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Abstract:The Signal Processing (SP) domain is a well-
delimited branch with strong connexions in both Applied
Mathematics and Electronics. The present viewpoint is rather
mathematics-oriented than electronics-oriented. After the
main SP problem statement - in a mathematical manner-a new
approach of this problem is made (from a software or
engineering viewpoint ).Problem- solving by classical
harmonic analysis - based on Fourier's ideas- resulted in a
certain type of algorithms called "Fast Fourier Transform"
(FFT). This class of algorithms is used for a large set of usual
signals and it is very productive. However, this tool seems to
be inadequate for several signals, including non-stationary
signals. Signals of a certain type, as those associated with
seismology, cardiography, speech processing or image
processing, are improper for frequency modelling based on
the Fourier’s series because of their not few high instantaneous
frequencies. The number of computations which these signals
are subject to in the Fourler analysis is large enough and the
slow convergence of this series makes the results be not so
precise as they usually are. The proposed solution for error
Tecovery is that of the "wavelets” ("ondelettes” (Fr), "undine"
(Rom)) - a new family of functions by means of which the
signals can be represented more exactly. It is not the
differential equations or the differences that do this
representation more exactly, but the "Biscalar Dilation
Equations" (BDE) or "Two Scale Difference Equations", as
in the following example:
<BDE> ®(x) = Epcnd) (ca +,8,,), ¥ xER,
nEZ
There, {cn} . is a family of complex numbers with finite
n

support, a >1, {ﬁ"}nez is a real increasing numbers family

and & is the solution of equation (the so-called "scaling

function"). Usually, @ = 2, fn = -n, for n=0,N,and Bn=0

for n €0,N. The coefficients {cn} P g used for generating
n

the "wavelet-mother" & by the following expression:
Y(x) = 2 (-—l)ncl_nd) (ax + ﬁn) VxER.

nEZ
The family of wavelets:

m

Voo 2L TV (2B | | p ez

a
can be constructed as an orfhogonal basis with compact
support functions of Iilbert space (Lz(r), <..>) (finite
energy signals). Consequently, any signal fEL (t) can be
codified by a denumerable sequence of coefficients:
Cnm = <f,‘ynm> 'Vn,mEZ.
If the signal f is a finite frequency band, then only a finite
number of such coefficients will be far from zero. One effect
of using wavelets will be in high frequencies or in any local
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irregularity of time signal’s evolution producing higher
coefficients values than low frequencies do. So, f can be
codified by means of a computer, no high frequency
information being lost.

Keywords: harmonic analysis, Fast Fourier Transform,
non-stationary signals, instantaneous frequency, wavelets,
Biscalar Dilation Equations, scaling function,wavelet-mother,
finite energy signals.

Abbreviatlons:

BDE - Biscalar Dilation Equation

BLDE - Biscalar Laticeal Dilation Equation

DFT - Discrete Time Fourier Transform

EP - Engineering Problem

FFT - Fast Fourier Transform

MP - Mathematical Problem

SP - Signal Processing
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1. Signal Processing Problem

Nowadays, the Signal Processing (SP) field has
been dedicated a very well-defined theory, called
"Signals Theory". Famous mathematicians, say,
Fourier, Dirichiet, Weierstrass and Hilbert,
studied the properties of certain complicated
functions by using other known functions,and
eventually, set the basis of the SP domain. Claimed
as much by mathematics as by engineering, this
space has lately developed explosively. The last
half of our century findings in Applied
Mathematics research led reputed scientists like
Walsh, Erdés, de Rham, Gabor, Wigner, Vil'e,
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Moyal and others to revealing interesting
possibilities of the initial functions for being
decomposed into other simpler ones - called
"components” - and for reconstructing the initial
function by its components. The next step was
towards generating efficient decomposition and
rebuilding algorithms. This step transposes the
pure SP mathematical basesto signal engineering.

Signal Theory is a vast domain not to be reduced
to SP. The theory works with the "signal" concept
as proposed by various scientific branches.

The definition of this concept is always
unicompletely given, but, nowadays, both
mathematicians and engineers are going to accept
a general convention [2]:

® Definition 1 @

A "signal" is an application as in the following
shape:
it M,

where:
o7 is a (real) set having a total ordering relation
("'s")

7 is also called "the moments set" (although,
physically,it is not necessary to include time
momeats, but, for example, spatial distances);

o M is any (real or complex) set: "the signal’s
values set".

The natural development framework closely
related to the signal concept is called " Theory of
Distributions". It represents an important branch
of the Functional Analysis (and- collaterally-
Theory of differential equations/equations with
differences). However, from an engineering point
of view, the "signal" is a specific and natural notion
of Lebesgue’s spaces: LP(r) where p=1. Thus,
t<R  (not necessarily bounded), whose generic
element is marked by "t" or "x" and M <C (signals
with complex values).Just before speaking of the
SP problem, this work is to be circumscribed.(For
more details, see [1] and [2]).

