so as to accomplish the
system objectives (Figure 1). In this framework
four entity types evolve:

e object = a passive entity used and/or modified
by other entities;

e gctivity = an entity able to change the system
state usually by object transformations;

e agent = a system entity able to carry out one
or more activities according to its skills;

e tool = a specialized activity which is carried
out by specialized agents and aims at
satisfying object processing needs of several
activities.

Studies in Informatics and Control,Vol.3,No.1,March 1994

ral ‘
emulates !‘ "* {
performs

A’g ent oy Aétik‘?f.y

uses acts upon

applies_to

Tool * Object
A Y A Y

subcunimctsf " [:
\ / s

e RS

Figure 1. Conceptual Schema of the System
Entity Types

The paradigm was suggested by engineering
environments where entities involved have various
roles: raw-materials and various product
intermediate forms, prescribed technological
activities, workmen, and necessary tools. One
could note that some entities change their role
when the environment changes: a workman
becomes an object when acquires new skills, an
activity becomes a simple tool in an automated
environment, an inactive processor becomes an
agent when it receives a program for execution,
etc. Moreover, when the entities are complex, by
refining steps, that is knowing more about their
structure or functioning, their role in our mind
modifies. It is possible that such an entity
becomes a system in itself. A complex instrument
becomes a collection of parts and tasks carried out
by each part, a factory could be viewed either as
some people doing specialized activities or as an
activity that processes some raw- material, and so
on. The two views are complementary and both
are valid. That is why we have to precisely
delineate both the environment in which we are
interested and what we want to consider or know
about the system under analysis.

As known, during analysis process, more
conceptual levels of various refinement degrees
should be outlined. All entities the analyst

Studies in Informatics and Control,Vol.3,No.1,March 1994

"‘ activates
/

'If includes

identifies for bringing together must belong to the
same conceptual level. An entity belonging to a
conceptual level should:

e preserve both its responsibilities and its
interfaces with other entities throughout the model
functioning;

e have its internal structure and functionality
unknown or irrelevant to the momentary concern
that has delineated the conceptual level.

These two conditions are important for stabilizing
the characteristics of the components belonging to
any conceptual level of approaching the system.
When they hold, it is much easier for the analyst
to classify system components according with the
user's preferences and intuition in one of the four
entity types.

Although agents and tools are important entity
types in our method, in the following we
concentrate on objects and activities.

2.1. System Objects

2.1.1 Views on System Objects
The view we propose on objects is in many aspects
(encapsulation, inheritance) similar to the 0O
view. The object concept is a means for more
accurately modeling the application universe, but
only certain entities that populate this universe are
objects according to our approach. Although tools,
agents and some aspects of activities could be
objects according to the OO approach, we claim
that it is important to differentiate among the roles
of various components in the application universe
and then, in the user requirements specification.
This way, in the system formal specification we
may introduce concepts belonging to the user's
application universe keeping the analyst
specification near to the user's view of the system.
In our approach the analyst also benefits from
more flexibility in specifying and manipulating
objects. Figure 2 hints at our approach to objects.
According to the analyst momentary interest there
are two views on objects: the user's view and the
designer's view.
The user’s view introduces an object entity to other
entities at the same conceptual level. This view
has two sections:
® operations: functions evoked from the object
environment and aimed to modify or only to
inform about the object state;

61

. finks: relationships with other objects
situated at the same conceptual level.

The designer's view opens the door to the internal

structure and functioning specification, and thus,

to refinement operations. This view has three

sections:

e atfributes: simple properties of the object;

e facets: clustered models of the object;

e constraints: predicates on attributes and
facets.

A simple object could be completely specified

using some attributes. More difficult is to describe

complex objects such as large structures or

environments, highly structured files, or modern

machines. To master these objects and their

evolution one must resort to a concept that we

found especially wuseful in modeling: facet

clustering.

f Constramts ™

e
& N
7 3
{ i
| /

Desi s vi Attiibutes

o s view e

eSIZNEr's view v
!

