Formal Derivation of Concurrent
Executable Specifications

Dan Marius Dinescu

Office Automation and Basic Software for PCs Laboratory
Research Institute for Informatics

8-10 Averescu Avenue,

71 316 Bucharest

ROMANIA

Abstract: The paper presents asoftware development environ-
ment- MIE- (Multispel Integrated Environment)based on for-
mal methods, which assists in both sequential and concurrent
system development. MIE uses its own formal, concurrent
executable specification language, named MULTISPEL
(MULTI level SPEcification Language). MULTISPEL main
characteristics are presented and illustrated.

Keywords: software development environments, concurrent
systems, client/server model, executable specifications, formal
methods, formal specification language, formal
verification rules, correctness proof.

Dan Marius Dinescu was born in Romania, in 1954. He
received his M.Sc. degree in informatics from the University
of Bucharest, Faculty of Mathematics, in 1978. Since gradua-
tion, he has been working at the Research Institute for Infor-
matics. His topics of interest include formal
specification/programming languages design and use, CASE
systems, human interfaces, artificial intelligence, information
and data management. His programming experience combines
several computer types and operating systems and more than
40 programming languages and DBMSs. He authored and co-
authored papers which were published in the country or in-
cluded in Proceedings of international symposia.

Ileana Valentina Rabega was born in Romania, in 1955. She
graduated in mathematics from the University of Bucharest.
Faculty of Mathematics, in 1979. Since that year she has been
working at the Research Institute for Informatics in Bucharest.
Her fields of interest include formal specification/design and
correctness proving techniques, CASE systems, artificial in-
telligence methods applied to software engineering. She is
now a senior research worker and her published papers. in
Romanian journals or in Proceedings of international sym-
posia, are more than thirty.

Introduction

Use of formal methods in building software
development environments has been defined as
the main research topic of several projects
launched by the EC under their ESPRIT
Programme, such as LOTOSPHERE [2, 14],

Studies in Informatics and Control,Vol.2,No.4,Dec. 1993

Ileana Valentina Rabega

Artificial Intelligence Laboratory
Research Institute for Informatics
8-10 Averescu Avenue,

71 316 Bucharest

ROMANIA

RAISE (LACOS) [15, 16}, ATMOSPHERE.It can
also be retrieved in some projects to be carried out by
American universities, such as : Larch[7] and Unity|[9].

A prototype environment used to specify and
design sequential and concurrent
systems-MIE-has been devised for converging the
research topic defined above [4]. MIE uses its own
formal, concurrent, executable specification
language, named MULTISPEL [3].

MULTISPEL will serve for:

- sequential and concurrent system
specification and design

- executable specifications correctness formal
verification,

Any problem is liable to being approached by a
formal specification language, as MULTISPEL [1,
2, 6]. The only difference proves to be in the extent
to which correctness formal verification of a
problem can be completed. Critical systems need an
in-depth formal verification all through the phases
of their life-cycle, while less critical systems need just
a correct formal specification to start with.

Several aspects need be defined for critical systems
development and MULTISPEL can help as to:

- executable specifications correctness:
provability of MULTISPEL source code;

- executable specifications re-use:
MULTISPEL source code abstraction

~ concurrency of MULTISPEL executable
speciflications: acceptance of
non-determinism and capability of detecting
deadlock situations.

349

Many modern concepts of such programming
languages as: Unity [9], Larch [7] [USA], Aspik [2]
[Germany], Ada, occam [13] are used by
MULTISPEL.

MULTISPEL’s original characteristics are the
following:

— aframework within which system and process
are specified and designed uniformly ;

~ protocol definition on faces;

— the way of defining theories .

MULTISPEL stands for a broad spectrum
specification language [14, 15, 16] ,as:

— it supports system specification;

— it supports several specification levels
(specification refinement);

- it allows specification correctness formal
verification, i.e. system development as a
result of formal verification rules.

A concurrent system may be developed at three
different levels:

Level 1 consists in identifying global system
purposes, as a set of state spaces;

Level 2 consists in each formerly developed state
space being assigned a hierarchy of abstract
machines (the way a MULTISPEL process may be
represented). An abstract machine may derive
executable specifications, starting from abstract
data representation as theories;

Level 3 consists in source code generation with
several programming languages, based on the
MULTISPEL executable specifications.

A client-server model, using services (the way
actions and processes are described), and data to

be read/modified by these services, will
incorporate a concurrent system specification.

I.MULTISPEL Characteristics

An executable MULTISPEL specification of a
concurrent system includes one or several doers.
A doer controls resource (data) access; resources
(data) are represented by theories.

A scquential or concurrent system specification
will be possible by means of the following
specification units :

— theories

350

— processes
- face (types)
- doer (types)

which are finally instantiated as one or several
doers, that communicate by sending and receiving
messages.

1.1. Theories

A theory can be viewed as:

1) a sentence set, where a sentence represents a
relation without free variables;

2) a metapredicate, as far as its signature is
concerned: in this sense, theory axioms may be
divided into axioms and assumptions; axioms
decide on whether the predicate is true or
false, whereas assumptions must be true even
though the predicate proves false, otherwise a
semantic error will be reported.

The theory symbols name (value) sets, values,
relations. A theory parameterization will use notions
named sorts, operators, abstract relations. Parameters
form a signature which , for each notion (i.e. sort,
operator, relation), contains sorts manifest in their
arities (generically arity names a relation domain or
an operator/reducer < domain, range > pair).

A signature, therefore, contains symbols for
distinet:

(nullary) identifiers/numbers;

relators

infix operators

postfix operators.

Variables represent sort arbitrary values
(homonymous identities).

Predicates represent elementary relations (i.e. they
do not contain other relations). They are sorted, that
is their domain is a sort. A special predicate example
is equality (" ="), which is a congruence, and the only
one of the system. In some of their variables, relations
(including predicates) can be univoque . If so, and
given a restriction, they can be functional, i.e. they
can admit inverses in those variables.The relation
properties may be expressed as follows:

- there is a solution satisfying the relation:

:e: € D i.e. for a known "D", an "e" can be
found so thate € D

Studies in Informatics and Control,Vol.2,No.4,Dec. 1993

— all solutions satisfying the relation may be
found

SEQ :e: € Di.e. for a known "D" all "e" can
be found (ennumerated) so that e € D.

