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Abstract: The problem of nonlinear filter design using Neural
Network (NN) training methods has recently attracted the
attention of a growing number of researchers. This paper aims
to shortly review and unify the problem setting in which various
training NN methods were used to desig optimal Weighted
Order Statistics filters and to compare the performance ob-
tained with each method.

Ioan Tabus was born in Romania, on January 6, 1957 . He
received the M.S. degree in Electrical Engineeringin 1982 and
the Ph.D degree in Automatic Control in 1993, from the
Polytehnical University of Bucharest.

In the academic year 1992-1993 he was a visiting researcher at
the Technical University of Tampere, Finland.

From 1984 he has been with the Polytechnical University of
Bucharest holding teaching positions: from 1984 to 1990 he was
a Teaching Assistant and since 1990 a Teaching Lecturerin the
Department of Automatic Control and Computers.

His research interests include neural networks for signal
processing applications, system identification and adaptive
nonlinear filtering.

He is co-author of three books and of numerous reports and
papers in the fields of automatic control, system identification
and signal processing.

In 1991 Dr. Tabus was co- recipient of the Award of the
Romanian Academy.

Moncef Gabbouj received the B.S. degree in Electrical En-
gineering in 1985 from Oklahoma State University, Stillwater,
and the M.S. and Ph.D degrees in Electrical Engineering from
Purdue University, West Lafayette, IN in 1986 and 1989,
respectively.

Since 1990, he has been with the Research Institute of Infor-
mation Technology, Tampere, Finland, where he is currently a
Senior Research Scientist. He also holds a teaching position in
the Signal Processing Laboratory at Tampere University of
Technology, Finland. His research interests include nonlinear
signal and image processing, mathematical morphology,
neural networks and artificial intelligence.

Dr. Gabbouj is the Director of the International University
Program in Digital Signal Processing in the Signal Processing
Laboratory at Tampere University of Technology.

He is member of Eta Kappa Nu and Phi Kappa Phi. Dr.
Gabbouj was co-recipient of the Myril B.Reed Best Paper
Award from the 32nd Midwest Symposium on Circuits and
Systems.

Studies in Informatics and Control,Vol.3,No.1,March 1994

Moncef Gabbouj

Signal Processing Laboratory
Tampere University of Technology
SF-33 101 Tampere

FINLAND

1. Introduction

Weighted Order Statistics (WOS) filters are
nonlinear filters which proved to be very effective
in filtering images perturbed with nonGaussian
noise. The operating principle of these filters may
be seen as a generalization of the method known
as "Order Statistics filtering” which produces the
smoothing of a signal taking as output certain
order statistics of a fixed length window sliding
along the signal; WOS filters allow, in addition,
emphasizing some samples in the window (e.g.
admitting multiple copies of the samples).

The properties of this filter class are more easily
analysed ' if the input signal (restricted to be
M-integer valued) is first decomposed into M binary
signals (this process being referred to as "threshold
decomposition"). The overall filtering effect is
obtained as follows: first, every binary signal is
processed by a binary filter (a Boolean function
which is positive and linearly separable), the resulting
outputs being summed up to reconstruct a M- valued
integer which is the output of the WOS filter.

The association of WOS filters with Neural
Networks was used in the past aiming at two
different purposes: as a tool for the fast
implementation of WQS filters using VLSI
structures [4] and as a way to design optimal WOS
filters under the Mean Absolute Error (MAE)
criterion [1, 2, 3].