.
r"
@ @

®
kOp erations

User's view

Figure 2. A Hint of the Object Concept

2.1.2. Facet Cluster

It is known that human knowledge is model-
oriented. Our mental representation of a real,
known object is strongly shaped by some
metamodels or paradigms we know and which, at
that instant and for some reason, we associate
with the object. As a rule, a metamodel is a
systemic view of a class of otjects, a generic frame

62

that represents the object (and many others
similar to it) as a structure made up of interrelated
components, themselves objects to be modeled.
Initially, when we learned or saw for the first time
the object, or later, when we had to update our
knowledge of the object, these metamodels were
confronted with some essential properties of the
object and, if they matched these properties, they
were instantiated in such a way as to precisely
become models of the object.

Of course, in the modeling process we neglect
some aspects of the object, retaining the most
relevant ones from a certain point of view or at a
certain abstraction level. If the object is
sufficiently complex, one may create "multiple"
models of it. Once relevant aspects are pinpointed
in several models, the models may be studied and
modified independently and more easily than the
original object. These models can be compared
with the facets of a spatial object: from a point in
space we see a facet of the object, from another
point, another, different facet, and so on. When
we analyse a real object, we study it only through
the facets we know. When we synthesize or design
a new object the only tools we can use for
verifying if it matches some essential properties
are the facets brought together to build it. Among
facets there should be all models of the object that
may be useful to other system entities in order to
study, modify, or dialogue with the object. If the
facet set is complete, that is all useful views on the
object were identified by the analyst, the set
represents the object itself. Even if the object is
more complex and other views on it are possible,
they are not useful for analysis. We shall use the
term facet to designate such a model of a complex
object.

Since the models underlying facets are to a certain
extent independent, each facet becomes a separate
object (a subobject of the original object) that can
be studied. If the model is complex, it is
multifaceted too; its facets may also be
multifaceted objects; and so on. Thus, model-
based multifaceting of objects leads us to a
hierarchical decomposition of them. The
subordination of subjects to their superobjects
represents a refinement relationship and is
essential for describing objects of high complexity.
Of course, such a hierarchy must have terminal
objects: the subjects without a relevant internal

Studies in Informatics and Control,Vol.3,No.1,March 1994

structure (only their attributes are sufficient for
specifying them).

For identifying an object's facets we have already
presented a possible criterion: how the object is
viewed, used, or modified by other entities in the
system. Guidelines to analysts could be defined
the criterion of identifying three levels almost
ever relevant to approaching each facet. The first
level, the deepmost one, called semantic grasps
the meaning of the object expressed in various
ways as: the activity the facet evokes (for instance,
when the object is an activity plan or schedule, or
when it represents a process description), a
mathematical expression, or a simple comment
describing the meaning the analyst intends for the
object. The second level, which we called
structural, captures the essential structure of the
facet. It enters the object components in some
standard, high-level structuring relationships as:
sets, arrays, records, lists, trees, graphs, etc. The
third level, we called it textual, captures the
external presentations of the object, that is those
graphical images or alphanumeric texts based on
which the user will identify the object on the
display screen or in a document. The textual level
usually refers the structural facet for some
essential information, for mapping it in graphical
symbols, windows, icons, various drawings, or 2-
D or 3-D graphical relationships. This additional
information makes the object presentation more
readable, more manageable, or more suggestive.
Although a detailed description of the external
presentation of the object is a later task of
designing phase, the main traits of the user
interface of the system and the user's constraints
on this interface should be early expressed in the
analysis delivery. In the level hierarchy we
consider the structural approach as central: it
contains only essential information liable to be
formalized. The other two levels usually refer it.
As already stated, it is possible that one or several
users may have different views of the same
object, due to different occasional interests,
structuring criteria, or levels of concern. It is
worthy for an analyst to capture all facets that are
relevant to the system functioning from the user's
point of view. Because all these views refer the
same object, it is obvious that the object facets
should be clustered together by some relationships
and consistency rules or procedures such that
when a facet is modified, all the others will be

Studies in Informatics and Control,Vol.3,No.1,March 1994

automatically updated. We consider the facef
cluster as the most suitable schema for modeling
system objects at the analysis time. Each facet in
the cluster is a mode! of the object that the cluster
represents, an insight into that object.

