Speeding Up Connectivity Analysis of Large

Computer Networks by

Topology

Reformulation and Parallelization'

Jerzy A. Barchanski

Brock University

Department of Computer Science
St.Catharines Ontario L2S 3A1
CANADA

Abstract: This paper presents an approach to connectivity analysis
of large computer networks and networks interconnection. The
essential feature of the approach is the reformulation of a flat
network topology into a balanced-tree hierarchical (BH) topology,
distribution of this topology onto a tree of parallel processing
elements and usage of parallel algorithms for connectivity analysis
of the reformulated topology. It is shown that the performance of
the parallel algorithms is much higher than that of the
corresponding sequential algorithms. The parallel algorithms are
implemented in a parallel logic programming language CS-Prolog
running on a multitransputer network. As an example, a parallel
program for connectivity analysis of a 3 level BH topology network
is described.

Keywords: connectivity analysis, parallel algorithms,
hierarchical topology, computer networks, parallel logic
programming, transputers.

Dr. Jerzy A. Barchanski obtained his MSc. and Ph. D degreesin
Computer Science from Silesian Technical University in Poland
in 1969and 1977. Upon receiving ascholarship from the Japanese
Government he spent 3 years in Japan as a researcher at Osaka
University and Kyoto University. After returning to Poland in
1976 he worked as an Assistant Professor at the Silesian
Technical University and the Technical University of Wroclaw.
In 1982 he was invited to Canada to work as a research associate
at the University of Montreal and in 1983 he accepted a position
of Associate Professor of Computer Science at Brock University
in St.Catharines where he works until now. During his tenure at
Brock University he was moreover a Visiting Professor at the
University of Ottawa. His main areas of interest are computer
networks and their protocols, distributed and object-oriented
simulation, parallel logic programming and expert systems. He
has published over 40papers in these areas.

1. Introduction

One of the requirements usually imposed on
computer networks 1s that they be reliable, even in

1 This paper is a revised and extended version of [2].

Studies in Informatics and Control,Vol.2,No.3, Sept. 1993

the face of unreliable nodes and links. To achieve
high reliability with unreliable components, the
network must be redundant. A sufficiently
redundant network can loose a small number of
components and still function properly, albeit with
lower performance. To find out whether there is a
connection between a specific pair of nodes, how
many disjoint paths are between any pair of nodes
in the network, what is the maximum possible
information flow, what is the probability of partial
or complete network disconnection - connectivity
analysis is used [4,9]. It provides a number of
algorithms to answer such questions. The common
characteristic of these algorithms is sequentiality - they
were developed for implementation on sequential
computers. Due to this, even the largest computers
cannot {ind in reasonable time the answers for a 50
node network, let alone a 1000 node network [9].

This paper presents an approach to speeding-up
connectivity analysis of large computer networks
or network interconnection by reformulation of
nctwork topology and parallelization of the
connectivity analysis algorithms.The
reformulation of a network topology 1s made by
decomposing a complex network topology with a
flat graph structure into a hierarchical tree. This
approach has proven its strength in several distinct
domains (like parsing of formal languages,
autornatic test pattern generation for digital
circuits,solving constraint satisfaction problems or

219

complex system simulation [3]).While the
hierarchical approach can provide considerable
speed-up even on a sequential computer,it can realize
its full potential on a parallel computer system only.

2. Reformulation of Network Topology

Many networks possess certain structures in their
topology. Especially interesting is a class of
hierarchical topologies called balanced-tree
hierarchical topology (BH topology)[1].

Definition 1.(Balanced-tree).

A(blo,bup) balanced-tree is defined as a tree in
which the number of children for each father is
lower bounded by b, and upper bounded by b,
where b, and b are independent of n (the total

number of nodes in the tree) and by > =2.
Definition 2.(BH topology).

If all the nodes in a network graph can be
organized into a(b,,, bup) balanced-tree such that
each leaf on the tree represents a node, and each

father on the tree represents a cluster, which
contains a group of connected children (where the
children may represent either clusters or nodes),
then the graph is said to have a (b, bup) BH
topology.

The actual nodes of the network are referred to as
level O clusters, and the clusters whose members
are nodes are referred to as level 1 clusters. In
general, the clusters whose members are level j
clusters are referred to as level j+1 clusters
(Figure 1).