This paper aims to shortly review and unify the
problem setting in which various NN training
methods were used to design optimal Weighted
Order Statistics filters and to compare the
performance obtained with these methods.
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2. WOS Filters Structures

A WOS filter processes at any time t the input
values situated in a window X(t) of length
N = N, + N, +1, including the current input x(t),

X(t)= [x (t—Nl) ...x(t)...x(t+N2)] -

= [xlxz...xN] () 1)

The WOS filter parameters are the real valued
weights W(X; ) = W, associated with each entry X;
in the window and the threshold weight, Wy,
which form the parameter vector

W= [\e\.'l...wNwN+ 1] (2)
Definition 1: Real inpur and weights WOS filters
A WOS filter processes the input as follows:

eThe samples in the window are ordered
decreasingly, resulting in an ordered vector

oX(t)= [xm...xm] ()= [Xi{“xiN] OIRE)

where X(k) denotesthe k’th element in the ordered
string;

eFor every r = 1,...,N; the inequality
T .
Ei=1 w (X (i)(t)) SWo, s tested and the

first r for which the inequality holds is
selected (denote it r});

o The filter output will be the rth value in the

ordered vector,
y(1) = WOS(W,X(1)) = X(rl) (0.

Definition 2: fnteger weights WOS filters with real
inputs

If the weights are integer numbers, then the
output of a WOS filter can be obtained as
follows:

eBuild an extended window duplicating W,
times each sample X, in the input window;

e Sort in a decreasing order the samples in the
extended window;

e Select the Wy, ,'th element in the ordered
window as the output of the filter.

If the input of the filter is an integer value less than
M, then definitions 1 and 2 can be rephrased using
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the "threshold at level m" operator, T_(.) ./hich
acts on the integer value I to give

1, if I =z m;
L= {0, if 1<m, “)

It is obvious that the original input can be easily

recovered from its thresholded versions,
{Il,...,IM'l} summing up all the binary versions

M-1 M-1 o
I= }_lem(I) = 2_)11 )

Definition 3: Real weights WOS filters with integer
inputs

A WOS filter processes the input in four stages:

oThe samples from the input window are
thresholded at all levels m between 1 and
M-1, resulting in M-1 windows with binary
elements

X"()=T_(X(v) = {Tm (x 1) -, (xN) } (6)

eFor every window X™(t), m=1, ... ,M-1 the
binary output y™(t) = WOS(W,X™(t)), is
computed as follows

: N m
Pty= 1, if EM WX ZW,,. @)
0, else

o The binary outputs are summed-up to obtain
the output of the filter

M-1 =
y(t) = E_liy (®) (8)

All the three Definitions given above express
various structures which can be used for
implementing WOS filters. Since these definitions
are equivalent when applied to integer weights and
inputs, it follows that we can use different
structures in the design stage and in the
implementation stage. We shall focus here on the
advantages which can be taken of a particular
structure in solving the optimal WOS filter
problem in the design stage.

3. Optimal WOS Filter Design Problem
3.4 Optimality under MAE criterion
One way to approaching the optimal design of
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order statistics type filters is to make some
assumptions concerning data and noise models
and then, under stationarity hypothesis, to furd the
parameters which minimize the Mean Absolute
Error between the original signal and the filter
output obtained when the corrupted signal is at the
filter input.

Problem 1 Given

ethe noise and signal model classes,
s(«)ES,n(s)EN,

find the filter parameters W* which minimize the
criterion

J(W) = E[]s(t) - WOS(W,s() +n()[]  (9)

This approach was intensively used in the past, but
the solution is suboptimal in practice because in
most of the applications the stationarity hypothesis
is not fulfilled. The same situation is met with in
linear prediction theory, where the optimality
criterion is sometimes formulated in terms of the
expectation of the squared error, leading to the
"autocorrelation" solution, while formulating the
optimality as the minimum sum of square errors
leads to the "autocovariance" solution. Here we
shall not pursue any further the expectation based
criterion, but we shall seek for an alternative best
suited to practical applications.

3.B Optimality under Least Absolute Error criterion

An approach to the optimal WOS filter design
closer to "learning" principles is to consider as
known some representative sets of inputs and
desired outputs and to find the parameters which
bring the filter closest to the specified desired
behavior. More formally, we define

Problem 2 Given

T
ethe input set {X(t)}t_1 (the real signal x(t)
is already arranged in windows as in (1));
. T
ethe desired output set {cl(t)}t_1

find the filter parameters W* which minimize
the criterion

T
i) =3 3 [do-wosuxey| (10
t=
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We shall use, in the following, the superscript "m"
to denote the thresholded (at level m) version of a

variable and the notation wos (W,q) for the
(binary) output of the filter whose input is the
binary window q.