2.1.3 Object type hierarchy

Beside encapsulation, in order to re-use the system
entities, our method supports classes and
inheritance. In our approach, an object is an
instance of an object fype and has all properties of
that type. The instances of a type are distinct, that
is they have proper identity, beside common
properties. A type is a description of (both
behavioural and structural) properties, a set of
objects evinces. The collection of all instances of a
type, available after a while, is the class of that
type. The content of such a class may vary during
the system functioning. A class may contain
several subclasses of objects, specializations of the
class. The objects in a subclass have some
identical properties with those of the objects in
the other subclasses. These properties are
inherited from the class properties. But the objects
in a subclass may also have different properties
corresponding to the subclasses they belong to.
However even if is_a is a fundamental
relationship of object orientation, it is less useful
for analysis than for design and implementation
phases. At analysis time it is too early to have a
complete is_a hierarchy of objects.

2.1.4 Object Interface (User's view)

The object interface is more relevant at different
times than the object structure. It includes
information on how the object acts as a whole. In
our approach the object interface includes object
operations and links.

The operations are object state transformers. An
operation is characterized by its name (the
operator), its arity, that is its number of operands,
operand types and the result type (if any). The
operations could change the attributes values or
facets, or verify that some conditions hold in the
object state. The operations are also means for
introducing into an object transformational
capabilities that are ftypical to activities. For
instance, a finite-state machine approach could be
used in object specification: the object with its
attributes and facets is the state repository and the
operations are the state transformers.

IAttl'iblltes } characterizes
Facet models
@ acts_upon l
EE relates_to l@h}e'ct e Ty Class
@ e bl belongs_to

Figure 3. Conceptual Relationships in Object
Modelling

Interobject /inks are binary relationships, that is
sets of object pairs: an object for each role of the
relationship. They specify how the objects of one
type could be logically related to objects of another
type. More formally we consider that the link is
anchored in the first of the two types and could be
specified by: its name, the linked object type and
the cardinality of each role in the binary
relationship. The cardinality of a role means the
minimal and maximal number of occurrences that
an object belonging to the role type could accept-
in the link pairs. Expressions as: "0,*" (any
number of objects are linked), "0,1" (at most one
object is linked), etc. could be used for specifying
the cardinality. Often, for an identified
relationship its inverse relationship exists, too.
Figure 3 summarizes the various conceptual
relationships concerning an object type.

2.1.5. Object Specification

In the early stages of analysis all the information
about objects is to be gathered in object forms like
those in Figure 4. Most sections in this form are
optional. Initially, some of them are to be filled
with sentences in natural language. Then, they
will be gradually formalized and refined. All
subsequent versions must be preserved. During

analysis similar objects should be gathered in
classes. As in the OO paradigm, a class specifies a
collection of objects with the same structure and
behavior. Classes are specified in type forms much
similar to the form in Figure 4. When a new class
is introduced most of the object forms addressing
the objects into the class could be abandoned.
Classes could be further classified in superclasses
and so on. The class hierarchy is represented by
the is_a fields of the type forms. The structure
and services of an object are those specified in the
type form of its class plus those inherited from the
class superclasses. A CASE tool for classes and
versions management is obviously assumed.

Facet fields address another hierarchy. They link
objects with their subobjects. As already stated,
the facets in the object's cluster are conceptually
bound together by their belonging to the object
definition. As a consequence, along object-
subobject links each subobject inherits constraints
and/or updating procedures from the originating
facet. They should be added to the Constraints
section of the subobject form.

ORCT SPECIFICATION FORM

Version: Date: Owner:

Type: Is_a: Class:

\rtribures

Name Deseription

Facets

e 1 B 5
Foxtual Structaral Seneetie

Constraints

Operations

T
Nanu- Parometers ftesult

Links

Noure Nome Target

Figure 4. Object Type Specification
Form

Studies in Informatics and Control,Vol.3,No.1,March 1994

In the Links section the objects related to the
object are listed. On the left side (Source list) the
objects that are anchors in their relationships with
the object are included. On the right side (Target
list) the objects that are in relationship with the
object but are not anchors are included.

The Operations section includes the services the
object should carry out. Formally, services are
functions with parameters and result. The
parameters can be external (events or
"collaborators" which the object is related with by
links) or internal (attributes, facets). The result
could be a simple value, an attribute, a facet or an
event.

2.2. System Activities

In the following the activity entity concept is
examined. In our method the term "activity" is
given a very general acceptance, including
connotations of other terms as action, operation,
or process. An activity is doing something easily
identifiable as a notable event in the system life:
state transformation, I/O actions, monitoring or
controlling signals, etc. An activity is useless
without one or more agents able to execute it. It
and its agents enter the same relationship as a
process and its potential processors do.