Reducers represent recursive closures of binary
functions on enumerations.

"The theory object consists of:

1) sorts: an ordered set, S, based on which an
order relation " <" is defined; order extends to
the Cartesian product S", n=2, by components;
sorts should be assigned distinct identifiers;

2) operators, possibly indexed (optionally
restricted) form set X, which defines value
names space, consisting of identifiers, (infix or
prefix) operators, numbers; operators can be
homonymous, but if they are,they will be of
different arities;

3) an indexed predicate set, P, (optionally
restricted) containing identifiers, relators:
predicates can be homonymous, but if they are,
they will be of different arities;

4) a reducer set, R, (optionally restricted)
containing identifiers, possibly homonymous ,
if a restriction is made on the argument
enumeration elements. Domain restrictions
are relations on indexes, true, if in the notion
domain and undefined, if not; restrictions need
not dynamical,but statical proofs .

Operators and relations must verify the regularity
condition:

foreach 0 € 2 (wl 48 1) and each w;, with

Wy < w; the set

{(w ,s)| 0EY, (w,s)andw 2w0} has a least
element (where w, wy, w,, s, are sorts in S);

for each p € P_; and each wy, with wy < w; :
{wi pPEP and w2 WO} has a least element
(where p € P, shows that predicate p has arity
wl).

The regularity condition makes:

- a homonymous operators domain set,
including reducers, be closed to infimum,
extended by ¢;

— homonymous operators ranges, including

Studies in Informatics and Control,Vol.2,No.4,Dec. 1993

reducers with the same domain, be disjunctive;

- an operator of which arity is inferior to
another homonymous operator be a
restriction of the latter.

The theory body is composed of theorems and
definitions which will be referred to as methods (as
in object-oriented programming). The theory
body can contain possibly (confined) indexed
distinct sorted free variables;the variable names
should differ from the operator and predicate
symbols.

Theorems (sentences) contain either
metapredicates (equivalent to axioms conjunction in
the theory) or first-order predicates.The theorems
(as first-order predicates) where all the variables
looked upon as not annotated are universally
quantified will contain the definition annotation
(": :") just in the following cases:

a’) A predicate (or relation"V = Term") of which
arguments are only variables and some of them
definitionally annotated, asserts that there is a
method for enumerating all definitionally
annotated variable valuations, that verify the
relation yielded by overlooking annotations;
this is an enumerating inverse theorem. E.g. :e:
€ S means that there is a method determining
all values of "e", which, for given "S", solves
relation "e € "}

a”) A predicate (or relation "V = Term") having
either distinct variables or definitionally
annotated operators applied to the variables
and asserting that the relation is functional in
annotated positions and the operators
represent or name these functions. This is a
functional inverse theorem. For example,

n+:m-n=m

says that relation "n + x = m" is functional in "x"

and "m - n" is this very function.

b) Decomposition/analysis/induction/classification/
partitioning theorems, as in the following example

<>V=T; <>V=T,<>.<>V=T,

where either "T," is a nullary operator or "V = T"

is a functional inverse.

E.g. <>n =0 <> n = succ(:pred(n):)

says that not annotated operators range values cause

351

a partition on variable "n" sort and that the
operators do admit partial inverse functions (as in
a”).

Methods are solution-producing,but not sentence
form-producing. The types of methods go from
methods determining predicates and producing
functions evaluation to inversing methods.

In the following example the theory of natural
numbers is built.

The entire signature <Nat>[+,-,pred,
<,0,1,succ] is definitionally annotated. The theory
is constructive i.e. all functors are defined within
it. Functors, as it is easily observable, are defined
in (inductive) def clauses, i.e. they can be executed.
Theorems are non-executable and are used but for
specification correctness proofs. The proofs can
be included in the specification body, as the
following example does. An automated theorem
prover can also be used. MIE uses OTTER prover,
as illustrated by the Chapter 5 example.

THEORY: <Nat> [+,-,pred,=<,0,1,succ]:
Natural
SET Nat; VAR n,m,p: Nat;
VAL 0,n + m,1,succ(n): Nat,
pred(p) | p/=0: Nat;
-- pred(p) (excepted for p = 0) is
--a natural number
INDUCTIVE DEF :(:n: +0): =n,

:(:n: + succ(:m:)): =succ(n + m);

-+,
DEF :1: =succ(0);
REL n<m;

INDUCTIVE DEF :(0=<:n:):,:succ(:m:) <
succ(:): ¥ms=<n;

TH.n<n+m;
VAL n-m | m<n: Nat;

DEF :pred(succ(:n:)): = n;

TH. < > n=0 < > n=succ(:pred(n):);
TH. pred(:succ(n):) =n;

TH. < > m/<n< >m+:n-m: =n; DEM
INDUCTIVE DEF :n: + 0=:n:,

:n: + succ(m) =succ(n+:m:);-- . +:

352

END DEM,;
DEF m +:(:n:-:m:): =n;

TH. n+m=m+n;-- in fact
--< Nat,0, + > abelianGroup

TH.< > m/<n <> :n-m:+m=n;
TH. :n+m:-m=n;

TH. < >m/<n < > n-n-m:=m;

END THEORY;
1.2 Processes, doer (types), face (types)

The "dynamic" specification units (processes, doer
(types), face (types)) describe system behaviour. as
state machines, in which data are expressed as
theories; doers or doer types are real
(parameterized) machines, while faces or face types
are virtual (parameterized) ones. MULTISPEL
processes need exist since, during the specification
process of real problems, there are moments when
the machine nature (whether real or virtual) cannot
be defined ; clearly a MULTISPEL process evolves
as a face (type) or doer (type) .

