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Abstract: Six methods that solve tridiagonal sys-
tems with one equation per processor are studied
in this paper. A catalogue of their complexities is
given. The main goal is to stress the importance
of this elementary system when solving large tridia-
gonal systems.
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1. Introduction

This paper is concerned with algorithms capa-
ble of solving the tridiagonal system Az =d on
a parallel computer, when the dimension n of
A is equal to the number of processors p. Such
a system is called elementary and the problem
of solving it is denoted by 3DIAGEL(p). This
problem is common to all known parallel algo-
rithms: cyelic reduction of Hockney and Golub
[6] in the implementation of Reale [10], Wang
partition algorithm [14] in a variant presented
in [4], or the divide and conquer algorithm of
Sun, Zhang and Ni [13], Miiller [9] and Bondeli
[3)-

Viewed within the context of the MIMD dis-
tributed memory computers, parallel architec-
tures show simplicity, when they are ring, and
accessibility,, when they are hypercube. There
are many other architectures in which a ring
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Systems

can be embedded. There are p processors, de-
noted PU, .Pl, .y Pp—l-

Let us denote by a« the time required by a
floating point operation and by ¢+mp the time
necessary for the transmission of a message of
length time and 3 the time during which a float-
ing point element (and not a byte, as usual) is
actually transmitted. A processor can simulta-
neously use all its ports (multiport model) and
two communication models are available: full
duplex (by default) and half duplex.This paper
does not use others but known global commu-
nication algorithms. [11, 8, 12, 2].

2. Solving Elementary Tridiago-
nal Systems

In fact,the tridiagonal systems problem-solving
algorithms (except Wang) are not so simple,
since each processor has 1-2 equations. But pro-
cessors which have two equations can eliminate
one of them; for example, if a processor has the
equations:

bizi1 + a;z; + Ty = d;
big1Zi + QGpiTigr + CipTigz = dig

z;41 will be expressed by the second equation
and replaced in the first, in time 6a. After solv-
ing the elementary problem, the processor will
compute z;4; in time ba + (o + 3).

Now, we have to solve a 3DIAGE L(p) prob-
lem, processor Pi having the following equation
(i.e. its coefficients):

bezi_1 + arzr + cxTre1 = di

In the sequel are presented several ways of
solving this problem. There are two points to be
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considered: the basic algorithm and the commu-
nication technique; as all transmitted messages
are very short, a pipeline will be not useful, nor
the partition of a message into packets will be.
The execution times for all algorithms are sum-
marized in Table 1 for half duplex model and
in Table 2 for full duplex.

A. Gaussian Elimination.

a. The well- known Gaussian elimination al-
gorithm (without pivoting) can be implemented
on a ring as follows. Processor P} receives
ar—1, Ck—1, dp—1 coeflicients from its left, then
updates its coefficients (aj, ¢, d) and sends
them to the right; this is the elimination step;
then it receives the solution x4, from its right,
computes r; and sends it to its left, complet-
ing the backsubstitution step. It can be noted
that computation and communication are fully
sequential, starting from Py and ending on Py
computing zo. Thus, the execution time is the
same as that of the sequential Gaussian elimin-
ation (let us approximate it by 8pc, for simplic-
ity) for arithmetic; communication complexity
is (p — 1)(2¢ + 4B). The same execution time
(line Aa in Tables) is valid for any architecture
in which a ring can be embedded.

b. The sequential nature of Gaussian elim-
ination is often mentioned; however, there 1s
one way to parallel it, namely twisted factor-
ization in [1]. Gaussian elimination proceeds as
schematically presented in Figure la, where Ar-
row 1 shows the order in which subdiagonal el-
ements are eliminated and Arrow 2 the order in
which the unknowns are computed. But other
way is also possible, as in Figure 1b: in paral-
lel one eliminates subdiagonal elements for the
first half of the system and superdiagonal ele-
ments for the second half. Then, also in paral-
lel, the unknowns are computed, beginning with
the center equations, towards the first and the
last, respectively. The execution time will be
half that of the algorithm Aa.

c. The idea of [13]; each P; processor sends
its coefficients (ag, by, ci, di) to all the other
processors; this is an all-to-all broadcast; then,
all processors solve, in parallel, the whole sys-
tem. Thus, the arithmetic complexity is 8po
and the communication complexity will depend
on the architecture and on the communication
model. Execution times specified in Tables are
the best known' times for all-to-all broadcast,
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short messages.

For example, on a ring, half duplex model,
each processor sends a message to the right
(starting with its message), receiving other mes-
sage from its left, until the message arrives to
the processor from its left, i.e. after (p—1) steps.
Communication time is (p — 1)(o + 40).

In a full duplex model, each processor can
send its message to both neighbours, receiving
at once their messages. This reduces the com-
munication time by approx. 50 %.

On a hypercube, algorithms are complicated,
and it is not the goal of this paper to present
them.

d. Other idea, not yet common to the litera-
ture, would be to let a single processor solve the
system. Each processor sends its coefficients to
a processor P, (this is a gathering), which solves
the system, while the other processors are idle;
then, P, sends to each processor the solution it
needs (this is a scattering).

Gathering and scattering have the same com-
plexity, being dual operations. On a ring, P.
sends messages on both channels, beginning
with those meant for the farthest processors; all
the other processors re-transmit messages until
they receive the message addressed to them. On
gathering, the same algorithm is used, but in re-
verse order. Communication takes p(c+28), as
4 elements are transmitted to the gathering and
1 to the scattering.