[ Notes:

1. LP(7) is the space of the function f: T=>C
Lebesgue p- integrable on 7; IP is the space of
real/complex p-summable sequences {X,} ez
These spaces are normate and complete,
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having infinite dimensions and countable
vectorial bases. If p=2, then they belong to
Hilbert spaces too, having_scalar produces:

<tg>def V [f0sm0dx; ¥ fgeL’();
T

<tg>def VI 15 ¥ fgel’.

n€EZ
Given p=2q=1 we have: LP(r)<L(z) and
1P<19, the usual framework is represented by
the signal class with "frequency spectrum’
(L'(x) or 1) or by the signal class with "energy
spectrum" (finite energy signals sets: (Lz(r) or
1), For convenience, we will mark by "SP" any
of the two signal spaces types (with pE€{1,2}).
2. It is well- known that LP(7) is the space of the
"continual' signals (i.e. having 7
homeomorphic with a certain interval from
R, ; these signals can be or not uncontinuous,
but bounded functions). IP is the
"discrete-time" signals space (i.e. having 7
homeomorphic with a countable set of R ;
felP is known due to its samples f =1(t)),
t, €7, ¥n€N). Usually, either continuous or
discrete time bounded signals are considered.

O

In this context, the main mathematical problem

(MP) of the SP, in a largely accepted form, is the

following:

<MP > a. The direct problem ("decomposition
problem”)

Knowing the signal feS” and the fact that in S
there has been a countable basis e=[e ] €N,

established, the problem will be how to
decompose f into its components:

f=> o
nez

where f =ce, withc €C, ¥ nEN.
<n> nn n

(That is to determine the coefficients
{c } =<Q).
" neN

b. The inverse problem ("reconstruction
problem")

We are supposed to know a basis in SP (as above)

and the components of a signal fESP,

{f,:n) or cn} , relatively to this basis, the
nEN

problem being how to reconstruct the signal f from
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its components.

If b. is an easy to solve problem (knowing the
basis), a. represents the essential problem, its
solving being practically far enough from simple,
due to the variety of countable bases in SP . But,
from an engineering point of view, this two-fold
problem cannot be accepted as such. It is
important for a mathematician to almost prove the
existence of the signal decomposition and,
eventually, of the uniqueness of this
decomposition, whereas for an engineer the
interesting part will be the modality of
components effective construction or the signal
reconstruction by its components. Given all the
above, the problem can be reformulated as an
engineering problem (EP):

<EP> a. The decomposition problem

Knowing a signal f€SP (often by its samples over
a finite number of time moments) and supposing
a basis of SP: {e_}, 7 has been chosen , we are
asked to find a new signal the properties of which
are the following:

N
1.f can be expressed like this:f = c,€,, Where
n=0

NEN is fixed and finite and cg,c;, ... ,cyEC can be
derived from the values of f;

2. f better approximates f, in the sense of the SP’s
norm, i.e.

*¥ £>0 3f (depending on &) so that
|| f=f || < &; e represents an approximation error
and "||«||" - the norm of SP.

b. The reconstruction problem

Knowing the "mathematical pattern” f (from the
preceding problem), for the unknown fsignal, we are
asked to find a way to mark the value of f at a certain
moment t,E7, with a precision degree given byf.

Both a. and b. become more complicated in case the
coelicients "c " cannot be constructed directly (but
recursively, for example) or in case the elements of
the ¢ basis are not explicitly defined, but implicitly,
by means of some functional equations. On
constructing these coefficients from f (or f from
them), it seems obvious that an algorithmisation will
be carried out.

The EP solution is conditioned by finding a basis
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e={e,}nENof SP with more interesting properties.
Having a precise formula for each element of the
basis (as the Fourier analysis asks for) is not so
important for our work. Two other properties would
be very significant for this approach:

A *The efficient approximation

The same precision of approximation ¢ will be
required and, in comparison with other bases, this
¢ basis gets a minimum number N into <EP>a.l1.
and this determines - for certain algorithms- a
minimum number of operations for the signal
decomposition/reconstruction.

O Orthogonality

As arule, there is the SP context within which, by
using the Gramm-Schmidt orthogonalization
procedure, - an orthonormate basis,

et < €;e;> =d,,, ¥i,JEN where "3;" is the
Kronecker symbol, can be eventually Jbui!t. So,
obtaining coefficients: ¢, = <f,e, >, nEN will be
simplified.

Generally speaking, solving <MP > takes place
in LP(z) , while <EP> issolved in the space IP or,

more exactly, in "1f ", which is the subset of 1P with
elements having such finite support as:

{xo,xl,...,xN,o,o,...,0,...}.

This paper will deal with O and 4 will be the
subject of another paper.