An execution process in a dynamic specification
unit is described by means of services. They are
defined on faces or face types; first they are
declared and then their behaviour is given using
abstract data expressed in theories. LET clause
can be used in importing current theories or
special-purpose theories can be defined within all
dynamic specification units. Service order on faces
or face types indicates the protocol.

MULTISPEL processes and doer (types)
communicate asynchronously. They are either
clients or servers, in respect of their way of running
services.

Services are described on faces or face types and
are implemented on doer or doer types. The
distance between a service description and its
implementation is solved by the specification
enrichment at doer (type) level. A machine
behaviour, given as a state sequence and starting
from an initial state, will do this. Machine
invariants, consisting of a temporal assertion, are
user’s initiatives. Anyhow,they must remain
unaltered by any transition execution. Invariants
serve to prove doer (type) behaviour correctness.

Studies in Informatics and Control,Vol.2,No.4,Dec. 1993

Therefore, a doer (type) provides some services.
When ordered to execute some service, a doer (type)
acts like a server towards other doers (doer types)
acting like clients (they give the orders).Given input
arguments, an order is asking this time for some
services to be executed, and certain results to be
obtained . On accepting an order the state of the
system gets altered, and enables a transition.

Therefore, a transitions set describes a (real or
virtual) machine behaviour.

A transition can be described as a condition-action
relation type, where

~ the condition may be
e a (list of) Boolean(s)
e service
e return

— the action represents a list of MULTISPEL
actions.

A MULTISPEL action may be either primitive or
composed. A primitive action will include service,
return, stop or a temporal predicate next () expressed
by means of output definition (e.g. :a: = 1;).

The operators for composing MULTISPEL
actions are: (seq) and, (seq) or, = (meaning
"then"), < > (for several or-s).

The following example presents a register
specification:

process <Data> Reg
set Data;

is var d: Data;

ex action store(d);

ex val exp_value: Data;

state val stored: Data;

initial not :def stored’:;

< > store(:stored:) == :stored = d
def :exp value: = stored;
end process;

An external action "store" depending on a
variable from a "Data" setis declared in the process
specification . A state value is also stored in the
same "Data" set. Initially, a next value for state val
"stored", i.e. stored’ is undefined. "Reg" process

Studies in Informatics and Control,Vol.2,No.4,Dec. 1993

considers an one-transition machine which
changes the "stored" value. The exported value
"exp_value" is assigned the current value of
"stored".

13MULTISPELgrammar
MULTISPEL grammar is given below.

CompUnit = LibUnit" [Doer]
LibUnit = Theory | Process
Theory = (theory Genericity TheoryEl")* end

nn

theory ";

| theory Genericity is MetaPredicate ";"
renaming.

Genericity = ObjectIOSignature
MetaPred Ident ParamSignature”

[OSignature = Signature | ™" Signature ":"

Signature = "<" IOParam™*> ">" ["["
10Symbol ¥+ "]"]

IOParam = 10Signature | IOSymbol
IOSymbol = InpSymbol | ":" OutSymbol "."

Symbol = Ident | Number | Operator ["."] |
DefinedRelator

TheoryEl = VarDecl | Ex (SetDecl | ValDecl |
RelDecl | RedDecl)
| Assume | Theorem | Let | Definition
Ex = [ex]
Assume = assume PropRelation™>";"

b

Theorem = (ax | th) [Title] "." PropRelation*:
"' Dem’

Dem = [inductive] dem TheoryEl* end dem;
Title = String | Ident | Number
Let = let MetaPredicate*+";"

Definition = [inductive] def PropRelation*";"

~ SetDecl = Ex set SetldDecl ;"

SetldDecl = Setldent
Setldent ">" Setldent ## extension.
Setldent " <" Setldent ## abs. subset.
Setldent " =" SubSet

353

Subset = SubSetIdent ## rename.
XPath ArgStru’
FACE by procotol.

"{" Varldent "|" Relation "}" ## subset.
[SetIdent] "{" Elem™: "}" [Succ]

Elem = Term ["=+" Term]
orig. SUCC range.

Succ = "<" | "0" ## liniar, circular.

OptRestrictions = ["|" Relation™*]

ParList = ["(" Varldent™:")"]

VarDecl = var VarList*' OptRestrictions ";"
##no overloading.

VarList = Varldent™> ":" SubSet
ValDecl = val ValSList *» OptRestrictions ";"
ValSList = Val™» ":" SubSet
Val = Opldent ParList

| UnOperator Varldent | Varldent
BinOperator Varldent

RelDecl = rel PredDecl*’ OptRestrictions ";"
PredDecl = Predldent ParList
Varldent DefinedRelator Varldent
RedDecl = red RedList*:";"
RedList = RedIdent " Subset

XPath = XId+
XId = Ident ["(" Term™:")"]
Path = Ident™:

DemoPragma = "{" (Title*-)*"}"
Implicatic = "<" | "=>" | "&"
Relation = ("< >"Relation)* ## partition.
-- rightassoc Relation "=>" Relation

-- Relation (Implicatie Relation) *

-- Relation or Relation

-- Relation and Relation

-- not Relation | "(" Relation")" | ":" Pred1 ™"
DemoPragma Relation

def StateVar

354

ValuePred | MetaPred
Term
(implicit assignment) TRUE.

Predl = Term Relator Term | Predicat
ValuePred = Term (Relator Term)% | Predicat
Relator = "/" + DefinedRelator | "/="

DefinedRelator | "="
DefinedRelator = "=" | "=" | "€" | "1" | "¢" |
W< TSNS << | "> >
DefinedRelator + Sufix
Sufix = " | |0 |00 |2 || g
MetaPred = IOArgStru MetaPredIdent ArgStru’
IOArgStru = ArgStru | ":" ArgStru":"
ArgStru = "<"IOArg™ ">"["[" OptArg*: "]"]
I0Arg = I0ArgStru | IOSymbol
OptArg = [Symbol "="] IOSymbol

Predicat = PredXPath | StatePredXPath
StateVar = StateVarXId

Term = Term AddOp Term
left-associative.

