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Abstract: This paper gives a new parameterization of all
stabilizing or pole-placement controllers in unitary feedback
systems. A polynomial matrix fraction description of the system
under consideration is taken as starting point, and the coefficients
of certain polynomial matrices are given the role of parameters.
To make sure that the resulting controller is proper, some
constraints are imposed on the degrees of the elements of the
polynomial matrices involved. These features make the proposed
parameterizations very simple, easy to handle, and suited to
multi-goal controller design. Based on such a parameterization, an
algorithm is proposed to design the controller for robust
asymptotic tracking and disturbance rejection. Finally, some
numerical examples are presented.
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parameterization; feedback control; robust asymptotic tracking
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1. Introduction

A fundamental and implicit requirement in any
control system design is to achieve closed-loop
stability. Additional requirements such as
decoupling, (asymptotic) disturbance rejection.
robustness, etc. are often to be met with. A
convenient way to cope with this multi-goal design
specification, is the controller parameterization
method, according to which all stabilizing or
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pole-assigning controllers are first parameterized,
while the final controller is selected within the
parameterized collection by fixing the "free"
parameters so as to properly achieve additional
design goals.

Since the publication of the celebrated paper by
Youla. Jabr and Bongiorno [1], many papers have
appeared which introduce various kinds of
parameterization for pole assigning or stabilizing
controllers, sce e.g. [2]-[9].

As it is well-knowr in systematic (computer-aided)
control system design the properness of the
parameterized family of controllers is an important
issue [2]. When the considered system is represented
by the polynomial matrix fraction description
(MFD). ensuring properness of the resulting
controllers is all but a trivial issue. Only for
single-input single-output plants, have G. Celentano
and G. De Maria [6] recently proposed a new
parameterization of stabilizing controllers which
actually ensures properness of the resulting
controllers.

This paper gives new parameterizations of proper
pole assigning or stabilizing controllers in unitary
feedback svstems. The new parameterization
involves polynomial matrices only, and ensures
propemess of the resulting controllers. Furthermore,
since the free parameters are simply coefficients of
certain matrices, the computations entailed by the
subsequent controller design are very
straightforward.

In what follows, we use the following notations: dA
denotes the degree of polynomial A, or the maximum
degree of the elements of polynomial vector A; dc;
B (dr; B) denotes the ith column (row) degree of the
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polynomial matrix B. For any rational matrix G,I1
[G] and SP[G] denote the polynomial part and the
strictly proper part of G, respectively; ie G =I1
[G] + SP[G], where SP[G] is strictly proper, and
TI[G] is a polynomial matrix. Furthermore, unless
otherwise specified, all matrices in this paper are
polynomial matrices. Arguments of polynomial or
rational matrices are dropped for the sake of
simplicity.

2. Parameterization of Pole-assignment
Controllers

Consider the unitary feedback control system shown in
Figure 1, where P is the (xm) matrix transfer function
of the plant, while C is the matrix transfer function of

+ C +

First, multi-input single-output (MISO) systems are
dealt with. In this case, F is the closed-loop
characteristic polynomial, and the considered
pole-assignment problem admits a solution [13] if
(D, . N)) are coprime, and dF=0D,+k-1 The following
theorem provides a parameterization of all proper
controllers that solve the pole-assignment problem.

Theorem 1

Suppose that the MISO plant P of the unitary
feedback system shown in Figure 1 is strictly proper,
and

9F>3D, +k- 1 2-2)

where F is the desired closed loop characteristic

Figure 1. Unitary Feedback System

the controller to be designed. Let (D, . N)) and (D,

N ) be irreducible left and right MFD of P, respecnvely

D, is row reduced with row degreesn, ,i=1,2,.

D, is column reduced with column degrees k;, i= l 2
. m. Let k be the maximum, with respect to 7, of k; ;

furthermore let (X,,Y) and (X..Y)) be irreducible left

and right MFD of C, respectively.