Trigonometrical Bases Problem-solving

The main underlying idea was that of any
continuous or discrete time bounded stationary
signal being viewed as an additive superposing of
monofrequential dilferent magnitude signals.
These frequencies do not vary with tEr, but their
totality depends on 7. So, the notions called "Fourier
series attached to a signal" and the "frequency
analysis of a signal" have been introduced. Not only
should the frequency content of a signal be
remarked,but also a certain frequency "relevance” in
the multifrequential signal.

The signal decomposition/reconstruction
into/from the associated Fourier series will be
further explained. Here is the middle of s? space.
By applying Weierstrass-Stone theorems [1], the
set of polynomials with complex coefficients is
dense in C and the latter is denser in S2. "C"
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denotes any of the sets:

C not the continuous functions (continuous
signals) set;

¢ not the set of Cauchy strings from C (discrete
bounded signals).

With the trigonometrical functions belonging to C,
the set of trigonometrical polynomials is also dense
in S%. So, a remarkable orthonormate basis reveals:

L%t = [#n);

={eo(t) =me (0= \fz-ncos(nt),
et =V2 nsin(nt)}neN
%7 = {20/N} ons

E= {{cos (btanN) }

The orthogonality is expressed as follows [3]:

UV Gl )

}cos(nx)cos(mx)dxqrdn

m!

}sin(nx)sin(mx)dxwra o

I

Jsin(nx)cos(mx)dx=0

N
z COSW, COSW =§6 :
kn km 2 “nm’
k=1
g:smw Smcu‘Lm %6
k=1
5
sinw, cosw, =10
k=1 kn &
¥ n,meEN,
2kn
whercwkn " ¥ k=TN, ¥neN.

Mathematlcaliy speaking [1], and having
feL? ([-7n]), its  decomposition  and
reconstruction formulae (which prove both
existence and uniqueness) are, respectively:

1 T
ay=5- _J; f(x)dx;

a =2 JROCECHEE
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-1 if(x)sin(nx)dx ¥nz1

f(x)=cr0+n§1 (ar‘cos nx+f sin nx) » ¥XER.

The most current frequencies are pointed out by

the maxima of string { V aﬁ +ﬁﬁ } , of
nEN

"harmonics power", in which by =0.

The infinite sum above is a "Fourier series"

associated with the signal f and is converging f (in

the norm sense). Normally, fderives from <EP >

by fixing up NEN \ {0} and defining [4]:
N
<f> f(x)=a0+ > (ancos(nx) + ﬁnsin(nx)).
n=1

When referring this, we must have in mind one of
the Parseval’s theorems:

lima = limfB =0

n=»oo n n—->oc

The sum above includes trigonometrical functions
with fixed growing frequencies. In studying the
frequency structure, the "Fourier Transform" of a
signal can be used, as defined below [2):

e Definition 2 o

“The Fourier Transform" of a continual signal
f ELP(7)is:
F :R=>C

13 . 3. 33
w=>F (W)= [f(x)e™**dx, withj’=-1.

For a discrete-time signal f€IP, where

= {fn}nEN’

F :R=C

the integral becomes series:

ax=HiF, (w)d—"fz fe‘l‘“" , with j?=—1

nEZ

w varies continuously with R and F; s, in either
case, an analytical function,

From an engineering point of view, and in order to
solve these problems, a "Discrete Fourier
Transform" (DFT) will be used, with its algorithms
called "Fast Fourier Transform" (FFT) [4].Let
fer? , be
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f={...,O,fo,fl,...,fN_l,O,...,O,...}.

We mark by w not exp (-27j/N) and give the
following definition:

o Definition 3 o

"The DFT" of f €12 is the sequence (string):

DFT [f]d—ef{...,o,o,}u

N-1
|
n=0

u{o,o,...}
keON-T

This time, DFT variation for "w* will not be
continuous, but discrete variation, in equally
spaced points on the unit circle of the complex
plane. Consequently, "analyticity" of DFT cannot
be invoked.

FFT is a set of algorithms providing an efficient
computation of DFT in the special case: N=2,
Generally, FFT yields "Wf=F", in which:

fz{f } column vector), F={F
n n=n:N?I( ) "}n=tm‘—‘f
is the column vector composed of the non-zero

elements of DFT and W is a symmetric matrix:

e [“’lm] k, n=0N=T

Given w=cos 21%- + jsin 2% , it follows that

DFTIf] €land its expression is represented by the
e basis elements . The "Wf =F" formula makes f be
decomposed, while the property of W is of being
symmetrical and of satisfying the following
relation:

WW = Ww = (IN) I,
where Iy is the N-unit matrix, and makes signal f
be reconstructed from F,according to the formula:
f = WIF = (UN) WF

The number of operations necessary for
computing signal f decomposition and
reconstruction s cr(N)=N2 for DFT, but
o(N) =Nlog,N and even U(N)=N]0g2\/§ for
FFT. Avoiding the inversion of a big order array
like W is noticed. If N=2", then o(m) =2™m,
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General Aspects of Dilation Equations

2.1. The "Dilation Equation” Concept

Although FFT needs simple and few operations,
using it has many drawbacks which generate new
researches for the SP problem- solving. These
drawbacks can be directly charged to the type of
vectorial basis used or ,more significantly, to
Fourier series idea. Can any signal be looked
upon as a multifrequential superposing of cosines
by time constant frequencies? Some seismological
researches as well as some chapters of the Fractals
Theory or of the Image Processing Theory show
that such a hypothesis is too restrictive. The
Fourier analysis does not apply to a set of
signals-the so-called "non-stationaries".