-- Term MulOp Term
left-associative.

-- Term ":" SortIdent
disambiguation.

. UnOpera[O[Term I Il(ﬂ Term |I)l| |
DemoPragma Term

ValXPath | Varldent
StateVar [""]
RedXPath "[" Enumerate "]"

"[' Relation "]" ## (ifnplicit assignment)

##VALUE OF

R Ferm " ## defining occurence

"|" Term"|" ## only in canonic
##definitions

"{" Enumerate "}" ## implicit OR regarding
##contained pred.

Studies in Informatics and Control,Vol.2,No.4,Dec. 1993

makes relator negation
##necessary

Addop o ||+|| l ll_ll t ll\u | ||\/|| | n ?" l ,.#" | "@” |
u!n i ".'_" |":,.
AddOp + Sufix

Mu10p = "¥" | v] A | H/\" i ng" I nA ! p— |

llil!] ||_‘|l I"'"
MulOp + Sufix
Operator = AddOp | MulOp

Enumerate = Term "|" Relation

(Term["+"Term])™
SUCC to be used

Asynch = [asynch]

Process = Asynch process Type is XPath
ArgStru” ";"

| Asynch process Type is ProcessDesc end

process ";
3
ProcessDesc = ProcessAux Procedure

Type = Ident ["(" Param™*")"] ParamSignature’
ParamDesc’

ParamDesc = TheoryEl
Doer = Asynch doer XIdList ":" XPath ArgStru’

n,n

OptRestrictions ";
| Asynch doer XIdList ":" ProcessDesc end

doer ";
iterable.
ProcessAux = Face | Initial | Invariant | Server

| Ex (Process | Doer | State | ActionDecl
| Service)

| Ex (ValDecl | RelDecl | RedDecl)

Face = face XIdList ":" XPath ArgStru’
OptRestrictions ";"

| face XIdList ":" ProcessDesc end face ";"
iterable.

ServiceDecl .

nn

OptRestrictions ";

service ~ Message™:
Message = Serviceldent ParList (return ParList) *

Studies in Informatics and Control,Vol.2 No.4,Dec. 1993

Statc = state var SVarTList 7> OptRestrictions";"
iterable.

state ValDecl
state RelDecl
state RedDecl
SVarTList = XIdD*-":" Subset

ActionDecl = action Actiunel * OptRestrictions

Actiunel = Ident ["(" ActPar*-")"]
ActPar = "" Ident | Ident | ":" Ident ""
Server = server Faceldt: OptRestrictions ";"

Faceld = [Ident "="] XPath

Inittial = initial Action "}
except I/O & STOP, iter.
+, om0

b

Invariant — invar Relation

Procedure = (< >" Transition)*
Transition = Guard ™ "=>" Action ";"
Trans. iter by guard.
Action iter by itself.
Guard = Rclation | Service | Return
Acltion = Action ", Action
- Action or Action
-- Action and Action
--"(" Action)"
Service | Return | stop ! LocalAction

LocalAction = Relation
temporal

[Xpath "."] Ident ["(" ActArg™*'")"]
ActArg = Term | " StateVar

Number = Digit | Number + Digit
Ident = Ident + AN | Letter
AN = Letter | Digit

Digit = "0":"9"

355

Lﬁ[t_e]’ - Hall I llBll | IFI"IT l “JI" | |Iz|| | ”U" | "H” |
"r“i |I‘Dl! | !IQII | !Iall | Ilm‘l | "0" | I|AII +|IZH 1
" a" + WZU mon

2MULTISPEL Basic Model

MULTISPEL basic model is composed of an
algebraic model and an operational model.

2.1. MULTISPEL Algebraic Model

Based on the associated MULTISPEL signature
an algebra of terms (AT) is built, which is the least
family of expressions obtained by means of the
operators defined in the signature. The equations
set (E) is then considered. It contains the
well-formed formulae which have "equality" as
unique predicate. The AT/E quotient algebra
creates the set of equivalence classes. The value
set in MULTISPEL algebraic model is built by
selecting a representative value out of each
equivalence class.

This model is a framework within which correctness
of MULTISPEL theories may be proved. A
MULTISPEL algebraic modelis associated with any
theory; it can be enriched (a theory and,
subsequently, its model) by adding new
MULTISPEL sentences, corresponding to the
already defined operators, or by adding new
operators; that is, a theory can import another theory.

22. MULTISPEL Operational Model

MULTISPEL operational model refers the
dynamic, temporal aspect of a system, whereas the
algebraic model refers the static, immutable part
ofit. MULTISPEL operational model appears to
be a state machine

(S’ Inps Ou{; g SO: SFIN)
where

S = a (possibly infinite) state set,

Inp = an input set,

Out = an output set,

sp = an initial state,

Spn = a (possibly void) final state set,

g : (Inp*, S)—(Out*, S) a non-deterministic
transition function

356

g((il i in> ,samc) = (<01 sees 0>, spost)
A MULTISPEL doer is modelled as

— astate machine
or

~ a communication process among other
(sub)doers, to be in turn modelled as a
state-machine or a communication process
a.s.o. recursively

or

- a mixed way, both a state-machine and a
communication process.

A doer (type) state at one particular moment is
given by a pair

< Values, Relations >
where

Values = state variables values (including
undefined values);

Relations = other doers (doer types) (which
form a bag or multiset) with whom
the current doer (type) is
involved as sender or receiver.

A transition is presented as a pair of such states,
thought of as being successive.

3. MULTISPEL Specification Style

Example 1

A well-known bounded buffer problem is going to
be specified in MULTISPEL.