B. Fully Parallel Cyclic Reduction.

Cyclic reduction is a well- known algorithin,
so it will not be reminded here. Usually, at a
first step recduction is recursively applied, halv-
ing each time the number of equations; then, so-
lutions are found in a substitution step. When
applied to 3DIAGEL(p), some processors are
idle most of the time and only one ‘central’ pro-
cessor works all the time.

The idea is to use reduction from the point
of view of each processor. Let us denote by
er = (ag,bg,cp,dr) the vector of coefficients
of an equation and consider e; = (1,0,0,0) for
j<0orj>p—1(adding z; = 0 to the sys-
termn equations does not change the solution);
the evolution of the computation is suggested
in Figure 3; €} denotes the coefficient vector be-
longing to Py at the recursion level I. At the first
recursion level, P, communicates with its imme-
diate neighbours on a ring; at the next levels,
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P, communicates with processors P;, the ‘dis-
tance’ |j — k| between the processors doubling
each time. On a hypercube will only immedi-
ate neighbours communicate. There are logp
recursion levels.

Arithmetic complexity does not depend on
topology and is always 12(logp)a. On a hyper-
cube, communication complexity is (logp)(o +
48), while on a ring: BP9l +48) ~
p(o + 48). For the half duplex model, commu-
nication time is twice longer.

C. Parallel Prefix Method.

Another algorithm with O(logp) for arith-
metic is proposed in [5]. In a matricial form,
the equation of P can be written like that:

Thk41 ar Bk Tk
Tk = 1 0 0 Tp-1
1 0 0 1 1

& Xi41 = Be X

with z_1 = zp = 0. Then X} can be expressed
as: X = Br_1Bi—2 - B1BoXp.

Let Cl = BjBj_1---Bj. If all the products
C{;, for 0 < i < p—1, and Xy, are computed,
then solutions can be computed. The prob-
lem of computing the products C} is a classical
one in parallel algorithmic - prefix sum, see [7].
Computation proceeds like in Figure 2.

After the computation of Cg_l by Pp_y,
equation X, = C{,’—lXo yields Xy . Then P,_,
broadcast X to all other processors, which
compute the appropriate solution.

Arithmetic complexity is 20(log p)a; at each
communication step 6 elements of a matrix C}
are transmitted, the last row remaining un-
changed on multiplication. On a hypercube,
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communication only takes place between neigh-
bours. On a ring, execution time is computed
the same way as for the cyclic reduction. See
Tables for the results.

3. Comparisons and Conclusions

Execution times of the six algorithms which
solve 3DIAGELI1(p) are listed in Table 1 and
Table 2. Among many possible conclusions, our
selection keeps the following:

- on ring topology, for the Gaussian elimin-
ation, the best algorithm is the twisted factor-
ization algorithm b; on bypercube, for the half
duplex model the new algorithm d will be the
best; for full duplex, one can choose between d
and c;

- fully parallel cyclic reduction. is always bet-
ter than prefix method;

- on hypercube, cyclic reduction is obviously
the best algorithm;

- on ring, however, the twisted factorization
is usually better than cyclic reduction. For a
half duplex model, the relation:

dpa+(p—1)(e+28) < 12(log p)a + p(20 + 873)

]
12 ogp _ J-fc;ﬁﬂ

4

is obvious; for a full duplex model, the right
term of the unequality will be %f'-, and, usually,
B > 2a (transmission is slower than comput-
ation).

Of course, the list of algorithms solving
3DIAGEL(p) can be enriched. The main point
is, when choosing an algorithm for solving tridi-
agonal systems, to use the appropriate solver of
the elementary problem that eventually comes

up.
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Table 1: Execution Times for Solving 3DIAGE L(p), Half Duplex Model

Method Ring Hypercube
Aa 8pa + (p — 1)(20 +453) 8pa + (p — 1)(20 + 40)
Ab 4pa +(p — 1)(o +25) 4pa + (p— 1)(o + 25)
Ac 8pa+ (p— 1)(o +453) 8pa + l%;—:; (20 + 83)
Ad 8pa + p(e + %,@) 8pa + 2(log p)o + 5 f’og—; 3
B 12(logp)a + p(20 + 85) | 12(logp)a + (logp)(20 + 85)
C | 20(logp)a+p(Fo+ 7B) | 20(logp)a + (logp)(20 +78)

Table 2: Execution Times for Solving 3DIAGEL(p), Full Duplex Model

Method Ring Hypercube
Aa 8pa + (p — 1)(20 +45) 8pa + (p — 1)(20 + 48)
Ab dpa+ (p — 1)(o + 253) dpa+ (p— 1)(o +28)
Ac 8pa + p(30 + 20) 8pa + % (0 +45)
Ad 8pa + p(o + 23) 8pa + 2(logp)a + 5 | = | B
B 12(log p)a + plo + 45) 12(log p)a + (log p) (o + 45)
C | 20(logp)a +p(30.+ 38) | 20(logp)a + (logp)(20 +75)
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Figure 1: Computing Schemes for: (a) Classical Gaussian Elimination (b)Twisted Factorization
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Figure 2: A Scheme for the Computation of Ci in the Prefix Method
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Figure 3: Computation Scheme for the Fully Parallel Cyclic Reduction, for p = 8
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