An activity is embedded in an environment, which
is an activity in itself, specialized in service
support and resource allocation for all the
activities using it. To accomplish its task an
activity may use other activities. Thus, there are
two activity hierarchies: a functional one and
another one of resource allocation and service
support. Each activity has its space of states,
mainly consisting of the objects it uses. Any
activity may communicate with the others in the
same environment to either synchronize their
activities or transfer data thanks to a
communication mechanism provided by the
environment.

Any activity has a dual aspect: descriptive and
operational; it is first of all planned, described,
and then, executed. Even if a proper description
lacked before activity execution, a rough sketch
of it no doubt took shape in the agent's mind.
That is why the two sides of the coin always exist;
the activity description and the processes carrying
out that description. So, we can talk about an
activity type and its instances. This is precisely the

Studies in Informatics and Control,Vol.3,No.1,March 1994

 hpur
. objects

Environment l

classification relationship that exists between an
object type and an instance of it. The analyst
should identify the system activities, classify them
into types, and specify them in an
implementation-free manner.

Our activity model has two parts: a static one and
a dynamic one. The sfatic part encapsulates
attributes (name, access rights, environment, etc.),
agent types, used tools, and objects the activity
uses or modifies.

Export
L Bvents

Figure 5. A Hint of the Activity Concept

The dynamic part includes aspects related to the
activity execution: control flow, dynamic
constraints, and exception handling specification
(if any).

Figure 5 presents a hint of our activity entity
concept. An activity processes some input objects
and outputs other ones. To carry out an activity, a
precondition must hold. After activity execution a
postcondition holds, too. Activity execution may
be motivated by the occurrence of some external
events and during its execution events arising
from the activity could also occur.

A form for activity specification is presented in
Figure 6. Initially, it is likely that the form
sections are filled with phrases in natural
language. Then, a more formalized language
could be gradually introduced, until a complete
formalization is achieved. In this form one could
insert graphical representations as DFDs, STDs,

PNs aimed to render the specification more
readable. These representations could also
comment on the language that accompanies the
method. In any way the analyst should come to an
agreement with the user on the formal tools for
expressing analysis information.

ACTIVITY SPECIFICATION FORM
Name:
I'vpe: Version:]I).'nc:]()\\ ner;
Artributes
N {eseription
Objeets
IN aovT
Neme Tvpwe N Tvpw
Agents Tools
Neme Tep Name Tvpwe
FEvents
INPORT EXPORT
Nt foast Frent Noame Event Fyp
Constraints
PRECONDETTON POSTCONDITION
Prodicate redicate
Transitions
x.]l“'
RO TO 13 o
Stiter Nurine Steeter Nvonnine Comdition Aetion
lixeeption: Stode Nitine Conddirion \efton

Figure 6. Activity Specification Form
To specify the control flow in activities, a finite-
state machine (FSM) approach was chosen: the
user should identify some stable states in the
activity progress and describe all possible
transitions between these states. As Figure 6
shows, there are four fields for “Specifying
transitions: the source and target states, an IF

condition and a DO action. Transitions are
enabled only if the IF clause holds. The IF clause
tests objects belonging to process state and can
include when event-based expressions. If a
transition is allowed, subactivities and operations
specified in the Do action are executed. To exit an
activity a target state has to be reached. We
consider activities as transactions, that is the
objects involved in an activity are modified only if
it succeeds. If during their execution something
wrong or unexpected happens the Exception
section is activated and out of several actions only
one is selected. The first If clause that holds
selects the action to be executed.

3. System Analysis Mecthod

3.1. The method strategy

In the following the analysis method steps are
briefly covered. Examples are drawn out from the
requirements specification of a security system of
the protected area of a nuclear power plant. A
description of the system is found in Appendix A.
Other, more complex examples are presented in
3]

The method strategy is quite simple:

The analyst should try to better Lnow the
application as the user sees it. An effort is then
necessary for transferring the user's application
universe in the method terms,while identifying
and describing the main components of the model.
Finally, an iterative refinement process completes
the analysis.