We may identify several subclasses of the BH
topologies. In fact, every connected graph (not
necessarily fully connected) with 0(1) connectivity
(i.e. with several paths between any two nodes) can
be characterized as a BH topology. It would be
very desirable to construct an algorithm that could
transform graphs to BH topologies. The algorithm
would have to check many different node set
descriptions until one is found that satisfies the
definition of a BH topology. It turns out however,
that on finding such a node set description, an

a)
b)
level 3
level 2
level 1
level O
1 2 3 1 2
220

4 1 2 3 1 2 3 1 2 3
Figure 1. The example network in (a) can be characterized as a 3-level BH topology in (b)

Studies in Informatics and Control,Vol.2,No.3, Sept. 1993

Figure 2. Naturally hierarchical topology

NP-complete problem has to be solved (this
conclusion can be derived from a result in [11]).1t
is known in general that reformulation of
NP-complete problemsinto tree structures has the
advantage that polynomial time algorithms can be
constructed for solving them.

Instead of trying to solve the NP-complete
reformulation problem we will in the following
create the BH topology heuristically (what seems
to be a viable,though not necessarily an optimal
alternative) by decomposing a flat topology into
subnetworks and abstracting them into
supernodes of a higher level network.

This can be done for instance by taking advantage
of the physical characteristics of most large data
networks. Quite often, the BH topology is obvious
upon inspection. Most often data networks exhibit
some sort of hierarchical structure, e.g. nodes
belonging to a geographical area, or a particular
existing subnetwork form of natural clusters
(Figure 2).

Studies in Informatics and Control,Vol.2,No.3, Sept. 1993

There may exist some networks however, in which
an underlying hierarchical structure may not be
readily visible. For example, Figure 3 shows a
uniform mesh network represented as a 3-level
BH topology and Figure 4 depicts a simple "linear"
(multidrop) network, which can be represented as
well as a 3-level BH topology.One should realize
moreover that,in general,a given network may have
several different BH topology descriptions.

3. Parallel Connectivity Analysis Algorithms

3.1. Node-to-node Connectivity Analysis

By representing a network topology as a BH
topology we can carry out the connectivity analysis
hierarchically and in parallel. For instance, to find
out whether there is a path from node A1 of the
internetwork S1 to node E3 of the internetwork S2
(Figure 5.a.) we will check first if the two
internetworks are connected. If they are, we will
examine their internal topology (Figure 5.b.) and

221

V]

l;
T
O
(03
N

o _Gr)
Q &y) €9
"~ ~
é}—-—-————{;l '; \':/.—-——-
Ty —
Gr a3 \.‘/
Ty JL (o) Lo
i it Nt _y

Figure 3. A uniform mesh topology reformulated into 3-level BH topology

I O o e
[atl

! ™ \\Vr i \\ I /) [f = :.

o O ::f"{'—{}—f}_—'.:“*C—C“‘Crf:h“?—}—u,—?}—:—:‘—':f'\ﬂ:—:—’:fﬂc'—u“_f:*‘.._'

S RN N ’ 4 ”

-

Figure 4. A linear "multidrop” topology reformulated into 3-level BH topology

Studies in Informatics and Control,Vol.2,No.3, Sept. 1993

(a)

. (5B

(b)

Figure 5. Hierarchical and parallel node-to-node connectivity analysis

Studies in Informatics and Control,Vol.2,No.3, Sept. 1993 223

check in parallel connections between gates (the
nodes connecting the adjacent networks) of their
component networks (A,B,C) and (D,E,F). Finally
we will search in parallel paths from node Al to
node E3 through all the intermediate networks
and gates (Figure 5.c.shows only two adjacent
lowest level networks). If there is no connection at
alevel then the analysis can be stopped. This allows
to eliminate the search of lower levels which is
bound to fail anyway.

3.2. Shortest Path Search

To find the shortest path between a pair of nodes
or between any node and a given destination node,
we start the search from the bottom-most level, by
finding in parallel the shortest paths between the
origin node and its cluster (network) gate, between
the destination node and its cluster (network) gate
and between the gates of all the other clusters
(networks) at this level.We can proceed thento the
next level for finding the shortest path between the
origin higher-level cluster (network) gate and the
destination higher-level cluster (network) gate
through the intermediate gates identified at this
level. This procedure has to be repeated until the
top-most level is reached.