A new idea will define these signals: the
frequencies which compose the signal are
"instantaneous" frequencies, i.e. they can also vary
during time moments (even if not always
explicitly). The signals not supporting the classical
Fourier analysis are of a special type and are
represented by a famous example: de Rham’s
functions. We mark by {f,},en these functions
and give their definitions below:

[f ;R>R
def | 11% x€[-1,0)
x>f (x) == {1-x, x€[0,+1]
0, |x]|>1

f;: R=R is obtained from fy such as:
[vmez= £, (m)=f(m)&f, ((m+1)/3) =
=f, ((m+ z)/3) &f, ((m+2)/3) =f, (m+1)/3)
¥XE[m/3,(m+1)/3)=
=f,()=3f, (m+1)/3) = (m/3) ] x+
+ (m/3)=m|f, ((m+1)/3) —fl(m/B):I :

f.: R=>R is obtained from f,.;» ¥n=1as above.

Figure l.a presents the evaluation process
generated by the above definitions. For n large
enough, f_ will be described as in Figure 1.b. So,
just little magnitude high frequency oscillations
superpose over alow frequency curve. Such signals
are typical in seismology and cardiology and
processing them by using a (Fourier)
multifrequential model assumes that:
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Figure 1.
a. The First Three Approximations of de Rham’s Function
b. The 8th Approximation of de Rham’s Function; at the Figure
Scale, fs is very close to f- the Solution of de Rham’s Dilation Equation
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a) in a continual case - N of <f> is very
large for an acceptable error e between
andf (since, in the sum of <f>, thea_ and
B, coefficients hardly approach 0, high
frequency harmonics having high
magnitudes; the strings of these coefficients
slowly approach 0)

b) in a discrete-time case - the sampling
frequency is high for better observing the
local "vibrations" of the signal.

The effort to compute is great, complex and,
implicitly, time-consuming in either case.
Furthermore, technical problems arise if high
sampling frequencies (with the same precision of
samples)are to be obtained.

Based on these observations and on others, no less
convincing, as Daubechies’, Meyer’s, Mallat’s [5],
[6],[7], anew framework has been created for only
studying the SP problem solutions (including this
set of signals). The §1 context being maintained,
we are searching for another construction of the
sP's basis, namely, using one property of the above
functions : if f is the pointwise limit of the string
{f.}oen» then any approximation of f from

f }aen can be made recursively: £, , =vf, "v"is
a functional operator; for example, in the case of
de Rham functions, the v operator satisfies:

<Rr>v¢(x)=¢>(3x)+%¢(3x+l)+%¢(3x—1)+
2 2
+§<I>(3x+2)+§d)(3x—2), xER.
Giving a new basis to SP requires a preparatory
phase. Now, the"Two Scale Difference Equations",

also called "Biscalar Dilation Equations" (BDE)
[5] are the new mathematical framework.

o Definition 4 ¢

A 'biscalar dilation equation” (BDE) is a
two-scale difference equation of this shape:

N
<BDE> ®(x)=) c ® (ax+p ) ;
n=0 .
where: a > l;ﬁ0 <p;<.. <ﬁN; CgsCpsmnly EC;
desP, xeR.
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The above equation is a "dilation" equation due to
the omothetia by coefficient &>1 applied to the
argument of "scaling functions” ®. This argument
appears to be amplified ("dilated") after all. By
convention, we will consider 1=R; this is a not too
restrictive condition: f(x) =0is possible for any xEr.