With the delivered specification one could go on
designing and then implementing it with some
conventional methodology (for instance, with the
structured design method [4]). But there is some
other way, perhaps more promising, to future
research. Because of its high conceptual level of
approach, the final specification is suitable to
being transformed into an object-oriented
specification [5, 6]. We tested this way and the
result was satisfactory. Moreover, important
elements of the conventional, process-oriented
methods are present in our analysis method. They
could be benefited for obtaining a mixed
specification, perhaps the best solution for many
application problems. Many graphical tools used
by structured methods (DFD, ERD, STD, etc.)
could also be wused to make the information
contained in various sections of our specification

Studies in Informatics and Control,Vol.3,No.1,March 1994

language more readable. Redundancy (if any) is
not critical in an analysis.

3.2. Identifying Events

Our claim is that an event-driven approach
similar to that made in [7] is the best one in the
early stage of analysis. From our interviews with
users, we have noticed that the scenario for the
future system's behavior is always centred upon
event occurrences and the manner the system
maust respond to various events ("When I query ...
the computer should display ...", "When an alarm
occurs the video matrix must couple automatically
thercamera ... with the monitor ... and with the
video sequence ...", "Each day, at 00h:00m:00s
the system configuration should be updated",
"Peripheral devices should be monitored at a rate
of max. 500 msec.", and so on). Rough narrations
about what has the system to do and when should
it be accepted as first schemata of the system
specification.

3.3. Identifying Main Components
The analyst conducts the user questionnaire for
explicitly identifying in his or her scenario the
agents and their main activities and for collecting
them. As result, it is likely that external systems
emerge and communicate with the system as well
as with the main functions of the system. It is also
likely that the main objects emerge as entities that
are used or modified by activities. A linguistic
analysis of the narration in order to identify
subjects, actions, and objects of actions is useful in
defining the main entities.
A good idea is to make the user view the upper
conceptual level of the system behavior as a finite
state machine where the machine states are the
main activities of the system. This metamodel of
behavior is useful in analysis because it is very
general and within anybody’s reach . On this
territory users and analysts may have a great
opportunity for converging their points of view.
Such a diagram is presented in Figure 7. The
activities resulted from the user's view focussed
on (and guided) system states or functioning
regimes:
¢ dialog state, when a user's command or query
is expected;
¢ alarm state, when an alarm event has been
identified and the system must display the

Studies in Informatics and Control,Vol.3,No.l,March 1994

* o failure state, when

map and the intervention procedure, couple a
camera with a monitor and eventually a video
sequence,- and drive a relay or an action
sequence;

a device failure was
declared’ and the system must react similarly
as in the alarm state;

s programming state, when the communication
with the peripheral devices is off-line and the
system configuration is modified, with some
of its components, etc. changed.

Each state is viewed as an activity that the system

executes until an event ends the execution (for

instance, the alarm approach by the user puts an
end to the alarm activity) or brings it into a new
state for the execution of another, more urgent
activity (for instance, an_alarm or failure event
brings the system from the Dialog activity, the
default activity of the system, into the Alarm or

Failure activity). While the Dialog and

Programming have a single instance (the system

is mono-user!) which is suspended when other

activities enter the execution, all other activities
could have more instances at a time (more alarms,
more failures, or more queries to databases).

Figure 7 captures this functioning.

Figure 7. System Main States (Activities)

67

An initial ER-like diagram using the relationships
shown in Figure 1 and involving the identified
entities must also be drawn. The external entities
should be marked on this diagram.

Before leaving this step a re-analysis of all entities
derived from the initial, rough scenario is
necessary for once for all fixing their nature. This
task is not simple because, as already stated, the
nature of entities involved in a system is
fluctuating with the conceptual level the user
approaches the system. Tuning the right
approaching level for identifying the nature of
system entities is the most demanding task the
analyst must face at this step of analysis.

Often, in complex systems, there are activities that
support and manage several subactivities
supplying them with their local resources (objects,
tools, agents). Such an activity that we called
algebra [3] behaves in respect to its own objects
and activities as a large "umbrella" protects
several people isolating them from external
interferences. An algebra is an environment where
several activities evolve around some clustered or
closely related objects. The concept is useful for
modeling large phases or subprocesses in the
system's global activity. In algebras activities
could be easily combined in larger processes
evolving sequentially or concurrently. Considering
each algebra as a large environment supporting
objects and activities is a good idea with a view at
decoupling the system main components.