Viewed as a buffer for smoothing speed variations
in the outputs of a producer process and in the
inputs of a consumer process , a process will be
specified and implemented under MULTISPEL
terms (where M represents the maximum number
of inputs/outputs), as follows:

asynch doer type BoundedBuffer <Elem>
<Nat> (M)

as. < Nat>[NonNul=>:PositiveNat:] Natural,

-- NonNul becomes PositiveNat, which is
--obtained from Nat theory

val M: PositiveNat;
set Elem;

is var e: Elem;

Studies in Informatics and Control,Vol.2,No.4,Dec. 1993

-- face In declaration is introduced
face In:
ex service write(e) return, close return;
-- a virtual machine is defined within face In;
-- when
-- service write(:e:) produces, e is obtained
--before

-~ (:.: = definition annotation)
< >service write(:e:) == return write;

< > service close =2 return close, stop;

end face;

face Out:
ex service read return (e) return;

-- a theory instance is introduced by let; this
--theory is

-- built within string (to see definition anno-
-- tation)

let : < String > [null,&]: string <Elem >;
state var B: String;

-- this virtual machine is composed of
--transitions with guards; their truth value "true"
--permit transition firing

< >B/=null, service read => B=:e:&:B",
return read(e);

< >B=null, service read == return read,
stop;

end face;

val L:Nat; def :L:= 0;

-- a new set is built by restricting Nat to the
--interval [L+L + M-1]

var i: Nat [L+ L+M-1];

-- within the defined restriction set, a new set,
--Index is

-- built, by means of a constructor applied to
-- variable i

-- ranging over the mentioned set and having a

Studies in Informatics and Control,Vol.2,No.4,Dec. 1993

--circular SUCC functor defined on it
set Index = [~i] o; var p: Index;
doer F, T:
ex state val val: Index;
ex action next;
state var crt: Index; initial :crt’:= ~L;
def :next:<>:crt’: = succ(crt), :val: = crt;
end doer;

-- the let clause instantiates
--additiveExtension < Nat >

-- to set Index, where " +" operator symbol is
-- marked

-- as output (i.e. is defined within the theory)
--and

-- can be used with this particular symbol or a

-- user-defined one, having the same meaning

let <Index> [:+:] additiveExtension
<Nat>;

state var B(p): Elem, c: Nat,
input: {closed, open};
state rel full, empty;
state val ft: Index;
def :full: © ¢ = M,
:empty: < ¢ =0,
f:= F.val,
:t: = T.val;
invar f=t+c,c = M,

-- pred(f) means predecessor, that is
-- pred(f) =f-1 or undef

-- and is supposed to be imported from Nat
< >t/=f = p={t+pred(f)}<> def B(p)
<>t=[{= (<> empty< > full)

and (< > empty < > def B(p));

--the real machine is introduced: it has an initial
-- clause,

--in which variables are assigned initial values
--and a

--transition set, that describes machine

357

-- behaviour;
initial :c: =0, :input’: = open, not :def B(p)™:;
< >not full, service In.write(:B(f)’:) =>

:¢:= c+1, F.next, return In.write;

< >not empty, service Out.read =>
:¢”: = c-1, T.next, not :def B(t)”:,
return Out.read(B(t));
< >service In.close == :input’: = closed,
return In.close;
< >empty, input = closed,
service Qut.read=>
return Qut.read, stop;
end doer type;

BoundedBuffer is specified as an asynchronous
doer type, in which two faces, In and Out, are
introduced and two internal doers, F and T,
expressing the machine invariant, are also
considered. It is worth mentioning that
MULTISPEL let temporal assertions be used
(invar) for verifying formal machine correctness.
Another way of specifying this problem by using
MULTISPEL is to define a theory which should
contain the forementioned services as
operations/functions. In such a case correctness
proof falls under the theory’s resposibility (by
proving theorems and definitions), and not under
machine’s.

theory: <String>: StringOf <Elem> <Nat>
as. <Nat> Natural; -- :succ:.
set Elem, String;
var S,T: String, E,F: Elem;

ex val E&S, S&E, null: String, #S: Nat;

val first(S) | S/=null: Elem,
rest(S) | S/=null: String;

ax. < >8 = null < > 8§ = first(S):&:rest(S):;

inductive def :#null: =0, :#(E:&:S:): =
succ(#8S),

(CE:&:S:)&:F::= E & (S & F), null &:E:: =
E & null;

-- the vertical bar attached to a value declaration

358

-- means

-- "with exception of that particular value", the
-- declaration stands

val last(S) | §/=null: Elem,
leading(S) | S/=null: String;

th. < >S = null < >$§ = :leading(S):&:last(S):;

inductive def (E & S) & F =:E:&(:S:&:F:),
null&F = :F:&null;

end theory;

asynch doer type <Elem> <Nat>
BoundedBuffer(M) | M >0

def: <String>: StringOf <Elem> <Nat>;
== Z&,, &., I‘lll“, #.Z;

-- face set Elem; & as. <Nat> Natural; :<:.
val M: Nat;
is var e: Elem;

face In:

ex service write(e) return, close return;
< > service write(:e:)=> return write;

< >service close =2 return close, stop;
end face;
face Out:
ex service read return (e) return;
state val B: String;

< >B/=null, service read=> B=:e:&:B",
return read(e);

< >B=null, service read=>return read,
stop;

end face;

state var B: String, input: {open, closed};
state rel empty; def :empty: < B =null;
initial :B’: = null. :input’: = open;
< > #B =M, input = open,
service In.write(ie:)=>

:B':= B&e, return In.write;

< >input = open, service In.close ==

Studies in Informatics and Control,Vol.2,No.4,Dec. 1993

:input’: = closed, return In.close;

< >not empty, service Out.read =>
B =:e:&:B’;, return Qut.read(e);
< >input = closed, empty, service Out.read
=2 return Out.read, stop;
end doer type;
Example 2

Here is an example of building a rainbow
specification using MULTISPEL. A starting
theory is defined, followed by more and more
specific refining theories. It is refinement that
helps in the process of formulating definitions (def
clauses) which are part of a theory which is indeed
executable.

theory < RAINBOW >[red, orange, yellow,
green, blue, indigo, violet, succ, pred]