Lemma 1 The criterion (10) can be written in the
following form:

IW=1(C+ 3
ge{01t

where the coefficients C,c(q) can be computed
from the data set using the threshold
decomposition of the data as an intermediate step.

ccq)wos(w,q)) 1)

Proof See Appendix.

We can give now another, but equivalent
formulation of Problem 2:

Problem 3 Given

ethe coefficients {c(q)} P (carryin
q 1

information about the original data set)

find the filter parameters W* which minimize
the criterion

IW)= 3

qe0,14"

c(q)wos(W,q) (12)

Remark

Both problems deal with the same unknown
parameters and therefore the dimensionality of
the problem is established only by the length of the
"data set", i.c. for Problem 2, the dimensionality is
T and, for Problem 3, the dimensionality is 2N For
small values of N, it is simpler to solve Problem 3,
but for large values of N, Problem 3 is not any more
tractable.

4. Optimal Design Using Neural Network
Training Methods

The WOS filter structure presented in Definition
1 can be easily implemented in the form of a four
layer Neural Network [3] as in Figure 1. Since the
nonlinearities in the third and fourth layers are
step functions, the classical Backpropagation (BP)
training method cannot be directly applied to this
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Loop 0
Initialize Weights

Loop 1
Perform for nonlinearity = (smooth,steep,hard)
Loop 2
Fort =1toT

Forward Pass

| Backward Pass
Find optimal step
Update weights

If gradient = = 0 or weights on boundary
then Exit Loop 2

structure. The next procedure [2] tries to
overcome this difficulty.

Procedure # 1 (First attempt at solving Problem 2)

1. Replace the hard nonlinearity in layers 3 and 4
by sigmoidal nonlinearities.

2. Apply the Backpropagation procedure to find
the parameters W.

O

This procedure presents two strong drawbacks.

@ As it is well- known the BP procedure stops
in a local minimum of the criterion function
(which sometimes happens to be the global
optimum). But for Problem 2, it was shown
in [3] that there was a large number of local
minima, most of them being worst than the
simple classical median filter;

oThe structure obtained at the end of the
training is not exactly a WOS filter since the
nonlinearity is sigmoidal and no control has
been imposed on its steepness.

A way to confining the drawbacks of the preceding
procedure is to use a more structured training
procedure, including the principles of Monte
Carlo search (for looking at as many local minima
as possible) and the principles of deterministic
"simulated annealing").
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Procedure # 2 (solving Problem 2 by deterministic
simulated annealing over stages of BP search).

Select the best local minimum

O

This procedure was shown in [3] to be effective in
finding parameters close to the global optimum
(see [3] for details).

Next we shall describe a procedure (with the same
structuring hierarchy as the preceding one) for
solving Problem 3 in order to take advantage of the
preprocessing level, which compresses the
information in the data set (see also remarks under
Problem 3 which indirectly discuss the
compression ratio obtained).

Procedure # 3 (Solving Problem # 3 by
deterministic simulated annealing over stages of
delta rule search)

Loop O
Initialize Weights

Loop 1
Perform for nonlinearity = (smooth,steep,hard)

Loop 2

Delta Training Algorithm
Find optimal step
Update weights
if gradient = = 0 or weights on boundary
then Exit Loop 2

Select the best local minimum

O

The structure of the iterative Delta Training
algorithm is depicted in Figure 2.
Remarks