3.4. Specifying Entitics

Within the general framework presented so far, a
formalism is introduced to more accurately specify
the details. Such a formalism should address the
concepts the method uses. In the following, some
hints about facets and activities specification are
given. To illustrate our approach, specifications
are provided in Appendices B and C for an object
and an activity.

Although analysts have their taste preferring to
come up with either the static parts of the
application universe (the objects or data) or the
dynamic ones (the activities or processes), it is our
opinion that the specification should evolve
concurrently at the same conceptual level for all
components. Conserving the same level of
abstraction until its complete analysis is over is a
condition of coherence in the approach and a test

of the problem understanding. This tactics is valid
for the upper levels. Then, at the lower levels, an
in-depth work could be a good idea especially for
critical components.

3. 4.1 Object Specification

To specify object facets, the analysis method

should provide a language or a graphical

representation for describing:

e high- level object structures such as: set, list,
table, tree, or graph,

o navigation mechanisms for each structure
type, and

e primitive basic objects such as: integers,
strings, symbols, but also simple objects
belonging to the application universe without
a relevant internal structure.

An effort should be considered for carrying out the

object types. Supertypes may be introduced when

object types manifest similarities, However, such

generalizations are not compulsory in this stage of

analysis because they might obscure some useful

aspects to be revealed during analysis.

Appendix B shows an object type, SensorGroup. It

represents objects that are made up from simpler

objects of the Sensor type. The sensors in a sensor

group are viewed either acting as a whole in a

single set or acting as two sets: connected and

disconnected sensors. These were the only facets

identified in the user scenario for the system

behavior.

3.4.2 Activity Specification

Beside some features common to all specification

languages, we considered the following primitive

components for activity specification:

e Basic operations, represent application-
oriented object transformations without an
internal, relevant to modelling purposes
structure;

e Support operations belong to some general
mechanisms supplied by the environment
activity for: object manipulation (create,
delete, fetch, store), activity activation
(exccute, wait, cancel), activity
communication and synchronization (send,
receive), exception handling (save,
restore), event processing (when), user
interface operation (read, write, query,
report),

Studies in Informatics and Control,Vol.3,No.1,March 1994

e Operators permit specification of expressions
and control structure, Among them, the most
important ones are: logical and arithmetic
operators for expression building, and
sequence, decision, selection and iteration
operators for control structuring.

In Appendix C the Alarm activity is presented.

Alarm has an input parameter: the object that

signalled the alarm event. The temporal co-

ordinates of the alarm event occurrence are stored
in the Attributes section. During Alarm evolution
instances of some subactivities are created and
executed. They are listed in the Subactivities
section. The Transitions section introduces two
transitions: EXITING and ACTIVATION, and
three states: INIT, EXIT, WAITING. The first
two are predefined. Transitions are enabled when
the user enters DEL and ENTER commands

(here, simple key strokes) (Figure 8). During

transitions, instances of new activitics are created

and executed, and others are made expire.

Activation Exiting

Figure 8. State Diagram of the Alarm Activity

3.5. Adding New Components

The initial scenario must be repeatedly confronted
with already identified components. Each time the
scenario is "re-played" at lower conceptual levels
the need for introducing new components (new
roles in the system!) is likely to occur. For
instance, in order to describe how the Alarm
activity will process a video sequence (a cyclic list
of monitor-TVcamera couplings) or an action
sequence (a list of relay switching actions) when
an alarm occurs, two new activities could be
introduced: TVCouple Management and Output

Studies in Informatics and Control,Vol.3,No.1,March 1994

Management. TVCouple Management is an
activity that expresses what happens when a
request for a video sequence arrives. Firstly, an
instance of the TVCoupleManagement is created
and activated. This instance controls a cyclic
sequence until a request for ending the activity
emerges (usually when the alarm processing
having generated the initial request ceases its
activity). An instance of the same activity could
be re-used in other activities, for instance in a
Dialog activity when the user can produce a
command of coupling a monitor to a video
sequence. Such refinement operations should be
repeatedly executed until simple, unstructured
actions are obtained. A similar approach is valid
for objects.