For the sake of simplicity, we assume that P is strictly
proper. The results presented here can easily be
extended to the case when P is proper, but not strictly
proper. As it is well-known [13], the pole assignment
problem, or more precisely (in the multivariable
case) the denominator matrix assignment problem, is
equivalent to solving the Diophantine equation:

DX, +NY,=F @-1)
subject to the constraint that C:=Y_ Xr'l is proper,

where F is the closed-loop denominator matrix
(characteristically polynomuial).
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polynomial. Then, the family of all proper
pole-assignment controllers can be parameterized as
follows:

c=YX"' (2-3-3)
X, =X,-N, T (2-3-b)
Y,=Y,+D,T (2-3<)

where (X, , Y) is any solutlon of the Diophantine
equation (2-1) such that D Y0 is strictly proper,
while 7 is a parameter polynormal vector subject to
the following structural constraints:

JT,<IF-aD, -k, . i=1,2,..,m (4

where T:is the i-th element of 7, and dT, =-1 implies T;70.
Proof. First, we prove that C, as given by (2-3-a), is
a proper pole-assignment controller if inequality
(2-4) holds. As a matter of fact, one may check by
direct substitution that X_and Y, as given by (2-3),

solve the Diophantine equauon(Z -1), forall 7. Since
D’ Y is strictly proper, we have:
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dY, <max dor; D,= max d¢; D, =k (2-3)
i i

Thanks to the predictable degree property [12], and
in view of D_being column-reduced, one has:

B(Dr T) = max (3T, * kl) (2'6)
i,Tian

From (2-5) and (2-6), it follows that

dY, < max (dT; +k) 2-7
and in view of (2-4)
Y, < 9F-3D, . (2-8)

Since the plant P is strictly proper (by assumption),
one has

AN, Y,) <oF (2-9)
whereby, in view of eq. (2-1),

oF = dD; +dX; (2-10)

Inequality (2-8) and eq. (2-10) imply that C is proper.
Since (2-3-b) and (2-3<c) are the general solution of
Diophantine equation (2-1), then [14] for any pole
assignment controller C, be it proper or not, there
exists a T such that C can be written in the form of
(2-3). To conclude our proof we need to show that C.
as givenby (2-3-a), is proper only if (2-4) holds. This

part of the proof will be by contradiction. Suppose
that, for some j,

oT; > oF - dD; -k; , (2-11)

and note that, in view again of the predictable degree
property [12],

3D, T) > 9F - 3D, . (2-12)
From (2-2) and (2-12) it follows that

a0, T) > k-1 ; (2-13)
in turn, this and (2-5) imply

3Y, > OF- D, . (2-14)
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Since, by assumption, £ is strictly proper, ie. dD, >N,

(2-14) clearly implies, in view of eq. (2-1), that C is not

proper. Hence, the propemess of C contradicts (2-11).
Q.ED.

Now, the multi-input and multi-output (MIMO) case
will be discussed. Precisely, we deal with the
closed-loop denominator matrix assignment
problem defined in [13]; matrix F of eq. (2-1) is the
desired closed-loop denominator matrix.

When F is a matrix, eq. (2-1) has a solution such that
Y, X, Lis proper [11]if (D, N)) are left coprime,
and F is a row-column-reduced polynomial matrix,
with row powers »; column powers D=l 1
and

ob,>k-1 . (2-15)

The following theorem provides a convenient
parameterization of all proper controllers solving the
closed-loop denominator-assignment problem.

Theorem 2

Suppose P is strictly proper. For any arbitrary
row-column-reduced denominator matrix F, with
row powers 7, , column powers b, ,1=1,2, ..., r,and
db,>k - I, the proper solutions to the denominator-
assignment problem can be parameterized as follows

C=YXx" (2-16-a)
X =Xy-N.T (2-16-b)
Y,=Y,+D, T (2-16<)

where (X, . Y,) is any soluuon of the Diophantine
equation (2-1) such that D Y0 is strictly proper,
while 7 is a parameter polynomxal matrix subject to
the following structural constraints:

bk , ifb 2k (2-17)
i i
0 . otherwise ,

uhereT is Lhe (ij)thelement of T, i=1, 2, .
=12, .