3.3. Monte Carlo Reliability Analysis

Network reliability can be represented by the
probability of network disconnection (i.e. a
situation,when there is no path for at least one pair
of nodes). To determine the reliability of a network
with uniform node connectivity (i.e. the same
number of links per each node), algorithms
proposed by Kleitman or Even [3] can be used. For
most large, irregular networks however,the
connectivity of the nodes is not the same, so the
only recourse is to simulation.

A straightforward but nevertheless useful
approach is to assume that at any one time a link
(or a node) is either up (working) or down
(failing). The probability of a link failing during a
time interval (corresponding to a simulation run)
can be represented by a variable LF. Network
reliability is a function of LF and can be found by

224

extending the algorithm to parallel node-to-node
connectivity analysis with the link failure
probabilities.

The algorithm will first check network connectivity
at the top-most BH level. If the network is
disconnected at this level, there is no need to
continue. Otherwise, the algorithm will iteratively
check the connectivity at the next lower level until it
detects disconnection or reaches the bottom level.

4. Implementation Environment

4.1. Software Environment

We have implemented the parallel connectivity
analysis algorithms in a parallel logic
programming language CS-Prolog [5,6]. There
were several reasons underlying the selection of a
logic programming language for this project.

A logic program consists of a set of facts and
clauses describing declaratively the knowledge
required to solve a problem. The clauses are
independent; cach has its separate logical
meaning. Solutions are primarily obtained through
a default inference mechanism- a built-in
depth-first search with backtracking,which can
directly support a general graph search.

Logic programs are very concise - it is common for
a program written in a procedural language to
require five to ten times more source code than the
corresponding logic program.

The declarative style of programming is very
natural, making programming easier, and
requiring smaller time for program development.
Logic programming is very close to writing a
program specification, so it is much easier to
address the issues of correctness and verification
than in procedural languages [7]. Independence
of clauses is advantageous for incremental
development and program maintenance. It also
facilitates rapid prototyping. Many logic programs
are invertible, e.g. a sorting program can be run
"backwards" to produce permutations.

We have been particularly interested in those
features of logic programming languages which

Studies in Informatics and Control,Vol.2,No.3, Sept. 1993

are important for efficient implementation of our
parallel algorithms.

Logic programming langnages in general and
Prolog in particular can naturally express a large
number of different types of parallelism [10].
The most renowned types are AND and OR
parallelism. In general, AND parallelism is the
ability to execute two conjunctive tasks in
parallel; OR-parallelism is the ability to execute
two disjunctive tasks in parallel. In terms of logic
programming, the task has the granularity of a
goal execution, i.e. a procedure call and
execution.

We have selected CS-Prolog as the most suitable
for implementation of our algorithms.

CS-Prolog (Communicating Sequential Prolog) is
a parallel logic programming language, based on
sequential Prolog extended by concepts of
process, communication and time.

CS-Prolog is similar to occam-2 and 3L Parallel-Cin
a sense that all these languages are based on the
Hoare’s concept of CSP (Communicating
Sequential Processes) and are developed for parallel
computer systems with non-shared memory and
message passing - such as multitransputer systems.

In CS-Prolog it is possible to assign a process to a
goal and to execute the goal as a Prolog program
concurrently with other goals (processes).
Communication and synchronisation of these
concurrent processes are done by messages. The
processes can be suspended waiting for messages
and they can send messages to activate other
waiting processes. Unlike in occam-2, the
communication is asynchronous, i.e. the sender
process can continue running without waiting for
reception of amessage. Processes can be created and
deleted during program cxecution. Unlike most
other parallel logic programming languages [7], CS-
Prolog program can generate alternative solutions by
backtracking. The CS-Prolog interpreter is actually a
set of independent Prolog interpreters running on
different transputers and communicating by
messages.Beside the typical built-in predicates of
sequential Prolog, CS-Prolog provides a number of
special predicatés supporting the notions of process,
communication and time. The most important ones
from the viewpoint of our application are:

Studies in Informatics and Control,Vol.2,No.3, Sept. 1993

new (G,N,S,E,T)

A new process is created with goal G and name
N on processor T. The starting local time is S and
the resolution of G is terminated by the local
time E. The N,S,E,T arguments are optional.

send(M,PL)

The calling process sends message M 1o the
processes being on the process list PL.

wait_for(M)

The caller waits for a message which is
unifiable with M.

message_arrived(X)

Ifthere is a message sent to an active process and
unifiable with X then it succeeds, otherwise fails.

advauée(T)

The local time of the calling process is
incremented by T.