1. The global minimum of criterion (12) could be
obtained if

_ |1, if c(q) < 0;
WOSEW, ) == {o, if c(q) = 0 =)
or equivalently, if
iy . _
Wq > WN+1’ if ¢(q) <0;
T - 14
WIS W, il e(q) 20 (14)
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Figure 1. Neural Network Structure Implementing Real Input WOS Filters
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Figure 2. Structure of the Iterative Delta Training Algorithm
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for all vectors qE{O,l}N. There are 2" such
inequalities and only N + 1 free parameters; there
is no reason why to believe that the set of
inequalities is consistent (i.e. there is a vector W
which satisfies all of them). If the set of inequalities
is consistent, Problem 3 can be restated as follows:

Problem 4 Given
eThe input set {q|q€{0,1}N};
o The desired set {d(q) |d(q) =1 for c(q) <0
and d(q) =0 for c(q) =0}
find the perceptron per(W*, q), which

minimizes

T
JW)=z 2 [d0-perWia)| (15)

This is the standard formulation of the problem
which is solved by the Perceptron algorithm
(see[6] for details about the algorithm).

2.1fthe set of the inequalities (14) is not consistent,
the Perceptron will still offer a solution, but it is a
suboptimal one. The drawback is that this solution
does not take into account the value of c¢(q), as
criterion (12) does (in criterion (15) only the sign
of the coefficient c(q) is significant). It follows that
Problem 4 can hardly be considered a good
approach to optimal WQOS filter design under the
MAE criterion (as claimed in [1]).

Conclusions

The problem of WOS filter design is well suited to
be solved using NN training methods.

This problem differs from most other applications
of NN in two major aspects: first, the structure of
the NN which must be used is known in advance
(there is no need for structure selection criteria)
and second, the nonlinearities in the final network
must be step functions (in order to ensure the
Order Statistics structure to the network, desirable
for other reasons than that of only the
minimization of MAE criterion, i.e. good
behaviour in edge preservation).

This paper presented some NN structures and
training procedures effective in solving the
problem of WOS filter design. The choice among
various structures and methods is mostly restricted
by the length of the window size.

For small length size the procedures using
threshold decomposition are simpler, including a
preprocessing stage which reauces a lot of the
computational load in the iterative stage.

For large window sizes, the only effective
procedure is # 2, based on real input domain
processing of the training set.

The usefulness of these design techniques stems
not only from their straightforward
implementation as filters but alse from the means
they offer for continuing the study of optimal
nonlinear filters whose behaviour is still hidden in
many aspects, in part due to the lack of effective
optimal design methods.

Appendix

Proof of Lemma 1

T
TeJW)= |d(t)—WOS(W,X(t))| =
t=1

M=

M-1 - ”
2—11‘1 O-wos(W.X"®)| (1)

t=1

The last equality holds due to the following
property of threshold decomposition (4)

d=(=2)y # ¥m,d™ =(=)y™
(17)

from which follows
M-1 s -
ja-y]= 3 |o"=").
m=1

We shall regroup the elements which appear in the
summation (16), emphasizing the terms for which
the binary windows X™(t) are identical vectors, q
(the set of all such vectors is {O,I}N). Then, we
shall split the sum according to the partition into
two complementary sets:

o M(q) — the set of all pairs (t, m) for which
d™(t) =0 and X™(t) =q; denote Ny(q) the
cardinality of this set;

oM, (q) - the set of all pairs (t, m) for which
d™(t)=1 and X™(t) =q; denote N,(q) the
cardinality of this set;

T M-1

TJIW) = 3 > |d)-wosW,X"(1))| =

t=1m=1
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q€40,14" [tm)EM(q)

=3 [ S |do-woswx"wy| +
t

(tm)EM (q)

> | d(t) —wos(W, X" (1)) |:I =

z 2 |-wos(Wq)| +
qE{O'l }N (t'm)eMo(q)

' 1-wos(W,q) []

+ (t,m)ele(q)
= 2 [N+ (Ny@-N,@) wos(W,)] =

qe{o1 "
=C+ 3 c(q) wos(W,q) (18)
qe{01 N
with
(@) = Ny(q) - Ny(q) (19)
c=2 N@ (20)
qefo1t"
g.e.d.
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