Colours

set RAINBOW,; var C: RAINBOW;
val red, orange, yellow, green, blue, indigo, violet,
succ{ C) | C/=violet : RAINBOW;

ax. <>C=red <>C=orange <>C=yellow
< >C=green
< >C=blue < >C=indigo < >C=violet;
ax.succ(red) =orange,
succ(orange) =yellow,
succ(yellow) =green,
succ(green) =blue,
succ(blue) =indigo,
succ(indigo) =violet;

val pred(C) | C/=red : RAINBOW;
ax. < >C=red < >C=succ(:pred(C):),

< >C=violet < >C=pred(:succ(C):);

theory <RAINBOW >[red, orange, yellow,
green, blue, indigo, violet, succ, :pred:]

Colours
-- in this theory, functor pred is a constructor,
-- serving to define the other operators

def :pred(orange): = red,

Studies in Informatics and Control,Vol.2)No.4,Dec. 1993

-- definition (unnormalized)
:pred(yellow): = orange,
:pred(green): = yellow,

:pred(blue): = green,
:pred(indigo): = blue,
:pred(violet): = indigo;

theory < RAINBOW > | red, succ, :orange:,
:yellow:, :green:, '

:blue:, :indigo:, :violet:, :pred:]

Colours -- RED & SUCC are still input
-- parameters.

-- orange, yellow, green, blue, indigo, violet, pred

-- are constructors

def succ(red)
:orange:,
succ(orange) =:yellow:,

succ(yellow) =:green:,

succ(green) ‘blue:,
succ(blue) =:indigo:,
succ(indigo) =:violet:;
theory : < RAINBOW > red, orange, yellow,
green, blue,

indigo, violet, succ, pred]:
Colours

-- the whole theory is constructed in this
-- refinement

def :pred(succ(:C:)): = C; -- more specific
-- redefinition

-- because SUCC is constructor.
end theory;

theory <RAINBOW > [red, orangg, yellow,
green, blue,

indigo, violet, succ, :pred:]

359

Colours -- enriched (with subordinated
-- theories)

theory < RAINBOW > :succ:, red, orange,
yellow, green,

blue, indigo, violet, :pred:]

Colours

def :succ(red):

:succ(orange): = yellow,

= orange,

:succ(yellow): = green,

:succ(green): = blue,

:suce(blue): = indigo,

:succ(indigo): = violet,
end theory;

theory : < RAINBOW >[red, orange, yellow,
green, blue,

indigo, violet, succ, pred]:
Colours <Nat,k>
as. <Nat> Natural; -- inherits :succ:,: +:.
val k: Nat; '

-- NumColor is a restriction of Nat to interval
- [k + k+6]

-- which inherits Nat successor functor

set NumColor= Nat [k+k +6]; var x:
NumColor;

-- suce(x) is undefined for x = k+6, with given k
val succ(x) | ¥ =k +6: NumColor;

th. < NumColor > [red=>k, :orange:, :yellow:,
:green:,

:blue:,:indigo:,:violet:, :pred:] Colours;

-- another (noncanonical) interpretation is
-- asserted

-- present operator symbols may be changed at
-- user discretion

-- (the meaning being preserved anyway)

360

" end theory;

The signature is parameterized by the operators:
- red, orange, yellow, green, blue, indigo, violet
as well as

— succ, giving next colour
- pred, giving previous colour.
Example 3

The well-known problem of dining philosophers
(due to E. W. Dijkstra) is going to be specified in
MULTISPEL.

Problem: Five philosophers spend their lives
thinking and eating. The philosophers share- a
common dining room where there is a circular
table surrounded by five chairs, each belonging to
one philosopher. In the center of the table there is
a large bowl of spaghetti, and the table is laid with
five forks. When feeling hungry, a philosopher
enters the dining room, sits in his chair, and picks
up the fork on the left of his place. Unfortunately,
the spaghetti is so tangled that he needs to pick up
and use the fork on his right as well. When he
finishes, he puts down both forks, and leaves the
room. The room should keep a count of the
number of philosophers in it.

The problem is specified by means of a process,
depending on a philosopher’s number (here N) in
which 2*N + 1 doers asynchronously run : N
asynch doers phil(i), N asynch doers fork(i), and
one asynch doer room.

process < Nat> ThemPhilosophers (N)
as. < Nat > Natural;
val N:Nag;, as. N>2;

-- two new sets are built Nat [1+ N], which restrict
-- Nat

-- to interval [1+N] and [~ b] o, which transforms
-- this

-- interval into a set with circular successor functor
-- (the successor functor is inherited from Nat)
is var b:Nat [1+N];

var i:[7 b o;

Studies in Informatics and Control,Vol.2,No.4,Dec. 1993

-- for running this example N asynch doers fork(i)

-- must be active

asynch doer fork(i):
ex service pickUp return, putDown return;
state val mis: {held, free}; initial: mis’: =free;
< >mis = free, service pickUp=>
:mis”: = held , return pickUp;
< > mis = held,serviceputDown=>
:mis”: = free, return putDown;
end doer;
asynch doer room:
face door:
ex service enter return, exit return;

state val mis:{in,out}; initial :mis’; = out;

< >mis = out, service enter == :mis’: =in,
return enter;
< >mis=1in, service exit =>:mis’: = out ,
return exit;
end face;
var occupants: Nat; initial :occupants’” =0,

-- service names can be prefixed by face names;
-- this

-- notation becomes necessary for homonymous
-- service names

invar occupants <N;
< >occupants <N-1, service door.enter ==

:occupants’: = occupants + 1,
return door.enter;

< >occupants >0, service door.exit =>

:occupants’: = occupants - 1,
return door.exit;

end doer;

-- for running this example, N asynch doers phil(i) *

must :

Studies in Informatics and Control,Vol.2,No.4,Dec. 1993

-- be active, and totally 2*N + 1 asynch doers
must be active,

asynch doer phil(i):

server room =room.door, left = fork(i),
right = fork(succ(i));

state val mis:{outside, hungry, moving, eating};

initial :mis’: = outside;