4.2. Hardware Environment

We have implemented the parallel connectivity
analysis algorithms on -a distributed-memory
(message-passing) parallel computing system
consisting of eight T8oo transputers connected in
two stages to aroot T8oo transputer linked directly
to a host PC (Figure 6). The most important
rationales for selecting this hardware architecture
were the following:

— Availability of the CS-Prolog interpreter and
compiler; '

— Computing power: the transputer is one of the
most powerful and cost-effective
microprocessors that are commercially
available;

~ Large and fast main memory: with over 4
Gbytes of addressable off-chip memory
(100ns) and 4 Kbytes of on-chip memory (50
ns), every transputer node in the distributed
transputer system can hold all the modelling
code and database representing a network.

— Expandability: a transputer-based system can
be expanded by connecting each transputer to
four other transputers and by adding more
transputers to such an array incrementally;

225

pPC [| root

.

4

Figure 6. Configuration of the experimental multitransputer system

- Cost: a single transputer equivalent in
computing power to a Vax 780 minicomputer
costs less than a PC;

- Topology: a multitransputer system
consists of a root transputer linked directly
to a PC and up to 3 branch transputers
connected to the root. Each of the branch
transputers may have up to three branch
transputers and so on. This topology
corresponds directly to the balanced-tree,
hierarchical topology.

5. Example of Connectivity Analysis of a
BH Topology Network

We will describe now a CS-Prolog program for
connectivity analysis of a network with 3 level BH
topology (Figure 7). At the top level the network
(called supernet) is represented as two
interconnected clusters called internetl and
internet2. Each of these clusters is decomposed at
the lower level into the interconnection of three
clusters, which are in turn shown at the bottom
level as networks of several nodes connected by
links. They are represented in CS-Prolog
declaratively by facts of the form :

nodc(R,N). % N is the identifier of a
node of network R.

226

link(R,N1,N2). % link between nodes N1
and N2 of network R.
interlink % a link between node N1
(R1,N1,R2N2). of network R1 and %
node N2 of network R2.
superlink % a link between node N1

(S1,R1,N1,S2,R2)N2). ofnetwork R1of internetl
and % node N2 of
network R2 of internet2.

Bidirectional link (or interlink) is represented by
a pair of links (or interlinks) in which one link has
the node identifiers reversed, ¢.g.:

link(R,N1,N2).

link(R,N2,N1).

A cluster at any level is created by the new process
creating predicate. For example, to create a
supernet with the name supernet consisting of two
internets S1 and S2, which contains the terminal

nodes N1 of the network R1 and N2 of the network
R2, on transputer 1 we will use :

new(supernet(S1,R1,N1,S2R2N2), supernet, -, -,1).

The presence of a connection between any two
nodes N1 and N2 of a single network R1 can be
checked by the first definition of the internet goal:

Studies in Informatics and Control,Vol.2,No.3, Sept. 1993

supernet) 1 (rgot)
Oo—0

7 =

internet 1 T2 internet 2 T3

Qe Qe

4/ AN
d@yt7 ©T1e Cf2 T8

12345 123 4 123 4

Figure 7. Topology of the example network and its distribution on the multitransputer system

Studies in Informatics and Control,Vol.2,No.3, Sept. 1993 227

internet(R1,N1,R1,N2) : -send(path(R1,N1,N2,P)),
wait_for(MR1), write_inside(['route between’,
R1,N1, "and", R1,N2, "is", MR1]), nl.

The send predicate is used to send arequest to the
process representing network R1 for checking a
connection between nodes N1 and N2. The
internet process is then suspended by the wait_for
predicate, waiting for the response MR1 from the
process R1. The response is then used to print the
list of nodes and links between the nodes N1 and
N2. If no connection is possible due to a missing
node or link fact (representing that node or link
failure) the network process sends to the internct
process a "disconnected” message.