The "two-scale" term comes from obtaining ®
from a sum of its values by arguments affecting
two operations : a translation (on the "sca'e" of
coefficients f,...,8y) and an 0-centred,
a-multiplied omothetia, of which variation
yields a second "scale". Usually, we say that the
translation affects the time domain and the
omothetia - the frequency (or scale) domain
behaviour of the signal. In fact, the "scale" is
the inverse of the frequency.

e DefinitionS e

If into
<BDE>:a=keN\{o,1} and_=-n,¥n€TN

then the equation is called
”biscalar laticeal dilation equation™:

N
<BLDE>®(x)=2, ¢ & (kx—n), ¥€ER.

n=0

Such an equation can be written as below:

<BLDE’> ®(x)=3, ¢ ®(kx—n), ¥x€R,
nEZ

where {c }n€Z=<C has a "finite support"
(BleNZEZsuch as cn=(},v n@{Nl,Nl-i- 1,...,N2})

and, using a translation of axes and a recount of
indices of coefficients "c ", it looks like a BLDE.
The BDE/BLDE’s solutions (existence and
uniqueness) can be studied using either the
Fourier transform or Theory of operators [5]. The
quantity:
c +c +..+c c,, +.+cC
AlI0L 0 L N_ NI L

is essential to the solutions existence. Thus, [5] is
the proof of the following result:

Theorem

alf |A|<lor |A|=1 with A#1I, then BDE has
only a trivial solution;
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b.If |A| > 1 then BDE cannot get a trivial solution,
it can only have a unique solution or an infinity of
solutions, without compact support;

c.If A=1 (the most interesting case), then BDE has
a unique solution included in [O,N|(a-1)], with
compact support.

Note that a function f "support” is marked by
"Supp(f)" and is defined as a closure of the set
{xer| f(x)=0}.

For the EP, the most interesting framework is
provided by <BLDE’> with A =1.

The existence and uniqueness of the solution is
thus guaranteed, and, furthermore, the solution

F:R->Cis"normalized": [®(x)dx = 1. Usingthese
R

equations, certain signals can recursively be
modelled. Some examples are of a special interest:

ist Example

Dirac distribution:: ®(x) = d(x), xER (d(x) = »
ifx=0and 8(x) =0 elsewhere is the solution of the
equation: ®(x)=2®d(2x), which corresponds to
the coefficients: ¢y =2&(c, =0, vk#0)&a =2.

2nd Example
Box-function::

1, x€[0,1)
Ox) = is the solution of the equation:
0, elsewhere

D(x) =P(2x) + P(2x-1) with the coefficients
¢g=c;=landa=2.

3rd Example
Hat - function::

x , xE[0,1)
®O(x)=12-x, xE€[1,2] verifies the equation:
0 , elsewhere

B(9) =7 B(2) +B2x-1)+3(2x~2),
. . 1
with the coefficients: ©Q=C=5 and a=2.

A BLDE aware of a certain scaling function & has
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Figure 2. Box Function

Figure 3. Hat Function

been mentioned in these examples . The inverse
problem, finding solutions to a BLDE would be
interesting. There are several methods for solving
a BLDE. For example, a solution can be reached
recursively, using the following operator (the
shape being as suggested by the BLDE):
vd(x)=), ¢ ®(kx—n), ¥xER.

(=3 c blio-n)
The scaling function @ verifies the equation
v®@=0®. That means P is a fixed point for the
operator v. According to the famous fixed point
Banach-Picard theorem in Functional Analysis
[1], the construction will develop this way:

o Initially, ® is considered as being
satisfactorily approximated by a knowing
function ®;

o An iterative process follows where
{®,,}nen is an approximations string of @,
so that:
<I)m+1(x)=v<bm(x)=gzcn¢m(kn—n)-v-x€R.

n

o The process stops after a number of steps, M,
so that @, is a "fine" approximation of ®;
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the accuracy degree is user’s choice.

It is not difficult to see that if ® is the pointwise
limit of the approximations string {®_ } s then
it will verify < ELDB’> (by passing to limit in the
recursive equation @  ; = v® ). [5] shows that
the string above is pointwise convergent to a
function ®€ES!, if d)oesl. The approximation
process goes on as in Figure 1.a. This scaling
function (de Rham’s function) has a fractal shape
(between any two support points, there is at least
a third point in which a unique value of the first
derivative, even if the function is continuous,
cannot be specified).

22. Grouping Frequencies into Octaves

An interesting method for BLDE solving is
proposed by the connection between the
omothetia effect on the scaling function’s
argument and a Weber-Fechner physiology law on
the model of human auditive perception. The law
states that the noise intensity is logarithmically
perceived by the human being: "The sensation is
proportional to the logarithm of excitation". This
fact suggests that the logarithm of excitation
should represent sensation as a linear function.
The graph can be traced using a semilogarithmical
technique: the horizontal axis is logarithmically

(base 2) scaled and is called "the sonorous
frequencies octaves axis"; the vertical axis is
linearly scaled. The interval between two
consecutive integer values of the "log," is denoted
by "[d,d,,;]" and is called "octave".
Frequentially speaking, all the eight musical
sounds are to be found in one of these octaves.