4. Concluding Remarks
The paper has examined a conceptual approach to
system analysis meant for making the
requirements specification more understandable
from the user's point of view.
The approach identifies in any system four
categories of entities: objects, activities, agents,
and tools. The paper has concentrated upon
objects and activities. The conceptual view of
these entitiecs was advocated. A formalism for
their specification was proposed.

Although ihe paper style is pragmatic, much work

was invested in laying a theoretical foundation of

this approach. More about this topic is found in

[3]. Much further research is needed, too. This

research should:

* claborate new criteria for classifying the
system components in the four categories;

s consolidate the set of primitives to be used in
specification;

o derive global information on the system
behavior from the system requirements
specification;

e clarify the relationships of the method with
other analysis methods (or methodologies),
given that a mixture of models, techniques,
and formalisms originating in various
methods is the option of most today analysts.

69

70

REFERENCES

1. WIRFS-BROCK, R.J. and JOHNSON, RE,
Surveying Current Rescarch in Object-
Oriented Design, COMM. ACM, 33, 9,
September 1990.

2. FICHMAN, R.G. and KEMERER, CF,
Object-Oriented and Conventional Analysis
and Design Methodologies, COMPUTER, 25, 10,
October 1992.

3. SERBANATI, LD, Integrating Tools for
Software Development, YOURDON PRESS,
Prentice Hall Building, Englewood Cliffs, NJ,
1993,

4, YOURDON, E., Modern Structured Analysis,
Prentice Hall, Englewood Cliffs, 1989

5. Systems Application Architecture, Common
User Access: Advanced Interface Design Guide,
IBM Corp., Doc. no. SY0328-300-R00-1089,
1989.

6. O0A Tool, Object International, Inc., Austin,
TXS, 1991,

7. COAD, P. and YOURDON, E., Object-
Oriented Analysis, YOURDON PRESS, Prentice
Hall Building, Englewood Cliffs, NJ, 1991.

8. WARD, P.T. and MELLOR, S.J., Structured
Development of Real-Time Systems,
YOURDON PRESS, Englewood Cliffs, N.J,
1985.

9. HENDERSON-SELLERS, E. and EDWARDS,
JM., The Object-Oricnted Systems Life Cycle,
COMM. ACM 33,9, September 1990.

Studies in Informatics and Control,Vol.3,No.1,March 1994

BRAS System

APPENDIX A

DKA1 f ST-1 q QST'Z

Figure 9. Architecture of the BRAS System

Sensofi sstanss Sensof s e SENsoNi sasmanin Sensofi ssansnas Senso sesees s
APt St St e e) A
Grpo 2]af4] Guewo f2lfs] Gueeo f2[3fa] Guero ff2[3fa] Gnewo f2[3f4]
e e [RF] [Rr] [
Camlt! UR Mv::lir:e _Eennamtel
1] Liret, ,
Mari PC-1 Rete Token Ring PC2 °
I — O O L
MS-1 u MS-2
DK-2

Figure 9 shows the hardware configuration of the
system BRAS as it was imposed by the user. The
system uses two networked PCs. The server in the
network (PC-2) is dedicated to technological
events processing, PC-1 manages all other events,
the communication with the I/O devices and the
database. There are some peripheral devices
(specialized concentrators) able to manage locally
I/O devices: sensors and relays. A multiplexer
facilitates the dialog between the PC and
peripheral devices. A TV switching station allows
coupling between any TV camera and any
monitor.
The system functions are:
¢ automatic scheduling of the activation of
sensors, sensor groups, areas, /O registers,
relays, TV cameras, and monitors. The time
schedule for any device is week-oriented. The
days in a week may be differently scheduled
from each other. The daily time schedule of

Studies in Informatics and Control,Val.3,No.1,March 1994

any device provides time intervals for device
activation;

manual control by means of commands sent
to system components;

detection of such events as:

intrusion in secured areas,

surpassing of the threshold wvalues of
technological (logical and analogical)
parameters,

commands and queries supplied to the system

by the responding personnel,

failure of the peripheral equipment (sensor,
sensor groups, registers,relays, and CCTV);
providing an immediate reaction to any event:
sounds an alarm signal,

displays on a TV monitor a scene or more
scenes,

in a cyclic sequence ,

displays area of the monitored site where the
event occurred, displays all the events