-- variable mis is regarded differently when

-- appearing on

-- the two different sides of the "fence" (=>);
- e.g. in

-- the first transition, departing from
-- mis = outside,

-- its next value becomes hungry, i.e.
-- :mis’: = hungry; but

-- next attached to the variable has a meaning
-- just

-- within this first transition; for the machine,

-- as a whole, the current value of the variable
--(here mis) is assigned its next value, i.e.
--mis = hungry;

< >mis = outside==THINK or:mis’: = hungry;
< >mis =hungry=> :mis’: = moving ,
service room.enter;
< >return room.enter=> service left.pickUp,
service right.pickUp;
< >return left.pickUp, return right.pickUp=>
:mis’: = eating;
< >mis =eating => EAT or :mis: =moving ,
service left.putDown ,
service right.putDown;
< > return left.putDown, return right.putDown
=2 service room.exit;
< > return room.exit => :mis’; = outside;
end doer;

end process;

361

4, Specification Steps in MULTISPEL

Step 1. A concurrent system is specified as a doer.
A process description will consist of:

a) a doer (a machine)
b) communicating doers (a system)
¢) a combination of a) and b).

Step 2. Faces are specified: names are given to
faces, actions, services, pre- and post-conditions
are associated with services. Back to step 1,
invariants are associated with doer(s) (types).

Step 3. Services defined at step 1 introduce data
types, functions, predicates, theorems. All of these
are theory-abiding. Theory properties (theorems)
are proved. Back to step 1, doer (type) behaviour
correctness may be proved (using invariants). Step
3 is repeated for theory refinement.

5.MIE Formal Specification Environment

MIE environment assists user in
- specifying and designing a sequential or
concurrent system,

— verifying executable specifications
correctness.

MIE aims at making users get accustomed to
formal methods and to the way they are used in
system development. A formal method-based
environment, as for instance MIE, is useful when
software production technology and critical
projects are involved [8, 12]. Software
environments based on formal methods can assist
the development of a great deal of critical and
semi-critical systems as:

— error detection is enabled at an early stage of
the software life -cycle;

— maintenance costs get down drastically
because it is no longer the source code which
should be maintained but the executable
specifications ;

- executable specifications are abstract, so that
they should be reused for similar project
developments.

MIE can be used for specifying/designing:

- transaction processing-based systems (e.g.
components of a telephonic system, a
ticket-reservation system, etc.);

- control systems (e.g. systems monitoring aerial
communication, road traffic, rail freightage, etc.).

The MULTISPEL executable specification library

must be enriched and domain-adapted in order to
develop such applications.

User interface with an MIE environment is
represented by a central menu with several
options:

- File

Compile

- Run

- Help index

- Quit.

File option covers file generation, editing, and
loading of the existing files. The user may
temporarily or definitely quit MIE by selecting two
other suboptions of File option; he (she) may also
quit MIE with Quit option.

Compile option covers lexical and syntactical
analysis, and static type-checking of MULTISPEL
source code.

Run option covers two aspects:

~ formal verification of predicates defined in
MULTISPEL executable specifications;
therefore, MIE includes OTTER prover [10,
11] of the ARGONNE NATIONAL
LABORATORY, Illinois, USA (first
developed in 1990 and then extended in 1991);

- simulation of MULTISPEL executable
specifications concurrent run.

Here is an example of specifying a MULTISPEL
theory defining the "set" notion by means of a
lists-defining theory:

theory < EgSet > [¢,&,:€:] listBasicSet < Elem >

-- no unique representation !!!
set Elem, EgSet; var E, F: Elem, S: EgSet;
val ¢, S&E: EgSet;
ax. SKE&E = S&E, S&E&F = S&F&E,;

rel EES; inductivedefnot E:;, E¢:E €S&F:«*E=F
or EES;

th. :E:€S -- demo "€" = Member in OTTER input

Studies in Informatics and Control,Vol.2,No.4,Dec. 1993

--file

dem inductive def EE:S:&:F:«> :E: =F or :E: €S,
not EEg;

end dem;
let <EgSet, Elem, :rset:, &, ¢ > LRed,;
-- rset is a reducer
th, S = rset [rset(E) | :E:€8]
inductive dem
th. rset [rset(E) | :<E:EQ]= rset [|=¢;
th.
rset [rset(E) | :E:€S&F] =
rset [rset(E) | :E:=F or :E:ES]=
rset (F) Vrset [rset(E) | :E:€S] =
=rset(F) VS =S&F;
end dem;
end theory;

An example of a small proof session is offered.
The first file represents the input file for OTTER
hereby a proof of the predicate Member (or "€" in
the above example) is obtained.

% Input file for OTTER

set(para_into).
set(para_from).

set(free_all mem).

list(sos).

(x = EMPTY) | (MakList(First(x),Rest(x)) = x).
(MakList(x, y) ! = EMPTY).

(Append(EMPTY, y) = y).
(Append(MakList(x,z), y) = MakList(x,
Append(z,))).

-Member(e, EMPTY).

(Member(e, x) = SIF($ID(e, First(x)), $T,
Member(e, Rest(x)))).

(x = x).

Studies in Informatics and Control,Vol.2,No.4,Dec. 1993

-Member(e, x).% denial

-Member(e, y).% of

Member(e, Append(x, ¥)).% conclusion
end_of list.

list(demodulators).

(Append(EMPTY, y) = y).
(Append(MakList(x,z), y) = MakList(x,
Append(z, y))).

(First(MakList(x, y)) = x).
(Rest(MakList(x, y)) = y).

end_of list.

An output file is obtained , a fragment of which is
given:

3[] (Append(EMPTYy) = y).
9] -Member(e,y).

10 [] Member(e,Append(x,y)).
15 [para_into,10,3] Member(e,x).
16 [binary,15,9] .