On getting back to the dilation equation, we will
assume that any point XE€Z values of the scaling
function are known, and define the points "¥/X "
with x€Z, meN, R =k™ and kEN, k=2 (the
scale factor) fixed, by "k-dic points". If k=2, these
points will be called "dyadic points". In this (most
frequent) case, the term "octave" corresponds to
the usual intuitive term (presented above). In
general , an "octave" has the shape [x/R_, ¥R ],
and will be called "generalised octave" or "k-
octave". Using the recursive relation as above, the
@ values in any "k-dic point” will be determined:
¢ (x/xmﬂ) -;gzcnd) (x/}(m—n) , ¥ mEN,
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By considering & as continuous in zero point, ¢
can also be determined by passing to the limit for
m-~> o in this relationship.

But, the main problem left is to determine the
values of @ on integer points, for initiating this
process. At this point, the compact support of
® can successfully solve the problem. The dilation
equation can be several times written: one relation
for each x€Z. Given Theorem, for k=2, there is
NEN so that:

N
d(x)=2, ¢ (kx—n), ¥xER
n=0

and Supp (P) = [O,T(L:I—J :

A finite number of such relations will not express
0=0 identities. They are:

®(1)=c,D(K)+c D(k—1)+...+c, D(k—N)
O(M)=c dMK)+c DMk—1)+..t ’
+..4c D(MK-N)

where M is the cardinal of set: NN(0,N/(k-1)) and
the (M +1)'™ equation is an identity. This system
can be represented as a matrix as below:

@)=t = [, = = [®0=mm
| | L |
hot, noty Rty

or, with such new notations as: ®=L®. The
coefficients of L matrix are to be obtained from
Cgr--»Cy by an obvious new arrangement. So, @ is
the eigenvector of L for the eigenvalue A =1. The
Theorem shows that the spectrum of L matrix
covers the eigenvalue A = 1. Now, we can evaluate
all the values of ® on integer points of the interval
[0,N/(k-1)] (all the rest will be null).

We shall take into consideration the Daubechies
dilation equation [5], [6]:

D(x) = ¢, P(2x) + ¢, P(2x-1) +
+ ¢, ®(2x-2) + ¢, P(2x-3), ¥ xER,

where:

N=3,k=2,Supp = [0,3], ¢ = (1+\/ﬂ/4,
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c,= (3+\/??)/4, c,= (1—\/?)/4, c = (3—\/5)/4.

Daubechies showed in [5] that the solution of this
equation is continuous, so ®(0) =&(3) =0. Then
M =2 and:

e)| _ ¢ S| [P(D)
D(2) - ¢, c, ®(2)

The spectrum of this matrix is {0.5,1}, and, in this
case, the minimal eigenvector corresponding to
the unit eigenvalue offers this solution: ®(1) = 2c,
®(2) =2c,. Now, the scaling function can be
evaluated in any dyadic point of {0.3} interval,
using the dilation equation. The shape of this
scaling function can be seen in Figure 4.

- 11 -
z
N W
C I VAR

T T T T
I i"r /\ l
-1 0 Y 2
e -—‘ .
1 -2 1 1

Figure 5. The Daubechies Wavelet
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3.Wavelets
3.1 Wavelet Definition and Examples

The BDEs proposed a new pattern for solving the
SP problem. However, this problem has not been
solved yet. Let us now return, for an instant, to the
graph of Figure 1.b. One can clearly observe the
vibrations of the last graph round about an average
instantaneous value. The vibrations are called
"small waves" and they are the measure of a signal’s
local unsteadiness. The BDEs offered a new
pattern to signals’ processing , but with some
restrictions. One restriction asks for the values of
any scaling function to be positive, i.e. only the
positive signals can be processed. Of course,
because of any natural signal being bounded, using
a simple translation on axes can make any signal
be positive. One most important requirement is
the orthogonality of the scaling functions family:

V= {(I) } , where:
me mnEZ

¢ R-=C ¥mneZ.
mn

X »(bmn(x)%(k"“x-n)

Unfortunately, it is impossible that this
requirement is met. So, a new concept has been

defined [6].

e Definition 6 @

A "wavelet (-mother)" is any application of the
shape:
Y:R-=C
def n
x=>Wx) =3 (-1)",_ ®(kx—n)
nEZ <
where @ is the unique solution of the BLDE
(having A = 1):

N
d(x)=2, ¢ d(kx—n)  ¥xER.
n=0

The number of non-zero terms in the sum defining
the wavelet- mother is obviously finite. If
0&{cgy.-Cn s thenc, =0, foralln>1o0rn<1-N.
The following wavelets examples are deduced
from the few BLDEs already presented.

4th Example

Box - function ::

Studies in Informatics and Control,Vol.3,No.1,March 1994



1, x€[0,1)
(@(x)=P(2x)+P(2x—1))
0, elsewhere

Q(x)=

leads to Haar wavelet:

‘P(x)=c1(D(2x)—co¢’(2x—1)=(D(2x)—®(2x— 1),
¥XER,

(The associated graph is shown in Figure 6).