Proof. First, we prove that C, as givenby (2-16-a), is
a proper denominator-assignment controller if
condition (2-17) holds. As a matter of fact, one may
check by direct substitution that X and Y, as given
by (2-3), sol\e the Diophantine equatlon (2 1), for
all T Since D Y is strictly proper, then
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dc; YOSmk?x de, Y, = m:lx o, Y,< max dc, Dy =
=max di D =k ;
h

namely:
¢, YgS k-1< by (2-18)

Furthermore, since D, is column-reduced, eq. (2-17)
implies that

dc; (D, T) =max (aTji +k) < b,

i, Tji¢0
=12, ...,r , (2-19)
hence
oY, < b, , i=L2, ...t (2-20)
Let:

H = diag{s"‘,snz,...,snf} s
b
L o= diag{sb‘,sbz,...,s 3
In view of inequality (2-20), Y, HC'1 is proper. Since

F is row-column-reduced with row-power n; and
column power b, , it can be given the form:

F=HF_H_ . (2-21)
where F_ is biproper. Similarly, D, can be
expressed as D; = H D_ , with D_ biproper. The
assumed strict properness of P implies the strict
properess of H“IN1 . Now let:

X=X H (2-22)
and note that biproperness of X_ would imply
properness of C. As a matter of fact. should X_ be
biproper, then X_ would be column-reduced with
columndegrees b,,i=1,2. ..., r, hence the properness
of C would follow from inequality (2-20). We
conclude, then, the first part of the proof by showing
that X_ is in fact biproper.

From (2-1) and (2-21), by letting:

M = F_-H"N)(Y,H™"

and recalling that D_ is biproper by definition. one
has:

X =DM . (2-23)
Since H'IN1 is strictly properand Y, Hc'I is proper.,

matrix M is biproper. This and biproperness of D_
imply biproperness of X_ .
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To conclude our proof (second part) we need only to
show that C, as given by (2-16-a), is proper only if
eq.(2-17) holds. This part of the proof will be by
contradiction. Suppose that, for some (/, j),

then,
de. (D T)= max (aTiA + ki)> b. . (2-25)
] . Tu‘ #0 J )

Since DrYO'1 is strictly proper, it follows that
dc, Y, >b,

namely. C is not proper. Hence, the properness of C
contradicts (2-24).

QED.

Remark 1. By minor changes, Theorem 1 can be
extended to the case in which P is proper, but not
strictly proper.

Remark 2. It should be apparent that the parameters,
namely the coefficients appearing in the elements of
T. carry in a quite direct way into the coefficients
appearing in the elements of X_and Y, thus making
sucha parameterization particularly convenient. The
number of free parameters is limited by the order of
the controller, only,

3. Parameterization of Stabilizing Controllers

By considering again the unitary feedback system
shown in Figure 1, we say that a controller is
stabilizing if the overall system is closed-loop
(asvmptotically) stable. Referring to the Diophantine
equation (2-1). the only constraint to take into
consideration in dealing with stabilizing controllers
is det(F) being Hurwitz. Thus, as compared with the
case of pole- or denominator-assignment, there is
much more freedom here in fixing the coefficients of
the polvnomial entries of F.

By taking advantage of the parameterization of
pole-assignment controllers dealt with in the
preceding section, the parameterization of stabilizing
controllers can now be tackled.

Since (D, N)) are left coprime, there exist
polynomial matrices (X,Y) satisfying the Bezout
equation:

D X+N, Y=1 . 3-1)
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Write, then, the rational matrix Dr'lY as:
D ly=npD,'Y]+SPD,'Y] =Q+R . (3-2)

and note that D_ R is a polynomial matrix. Similarly,
write the rational matrix RF as:

RF = TI[RF] + SP[RF] (3-3)

and“note that D (SP[RF]) is a polynomial matrix as
well.

Lemma 1

A particular solution to the Diophantine equation
(2-1) can be expressed as follows:

Xo=XF+N (QF +II[RF]) (3-4-a)

Y,y =D, SP[R F] (3-4-b)

where Dr'erO is strictly proper.

Proof.  Checking that Dr'er0 is strictly proper is
straightforward. By substituting X, and Y , into the
left hand side of eq. (2-1), one gets:

D, XF +D,N_(QF +TI[R F]) + N, D, SP[R F] =
= D,XF+N,D, (QF +TI[R F] + SPR F]) =

= D, XF+ND (Q+R)F= D XF+N,YF=F
QED.