Connections between two nodes R1,N1and R2,N2
through some intermediate nodes R1,N3 and
R2,N4 (representing gateways between the
networks) of two adjacent networks R1 and R2
connected by an interlink R1,N3,R2,N4 are
checked by the second definition of the internet
predicate :

internet (R1,N1,R2,N2) : -interlink(R1,N3,R2,N4),

send(path(R1,N1,N3,P),[R1])),
send(path(R2,N4,N2,P),[R2])),
wait_for(MR1), write_inside(["route
between”,R1,N1, "and", R1,N3, "is", MR1]), nl,

write_inside([R1, "and",R2,"are connected by
interlink”, R1,N3,R2,N4]), nl, wait_for(MR2),
write_inside (["route between”, R2)N4," and ",R2,
N2,"is", MR2]), nl.

The two send predicates are used to send requests
to processes representing the networks R1and R2
for checking their internal connections. The
wait_for predicates are used to receive their
responses which are then used to print the list of
nodes, links and interlinks composing the required
connection. In case of missing node or link facts
(representing node or link failure) the appropriate
network process sends a "disconnected" message
to the internet process. This can be used for
location of a faulty node or link in the analysed
mnternet.

Similarly, the third definition of the internet is used
to check a connection between two nodes of any
two not-adjacent networks R1 and R2 connected
through an intermediate network R3:

228

internet(R1,N1,R2,N2) : -interlink(R1,N3,R3,N5),
send(path(R1,N1,N3,P), [R1])), wait_for (MR1),
write_inside(["route between", R1,N1,"and",
R1,N3"is" MR1]), nl,

write_inside ([R1,"and",R3, "are connected by
interlink”, R1,N3,R3,N5]), nl, internet(R3,N5,
R2N2).

This is a recursive definition, so it may be used for
any number of interconnected networks. The
worker processes representing particular
networks have the following general form :

R:- wait_for(path(R,X,Y,P)), path(R,XY,P),
send (P,[internet]).
R:- message arrived(), send(disconnected,
[internet]).
The first definition is used to receive a message
from the internet process with specification of the
path to be checked. If the path exists, a list
specification of the path is returned to the internct.
Otherwise the message "disconnected" is returned.
The path goal checks availability of the requested
nodes and links :
path(R,X,X,P) : -
path(R,X,Y,P) : -

!, node(RX), P =[node(R X)).
node(R,X), link(R,X,Y),
node(R,Y), P=[node
(R,X), link(R,X,Y),
node(R,Y)].

node(R,X), !, node(R,Y),
link(node(R,X,Z),
Pl=[node(r,X),
k(R X,2)} palb(RZ,Y.2),
append(P1,P2P).

path(R,X,Y,P) : -

The first definition checks availability of a single
node, the second definition checks availability of a
direct connection between two adjacent nodes and
the last recursive definition is used to check
availability of a path between two not-adjacent
nodes. It contains an append predicate which is
used to concatenate a sequence of nodes and links
represented as lists.

Availability of a route e.g. between node(a,2) and
node(c,3) canbe checked by entering the following
goal :

Studies in Informatics and Control,Vol.2,No.3, Sept. 1993

check(a,2,c,3).

If the nodes are connected the program will print
a message specifying the route:

route betweena2 andalis[node(a,2) link(a,2, 1),node(a,1)]
a and b are connected by interlinkalb1

route betweenbl and b2is [node(b,1) link(b,1,2),node(b,2)]
b and ¢ are connected by interlink b2 ¢ 2

route between c2 and c3is[node(c,2) link(,2,3),node(c,3)]

It is possible to check availability of an alternative
route by backtracking and requesting an
alternative solution. If a component of a route is
not present in the model (e.g. link(a,2,1)) then the
program will print instead a message :

route between a2 and al is disconnected

and the specification of the remaining, correct part
of the route.

The program for parallel Monte Carlo reliability
analysis 1s a version of the above described
program extended in the following way. It is
assumed that the probability of a link failing during
a time interval (represented by a simulation run)
is LF. During a simulation run whencver the
program checks the availability of a link, a random
number F is generated, whose probability density
function is uniform between 0.0 and 1.0. If the
number is less than LF, the link is down, so an
alternative path has to be attempted. Because the
path is generated by a recursive procedure it is
important to define it in such a way that for every
attempted link the random number is generated
only once during the simulation run. This is
achieved by using the once predicate in the state
subgoal of the modified path definition given
below :

path(R,X,Y,LF,P): — node(R,X),link(R,X,Y),
1,state(R,X,Y,LF),node
(R,Y), P=[node (R,X),
link(R,X,Y), node(R,Y)].

path(R,X,Y,LF,P): — node(RX),,node(R,Y),ink
(R,X,Z),state(R,X,Z,LF),
Pl1=[node(R,X),
link(R,X,Z)], path(R, Z.Y,

LEP2), append(P1,P2P).
state (R, X,Y,LF) : -~ once(random(F)),F>LF.
once(Goal) : - Goal,l.