P -
1
1 .
o) x
Figure 6. Haar’s Wavelet
5th Example
Hat-function::
[x ,x€[0,1)

2-x, x€[12] ((D(x)=%¢(2x)+d)(2x—l)+
B(x)=1 )
+5¢(2x—2))

0, elsewhere
leads to the wavelet in Figure 7, described by the
relation:

W(x) =-c,®(2x +1) + ¢, P(2x)-coP(2x-1) =
=-O(2x + 1)/2 + P(2x)-P(2x-1)/2
6th Example

The Daubechies scaling function leads to the
wavelet in Figure 5.

The wavelet support is also compact (like the
support of the scaling function); for k=2, if Supp
(F)=[N_N_ ], then

1
Supp (¥) =5 [1-—N++ N_,1+N_ - N_].
Given the correspondence between the scaling

function ® and the wavelet W, ® is also called
"wavelet-father".
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Figure 7. "Hat" Wavelet

3.2. Wavelet and Dilation Subspaces in sz
Orthogonality

We will use the scaling function and the associated
wavelet- mother for generating two bases in 8%
The bases can produce a solution to the SP
problem in the field of non-stationary signals.

Let us consider the BLDE as in Definition 5 or
Definition 6, with A =1. The corresponding
scaling function @ is generated for both the family
v and the wavelet-mother W. For each fixed m€Z,
"v,"denotes the subspace spunin s2 by the "partial"
family: v ={®__}n€Z. V_ is called "dilation
subspace” and its structure is the following:
v =<[] >=
m mn nEZ
NZ

=1 Ya® |a€C ¥vn==N_N N NeN

Py n mn' n 21T 2

1
(finite linear combinations (expansions) with
elements from v ). Given the relation:
tI)(k“(mH)x—n):z c (I)(khmx-—kn-p), ¥XER,
PEZ P

which holls for each fixed m, n€EZ, we can write
that.(bm +1,0E Vi S0 Vi 41 =V, Consequently, it is
obvious that:

<V,<SV.< <.< <
WSV, S SV SV SV SL.Sv <

Daubechies and Mallat [6] showed that:
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Uv_ is dense in S” and Nv_ ={0}.

meEZ mez "

That means v is a basis in §?, so for any fes? there
is a finite support family of coefficients
{fntmnez=<C expressing f as below:

fx)=2, Zf (D(k

meEZ neZ

x—n), ¥xER.

In this relation, the two-scale idea and the
frequency grouping by k-octaves ((k ™k ™ *1]) are
both suggested once again.

Now, we can define W= {‘I’mn} , Where:
mnEZ

‘I‘ :R"’C
s (x)@k m/zllx’(k—mx—n)'

that is the family of wavelets generated by the

wavelet-mother W with the same technique as in

the case of v family, but with the additional factor

"k™21 for normalisation reasons. For any fixed

meEZ, the "partial” family W= {\Pmn} spun in
nezZ

a subspace denoted by"W_"in S, Its structure is:

Wm= <Wm>=
N,

= E ﬂnlpmn

n=-N

,8 €C, VnE"Nl,NZ,N N,EN

(finite expansions with elements from W ). As
above, W__ is called "wavelet subspace" and the
relation:
W (k-(m 1)
PEZ

¥xER,

leads towards W ;=<v_. The most important
property of wavelet subspaces derives from its
orthogonal structure [6].

For clarity sake , the orthogonahty w1ll be studied
in the Hilbert space L*(7). Be ®, €L2(x) with the
property:

+x
_f @ (kx—n)Py(Rx=m)dx=3_

¥m,nEeZ,

where J_  is the Kronecker symbol. For examplc
the box- functnon satisfies this requirement. @ is
used to initialize the approximation process in
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x—n)=3 (-1)°c, _ (D(k_mx—kn-p),

solving BLDE. Then, the first approximation of
the scaling function ® is

®,(x)=0, c,Po(kx—n), ¥xER,
nEZ

and we can write the following result:

re iy 2
Jo P mydx=k [0 ["2 " ¢,
— PEZ P P

where
fl<D()| dx.

':;Dl(x-m)" will be orthogonal with "®," if and only
i

<11> |lo, 1|2 E c cp e = KO

¥ymeZ.
m 0,m

Also, we can choose a normalised version of
@] | Pyl | =1), so that <11> is equivalent to:
2= ) ¢ tm = KOy ¥MEZ.

pEZ
Using an induction process, we can show that
<11’> is closer to

¢ (xm) LD ()=D, (xm)LD ,(x),
¥meZ\(0).
To the limit n-w, & ->®, so that <11 bis>
< q(x-m) LP(x),—~+meZ\(0) (P is orthogonal
upon all its translates). Furthermore, if
®(x-m) L D(x),~mEZ\(0), then anytwo different

translates of @ will be orthogonal, because of the
following obvious relation:

" e m) Y = [ D () TTF A=),

¥Ym#nEeZ.