Inthelight of Theorem 2 and Lemma 1, the following
Theorem 3 gives a parameterization of all proper
stabilizing controllers for a unitary feedback control
system,

Theorem 3

If P is strictly proper, all proper stabilizing
controllers for the unitary feedback control system
of Figure 1 can be parameterized as follows:

Be=x! (3-3-a)
X, =XF+N (QF+TI[RF])-N, T (3-5-b)
Y,=D,SP[RF]+D, T 3-3<¢)
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where X is column reduced with column degrees b;
i=1, 2, ..., r. The closed-loop denominator matrix F is
any arbitrary row-column-reduced matrix, with row
powers 7, and column powers b, ,i=1, 2, ..., r, such that
det(/) is Hurwitz. T is any arbitrary (parameter)
polynonual matrix such that:

b~k , i1fb.2k. |,
i FA

0 , otherwise .,

where Tij is the (i/)-thelementof 7", i=1,2, ... ,'m
=L2 ..,r.

>

Proof. Immediate from Theorem 2 and Lemma 1.

Remark 3. The parameterization given in Theorem
3 1s alinear one, i.e. the coefficients in anyone of the
elements of X or Y are linear functions of the
parameters, namely of the coefficients appearing in
the elements of F or 7.

Remark 4. The constraint that det(/) be Hurwitz can
obviously be given the form of a set of (highly
non-linear) Routh-Hurwitz inequalities. A priori
fixing some of the parameters with the specific
purpose of reducing the stiffness (nonlinearity) of
these inequalities may prove to be, on occasion, an
expedient trick.

Remark S. In the MIMO case, pole-assignment
amounts to nothing but asking that det(#) be a
prescnibed polynomial. This 1s generally different
from closed-loop denominator assignment [13],
where all entries of F have to take on a prescribed
{polvnomial) value. If, in Theorem 3, the condition
that det(F7) be Hurwitz is substituted by det(#) be
equal to a given polynomial, a parameterization is
obtained of all proper pole-assignment controllers in
MIMO unitary feedback systems.

Remark 6. The previously discussed constraints on
F do not imply at all that the coefficients
corresponding to the highest power of s, in all entries
of /. must be different from zero.

4. Robust Controller Design

As an illustration of the way the results obtained in
the preceding section can conveniently be used in
unitary feedback control systems design, the
problem of control design for robust asymptotic
tracking and disturbance rejection is here considered
in some detail.

Denote by ffs) the polynomial made up of the
modes of all reference and disturbance signals. If
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all such modes (the zeroes of f{s)) lay within the

closed right half plane, then robust asymptotic

tracking and disturbance rejection is achieved if

[11]:

i) m>r (there are at least as many control as
controlled variables),

ii) no zero of f{s) is a transmission zero of the plant 7.

iii) f{s) divides every element of X_.ie. X
incorporates an internal model of f{s).

iv) the closed-loop system is internally stable.

General systematic methods for the design of
controllers that achieve robust asymptotic tracking
and disturbance rejection invariantly result in a high
order controller. When Theorem 2 is used to design
a controller that solves the closed-loop
denominator-assignment problem, it is a simple
matter to incorporate in X, an internal model of /(s).
(for a discussion of the robust asymptotic tracking
and disturbance rejection problem within a
somewhat more general parameter tuning approach.
see also [15, Sect.2]). Suppose, for the sake of
simplicity, that f{s) has n simple zeroes s,. s,, ..., S,
then, selecting 7 such that

Xo(s)=Ngs) TGsp) . i=1,2,....n . @-1)

is sufficient in fact to ensure that also condition (iii) above

is met with. In conclusion, we may set up the following

algorithm for the design of denominator-assignment

controllers endowed with the robust asymptotic tracking

and disturbance rejection property.

Algorithm

Step 1. Solve the Diophantine equation (2-1) for
X, and Y, and express X and Y, in the
form (2-16-b.c).

Step 2. Solve eq.(4-1) subject to constraints (2-17):
then, determine T.

Step 3. Substitute 7 in eq. (2-16), and get the
controller.

In order to obtain a robust controller of
minimum order, a conceivable line of attack 1s
to start with an F of order as low as possible.
then to check whether equation (4-1) admits a
solution (Step 2). In case it does not. increase the
order of F, and go back to Step 1: otherwise.
proceed to Step 3.