n

occurred in the meantime and waits for them
being considered by the guards,

displays intervention procedure,

executes one or more actions (a relay closure
or writing in an output register),

prints all information about the event,

records in a database all information about
the event;

continuously monitoring all sensors and
sensor groups checking for proper ovoeration
or for any failure occurrence;

check for any shift of guards;

diversified, password-based access to the
system's facilities;

automatic saving of the configuration;

fully or partially saving of the event database;
report and statistics generation;

programming the system configuration
components:

number of hardware components,

alarms (alarm = sensor + alarm type + alarm
description + map + intervention procedure +
camera-monitor couple or video sequence +

action-output device couple or action
sequence),
sensor groups (group = set of sensors

physically connected to a peripheral device
and acting as a unit),

areas (area = set of sensors occasionally
joined for acting as a unit),

week time schedules (list of daily schedules),
daily time schedules (list of activation or

deactivation moments during a day).

Studies in Informatics and Control,Vol.3,No.1,March 1994

APPENDIX B

Sensor Object Specification

Shell SensorGroup
Alias "Sensor group" /f wording for the object type name
Is_a Object /I the super-type
Class SensorGroups /f the name of the object set
Attributes
{
Levels
Alias "Levels of the grouping tree" ? natural /I a natural value interactively updated
value (0); /I default value
MaxCompNr
Alias "Maximal number of components in the group" ? natural
value (0);
Type
Alias "Concentrator type" ? text
value ("");
Facets
allinset :
Textual : listbox ((for all x in 3 insert (x))) // the facet is represented as a listbox
Structural : set_of Sensor ; // the facet is viewed as a sensor set
comp:
Structural : record_of { // group = conmected or disconnected sensors
connect : set_of Sensor ;
disconnect : set_of Sensor ;
}
i
Links
{
(1, 1) Gr_Schedule (0, *) WeekSchedule ; /f Gr_Schedule = link between a group and a
week schedule
}
Operations
{
AddSensor
Alias "Add new sensor" : (3, Sensor) > § ; //'$ is the current object
CompNumber
Alias "Get component numbers" ($) -> natural ;
ElimSensor
Alias "Eliminate sensor" : ($, Sensor) > $;
Monitor
Alias "Monitor the group functioning” : ($) > § ;
SelectSensor

Alias "Sensor selector” : ($) -> Sensor ;

Constraints
{
cardinal ($[allinset]) <= MaxCompNr ; {/ the sensor number is limited to MaxConipNr
$[comp].connect } $[comp].disconnect == VOID I/l the comp components are disjoints
$[comp].connect | $[comp].disconnect == $[allinset] // the jointed comp components = allinset
Comments

{ A sensor group is a set of sensors acting as a whole when an enabling/disabling command is received }
End_Shell

Studies in Informatics and Control,Vol.3,No.1,March 1994

APPENDIX C

Alarm Activity Specification
Activity Alarm
Env OnLineEnv
Input

// on-line environment

{
inp : InputDevice ; // alarmed sensor

Attributes

occwT_time : time ;
occurr_date : date ;

}

Agents CentralPointComputer, PeripheralComputer | /f computers able to carry out the activity
Subactivities DisplayAlarm, TVCouplingManagement, OutputManagement ;

Private

// object variables
// activity variables

vs, as : ObjectVar ;
video, action, disp : ActivityVar ;
}
Import key_stroke ; /f imported event
States WAITING ;
Transitions
{
EXITING:
From WAITING
When key_stroke;
If key==KEY _DEL; // the operator cancels the alarm
Do
cancel (video),
cancel (action);
cancel (disp);

}
To EXIT ;

ACTIVATION:
From INIT
When key_stroke;
If key==KEY_ENTER; /1 the operator acknowledges the alarm
Do

disp = create (DisplayAlarm) ;

disp (input_device_to_map (inp), inp->Location) ;
if (exists (vs=video_schedule (inp)))

video = create (TVCouplingManagement) ;
video (vs),

}
if (exists (as=action_schedule (inp)))
action = create (OutputManagement) ;

action (as),

}
To WAITING ;

// displays the alarm map on the screen
/1 Is there a video processing of the alarm?

// a monitor with a TV camera is coupled

// Is there an automatic reaction?

/I some relays are switched

}
End_Activity

74

Studies in Informatics and Control,Vol.3,No.1,March 1994