Studies in Informatics and Control,Vol.2,No.3, Sept. 1993

The state subgoal is used to find the current state
of a link (up or down). It is preceded by a cut, to
ensure program termination if an adjacent link is
down.

At the beginning of a simulation run a user can
enter the value of LF for this run, and the program
generates the available route between any two
given nodes.

The user canspecify the number of simulation runs
for a given value of LF and of increments of the LF
value for consecutive run sets to find the
probability of network disconnection as a function
of LF. Moreover, the implemented program
generates the length of the available route in terms
of hops or propagation delay, so it is possible Lo
find the shortest available route.

6. Performance of the Connectivity
Analysis Algorithms

Connectivity analysis algorithms are actually
special cases of graph search procedures, so we
can evaluate their performance in a similar way to
that used for graph search procedures. We swill
estimate in the following the performance of the
node-to- node connectivity algorithms,which can
be easily supported by CS- Prolog (using
depth-first search or breadth-first scarch).

This performance depends on the following
factors [12]:

The size of the search space;
The branching factor of the search tree.

The scarch space is defined to be the set of all
possible states of the world under study. Knowing
the size of the search space is insufficicnt however
in deciding which search procedure 1s the most
suitable. More information for such a decision
provides the branching factor. It is defined as the
average number of next states of any problem state.
The branching factor can be used to cstimate the
size of the search tree, which enables us to measurc
the performance of any scarch procedure
{(assuming that no distinction can be made between
the next states of the decision tree).

Generally, the performance of a search procedure
(or any procedure) can be measured by the
following accounts:

229

The amount of memory space needed in running
the procedure (space complexity);

The time consumed in running it (time
complexity).

With any search procedure, the main concern in
memory space is the size of the stack needed to
store the path being developed (in case of our
implementation,but it seems to be typical) . On the
other hand, the running time is proportional to the
number of iterations generated by the search
process.

To facilitate the measurement, let us call stack size
S the estimated number of states contained in the
paths that need be stored, and iteration count I the
estimated number of iterations generated by the
search process.

Let B be the branching factor of our search
problem. Then the search tree has 1 node at level
1, B nodes at level 2, B2 nodes at level 3,.... BK-1 at
level K.

Also, let N be the estimated length of a
solution-path. Then, the stack size S and iteration
count I are calculated as follows:

When considering our experimental network
(Figure 7) as a flat topology network with N = 8
andB = 3:

a) Depth-first search stores only one path at any
time, so the stack size is N. On the other hand,
the iteration count is

BN-1

_ 2 N-1 _
I=1+B+B°+....+B Bo1

For our network
S$=8 I = 3280.

b) Breadth-first search stores all developed paths,
but it extends only one path at a time. Thus,
after the first iteration the stack contains B
paths of length 2; after the (1 + B)-thiteration,
B2 paths of length 3; after the (1 + B + B?)-th
iteration, B3 paths of length 4, and so on. So to
find a solution path of the estimated length N,
the stack size is BN"' x N and the iteration count
is

I = 1+B+B%+.... +BYN 2=

For our network

230

S=17496 1 = 1093.

Reformulation of the flat topology into a 3 level
BH topology lets us do the search hierarchically.
The values of the B and N parameters for our
network become:

B =2andN = 1atlevel 3
B =2andN = 2atlevel 2
B =3andN = 3atlevel 1

The hierarchical search may be done either
sequentially or in parallel,with depth-first or
breadth-first search at every level.