When no specific requirements exist on the
closed-loop denominator matrix, whence Theorem 3
can be used to design just a stabilizing controller. the
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order of the resulting controller may decrease further.
Assuming again that s} has n simple zeroes, s, s,,

.s, ., let X_and Y be in the form of egs. (3-4). In
order for matrix X, to incorporate an internal model
of ffs) it is sufficient that the parameters of Fand T
are given a value such that

X(s) F(s;) + N(s;) (QGsp) F(sp) + II[R(sy) F(spl) =
=Nr(Si) T(Si)

(4-2)

for i=1.2, ... n.Itis straightforward to modify the
algorithm above accordingly, so as to make it suitable
for the design of stabilizing controllers endowed
with the robust asymptotic tracking and disturbance
rejection property.

5. Numerical Examples

To iliustrate some of the potential advantages
entailed by the proposed parameterizations two
numerical examples will now be discussed in
detail.

Example 1
Consider the plant

s+3

P =
(s+1)?

and suppose that one has to designacontroller Csuch
as to produce a fast and smooth response of the
controlled variable to a step variation of the reference
signal. with robust asymptotic tracking. As it is
well-known, C must incorporate an integrator.

Let / be given the form; F = s°+ a, §? + a s+a,;
the corresponding (asymptotic) stability region is
specified by the following (Routh-Hurwitz)
inequalities:

a>0 . 1=0.1.2

a,a;-a; >0

From the Bezout identity:

(s+1)x(s) + (s+3) y(s) =1

one gets

X(s) =0.1875s+1, y(s)=-0.18755-0.4375,

and
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—0.06255+0.1875
(s+1)2

II[RF] =0.0625 [-s + (5-ap)) s + (5 a, - a; - 9)]
-0.0625[(5a,~a,-9a+13)s+(3a +a,~5a,+9)]

SP[RF]= [(5a,-a,-%, 2 o M Wi

(s+1)

By substituting the above expressions in egs. (3-5)

one gets:

X, =s+0.0625 (a, - 5 a; + 25 a, - 45)

Y, =0.0625[(5a,-a;-9a,+13)s+

+(3a;+a;-5a,+9)]

In order for X, to incorporate a zero at the origin, we

have to set:

a;-5a;+25a,-45=0 ;

hence, we are left with two degrees of freedom that

can be used to move to a desirable region the zeroes

of F, namely the poles of the closed-loop system. In

any case, the corresponding controller will be a

simple PI. For instance, a, = 14 and a, = 145 yield a,

=420 and

As for the controller, one gets:

1 125484
C =Y, X1=

Q(s)=-0.1875, R(s) =

Example 2

Consider now a strictly proper plant with 2 inputs
and 2 outputs:

4s+1 1
sis S
P=
—3s-2 =2
s>-s S

its polynomial matrix fraction description is as
follows:

_|Is s |1 -1
Di=ly 41 N ‘—3 —2‘
p =|025+02 -04s+04| o |0 -1
r 108+02 0.6s+0.4 -1 of°

Suppose F is given the form:
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ajs+a; b stby
cis+cg  dys+dg

It is then easy to ascertain that det(F) is Hurwitz if
and only if (a, d, - b, ¢), (3 dy - by ¢ and (2o d, +
+a, d; -b, ;- b, ¢;) have all the same sign, and none
of them is zero.

Resorting to Theorem 3, a stabilizing controller can
be parameterized as follows:

T

N d

aj—<, b,
1

2ay+2a,-cy—c,  2by+2b,—d;—d,

—330+231—00—c1 —3b0+2bl—d0—d1

r

If we select: aﬂ =a1 =dl = l'. b0= 3’b1 =C1 =0, C0= -l;
and d, = 10. then

C;Ymﬂ;04

0 Y

is a nondynamic totally decentralized
stabilizing controller. In fact, the determinant
of the ~corresponding closed-loop
denominator matrix

s+1 3

Fe -
-1 s+10

zeroes at p; = 6.8467 , p, = -15.1533 (closed-loop
poles).

6. Conclusions

Referring to systems for which a polynomial matrix
fraction description is available, this paper presents
new parameterizations of proper pole-assigning or
merely stabilizing controllers. These
parameterizations have linear form and involve
polynomial matrices only, so as to be pretty easy to
handle.

Although the present paper deals with
continuous-time systems only, the extension
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to discrete-time systems is almost straight-
forward, the major difference being the way
of computing the stability region (Jury
inequalities instead of Routh-Hurwitz
inequalities).
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