Help index option covers some of the most
important topics related with formal methods use
in specifying concurrent and distributed systems ,
as well as some MULTISPEL language syntactic
and semantic characteristics, as follows:

Communication

Communication in MULTISPEL
Communication structures
Concurrency

Concurrency in MULTISPEL
Concurrent versus sequential programs
Configuration description

Distributed versus concurrent systems
Exception handling

Finite state machine

Finite state machine versus hierarchy of functions

Functional view of a distributed system

363

Graph model

Hierarchy of functions modtl
Interleaving view of a distributed system
MULTISPEL actions
MULTISPEL algebraic model
MULTISPEL axioms
MULTISPEL doer
MULTISPEL face
MULTISPEL interpretation
MULTISPEL invariants
MULTISPEL messages
MULTISPEL operational model
MULTISPEL process
MULTISPEL semantic model
MULTISPEL sentence
MULTISPEL service
MULTISPEL signature
MULTISPEL states
MULTISPEL theorems
MULTISPEL theory
LOTOSPHERE Methodology
Mathematical function model
Modularity

Module classes _
Module classes in MULTISPEL
Parallel blocks

Petri nets

Process

Process declarations

Real-time concepts

Space - time view of a distributed system

Specification models for concurrent and
distributed systems

Synchronization properties
Views of describing a distributed system.

The above listed topics and their corresponding
contents text form a (Prolog) database, which can
be updated at user’s wish, by means of a separate

364

component, and then automatically reintegrated
into MIE.

MIE operates as a framework prototype to
demonstrate some of the MULTISPEL language
characteristics. It has been implemented on
IBM-PC AT compatible computers, in Prolog,
using MS-DOS operating system and Turbo
Prolog 2.0 environment. The so-far developed
several versions of MULTISPEL language,
needed for facing the complexity of any formal
specification language, will be added a new
extended version. MIE only supports the
specification/design part of a system development.
The authors also intend to extend MIE to
supporting C programs generation from
MULTISPEL source code.

Conclusions

The paper presents a formal specification
environment, named MIE, using its own formal,
concurrent, executable specification language,
named MULTISPEL.

MULTISPEL is a broad spectrum specification
language, having both provability and efficiency as
specification objectives. The user can specify
sequential and distributed systems and verify
executable specifications correctness. Some
verification steps are built-in and more complex
ones (proving steps, as in Unity [9]) must be
specified by the user. MULTISPEL differs from
LOTOS [5,14] in that it is a logical language; that
is, automated verification steps are difficult to
impose.

An extended MULTISPEL version is currently
under development, in order to better cope with
formal correctness proof at doer (type) level and
to improve communication structure so as to
permit several communication forms (not only
client-server, as possible in the current
MULTISPEL version).

MIE operates as a framework prototype which
demonstrates some of the MULTISPEL language
characteristics. MIE does not support
requirements specification (as done in lite,
LOTOS environment). For the time being the
authors will not go further in dealing with this
aspect.

A new version of MIE is going to be developed

Studies in Informatics and Control,Vol.2,No.4,Dec. 1993

using Top Speed Multilanguage Environment,
with built-in concurrency primitives in MS-DOS.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for
their helpful criticism of the preliminary version of

this paper.

REFERENCES

1. BAETEN, J.C.M. and VAN
GLABBECK,R.]J., Another Look at

Abstraction in Process Algebra, in Th.
Ottmann (Ed.) ICALP’87, LNCS 267,
SPRINGER-VERLAG, Berlin, 1987.
BEIERLE, C. and VOSS,A., Theory and
Practice of Canonical Term Functors in
Abstract Data Type Specifications, in H.Ehrig
et al (Eds.) TAPSOFT 87, Vol. II, LNCS 250,
SPRINGER-VERLAG,Berlin, 1987, pp.
320-334.

DINESCU, D. M., A Formal Executable
Specification Language, Proceed. of the
Intl. Symp.Ec.Comp. Sci. 1E’93, Bucharest,
May 1993, pp. 120 - 122.

DINESCU, D. M. and RABEGA,IL.V,,
Software Development Environment for
Sequential and Concurrent Systems, Based on
Formal Methods, Proceed. of the
Intl.Symp.Ec. Comp.Sci.IE’93, Bucharest,
May 1993, pp. 43 - 46.

FEREIRA PIRES, L. and VISSERS,C.A,,
Overview of the Lotosphere Design
Methodology, Memoranda Informatica 90-64,
The Netherlands, October 1990,

GOGUEN, J.A. and MESEGUER, J., Models
and Equality for Logical Programming, in
H.Ehrig et al (Eds.) TAPSOFT’87, Vol. II,

Studies in Informatics and Control,Vol.2,No.4,Dec. 1993

10.

11.

12.

13.

14.

15

16.

LNCS 250, SPRINGER-VERLAG, Berlin,
1987, pp. 1-22.

GUTTAG, J. V., HORNING,J.J. and WING,
J., Larch in Five Easy Pieces, DEC Systems
Research Center, Palo Alto, CA., July 24, 1985.
JONES CLIFF, B., Software Development, A
Rigorous Approach, PRENTICE-HALL
International Inc., London, 1980.

KNAPP, E., An Exercise in the Formal
Derivation of Parallel Programs: Maximum
Flows in Graphs, ACM TRANS. PLS, Vol. 12,
No .2, April 1990, pp. 203-223.

MCCUNE, W., OTTER 2.0 Users Guide,
ARGONNE NATIONAL LABORATORY,
Math. & Computer Sci. Div. March, 1990
MCCUNE, W., What’s New in Otter 2.2,
ARGONNE NATIONAL LABORATORY,
Math. & Computer Sci. Div., Tech. Memo. No.
153, July, 1991.

PIZZARELLO, A. Development and
Maintenance of Large Software Systems,
Lifetime Learning Publications, Belmont, CA.,
1984.

POUNTAIN, D. and MAY,D., A Tutorial
Introduction to Occam Programming,
MCGRAW-HILL Book Company, London,
1987.

VISSERS, C.A., FEREIRA PIRES,L. and
VAN LAGEMAAT,]., - Lotosphere, an
Attempt Towards a Design Culture,
Memoranda Informatica 92-56, TIOS 92-24,
Univ. Twente, The Netherlands, August 1992.
* * RAISE Overview, CRI A/S, Denmark,
1991.

* * *RAISE, Newsletter No. 1, CRI A/S,
Denmark, Spring 1992.