In case of the sequential hierarchical search the
performance measures become:

(a) for depth-first search
§=23 1I=85

(b) for breadth-first search
S=182 I=26

Mapping the hierarchical search algorithm onto a
tree structured parallel system like the one we have
used,gives the following estimates:

(a) for depth-first search

$=23 I=17
(b) for breadth-first search
§$=182 I=5

We have implemented the hierarchical,parallel
depth-first search because it is much simpler than
the breadth-first search (it is possible to use for
this the Prolog’s built-in inference engine) and
requires much less memory. :

The above analysis does not take into account the
overhead inherent in the actual implementation,
the most important component of which in our
case is the message passing time. We have
measured the actual execution time of the same
CS-Prolog implementation of our algorithms in
three hardware configurations- with 1,3 and 9
transputers.In the first case all processes were
running on the root transputer,in the second case
the top level process was created on the root while
the first and second level processes were created
on the second level of the binary hardware tree
and the last case was as described on page 226.

Studies in Informatics and Control,Vol.2,No.3, Sept. 1993

The other possible 3 transputer case with the third
and second level processes on the root and the first
level processes on the second level of the hardware
tree gave virtually identical results as the first 3
transputer case. The appropriate execution
times,the corresponding speed-ups and processor
efficiencies are shown in Table 1. The speed-up is
calculated as the ratio of T(1)/T(N),where T(1) is
an execution time on a single processor and T(N)
is the execution time on N processors.The
processor efficiency measures the average
contribution of each processor to the parallel
solution when N processors are employed and is
calculated as the ratio of speed-up(N)/ N.

Table 1. Performance parameters

No. of Processors 1 3 9

Execution time (msec) 1.49 0.61 0.44
Speedup - 244 339
Processor efficiency - 0.81 0.38

7. Conclusion

We have demonstrated that by reformulation of
network topology and parallelization, the
connectivity analysis of large networks becomes
computationally tractable. The hierarchical
parallel search used by our algorithms provides
considerable improvement over a flat search used
by the sequential algorithms - it finds a solution
much faster and needs much less memory. The
main contribution to this result is made by
reformulation of the topology.Further
improvement is obtained by executing the
hicrarchical search on a parallel system.Even
better results could probably be obtained by using
more efficient implementation language-like
parallel C.

The actual speed-up obtained on the parallel
system was not as high as its estimation due to
communication overhead. Moreover,it turns out
that increasing the number of processors beyond
some value does not improve much the speed-up,
because the processor efficiency drops.This is

Studies in Informatics and Control,Vol.2,No.3, Sept. 1993

typical for tree structured distributed systems with
message passing and confirms validity of the model
and the conclusion reported in [8].

REFERENCES

1. ANTONIO, JK. et al, A Fast Distributed
Shortest Path Algorithm for a Class of
Hierarchically Structured Data Networks,
Proceedings of the IEEE INFOCOM’89,
Vol.I,1989, pp. 183-193.

2. BARCHANSKI, J.A., Parallel Modelling of
Computer Networks for Connectivity
Analysis, Proceedings of the International
Workshop on Modelling, Analysis and
Simulation of Computer and Telecom-
munication Systems, MASCOTS’93, La Jolla,
CA., January 1993,pp. 287-290.

3. BARCHANSKIJ.A Increasing Flexibility of
Simulation by Reformulations,Studies in
Informatics and Control,Vol.l, No.3,
September 1992, pp.199-213.

4. BERTSEKAS,D. and GALLAGER,R.,
Data Networks, PRENTICE HALL, 1992.

5. CS-Prolog, Version 3.25, Multilogic
Computing Ltd, Budapest, 1991.

6. FUTO, 1. and KACSUK, P., CS-Prolog on
Multitransputer Systems, MICROPRO-
CESSORS AND MICRO- SYSTEMS, Vol.
13, No. 2, March 1989, pp. 103-112.

7. LAZAREV,G.L., Why Prolog-Justifying
Logic Programming for Practical
Applications, PRENTICE HALL,1989.

8. SREEKANTASWAMY,H.V. et al,
Performance Prediction Modelling of
Multicomputers,Technical Report 91-27,
November 1991,Dept.of Computer
Science,University of British Columbia.

9. TANNENBAUM, A., Computer Networks,
PRENTICE HALL, 1981.

10. TICK,E., Parallel Logic Programming, MIT
Press, 1991,

11. TSALW.T., Control and Management of
Large and Dynamic Networks,Ph.DThesis,
Department of EECS,University of
California,Berkeley,CA.,1985.

12 VAN LE, T., Techniques of Prolog
Programming, JOHN WILEY, 1993,

231