So, only a certain kind of BLDE produces
orthogonal solutions. In this case, the subspace v,
is spun by an orthogonal family. Nevertheless, this
is not a sufficient condition for the orthogonality
between the family of subspaces {v_ } 7. Let us
consider that @ is an "orthogonal scaling function"
(in the above sense ). Then the corresponding
wavelet will satisfy the properties:

Py P dx=
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=2 (-1)",_ +fw¢(loc~p)mdx=
pEZ =

2 —
"o 2<—n“c1_pcp_km -

= 'Y (-1 _ o WmEZ (ll¢|l2=1);

PEZ
<12> ¥(x) P(x—m) +mEZ\{0} <

@y (-n° C1—pCp— =0 ¥meZ\{0}
PEZ

In the same manner, it follows that:

flp(x-m)mdx I € ¥ MEZ
pEZ

and: W(x) LY (x-m) ¥mEZ\{0} ¢ <12>.Like in
the scaling functions case, any of two different
translates could be orthogonal: W(x-n) LW¥(x-m),
Mn#m€EZ provided (12). In this case, W is spun by
an orthogonal wavelets family. Furthermore, even the
entire family of wavelet subspaces can be orthogonal,
by mutual orthogonality. To prove that, a new concept
is used: "the multiresolution of L (®"[6,8].

If & is recursively obtained from box-function and
the coefficients of BLDE satisfy the conditions
(11) and (12), then it is obvious that W _Lv_,
M¥m€EZ, and with a certain set of requirements [9],
we can write: W_@v_=v_ . ("®" denotes the
direct sum of two subspaces). This fact leads to:
OW,,  1OW =V, 1S V., for any mEZ and it
follows that:

ow =L'meV, ea( ® w_m) =L}1).
mEZ EN

The structure of the space Lz(l') is depicted in
Figure 8 and the orthogonal dashes suggest the
mutual orthogonality between the wavelet
subspaces.

@ Definition 7 @

A topological linear space has the
"multiresolution” property that if a dense
subspace expressed by a direct sum of other
subspaces exists, each subspace indicates a
certain precision degree of representation of any
space element. This precision is called
"resolution” and corresponds to a constant
"scaling factor" k™ (mEZ is constant).
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\\\‘::;;162£:1’55;;7/]

Flgure 8. The Multiresolution Structure of

65 (7). The Mutual Orthogonality Is Suggested
by the Position of the Dashed Lines

The relations above show that Lz(r) is a
multucsolut:on space. This fact implies that any
feL? (v) multiresolution space can be uniquely
expressed as:

s Fo

f=f,+f_o. + s T

where f € v, f<m>EW_m, AMmeEN. So, there
exists an_EC, ﬁmnE.C (Al-.m,nEZ?, for exp::essing f
as a finite expansion with scaling function and
wavelets translates:

f(x)= Z a, d(x-n)+>, ﬁmn‘P(k ™ x— )
mEZnEZ
MxeR.

The coefficients’ finite support is due to the
compact support of ® and W. This formula is
similar to Fourier’s series, the orthogonality of the
basic functions being also satisfied. However, ®
and W could not have been explicitly
mathematical formulae, their construction being
recursive. Theoretically, our problem is solved: we
have constructed a new basis in L (T) wavelets
basis - so that the SP problem has a unique
solution.

Referring to the formula above, the
approximationsf, +fy+..+f_ ., withMENare
called "details" [8], [10]. This approximation
process is very similar to the film developing
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process. If f is an image, then f, is "the coarsest
detail" [8), i.e. the most veiled (unclear) version of
this, meanwhile f___ (m€&N) are additive
corrections to f, making the details express the
real image more and more crearly. All these results
are easily generalised in Hilbert space 12 and
determine one of the most remarkable algorithms
with wavelets: Mallat’s algorithm (implemented
and used in image processing). This algorithm
solves the EP and its description can be found in
(8], [9), [10].

The meaning of the "multiresolution" concept is
subtle and to point it out needs time.

However, we can emphasize that every correction
f_.,- isamember of W_ , which is the wavelet
subspace with a resolution associated with the
scale factor "k™". The action of W__ is limited in
the frequency domain to a single k- octave:
[k(™*D k™). Practically, this resolution is the
correction power of the subspace W__ . The m
growing strengthens the resolution, that is the
image becomes more and more precise, and
thanks to that the correction will be more refined,
atasharper local level. The image quality improves
with each correction. The correction process
should be ended if the image proves accurate
enough.There is no need to proceed on very high
resolutions for a good image quality. This result is
due to the capacity of wavelets of obtaining their
support around a point, with a simultaneous
increase in the frequency, imposed by the
sharpness of the k-octave specific to the wavelet
space including the wavelets. Actually, this is a
translation and omothetia consequence.

The use of wavelets is not to be universal, but, for
a certain kind of non-stationary signals and with a
cleverly chosen wavelets set, the feature above
seems to be very powerful.
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