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Abstract: Two approaches for learning diagnostic knowledge
from past process data or simulation data using neural
networks and genetic algorithms are described in this paper.
In the first approach multi-layer feed forward neural networks
are used to extract the relations between observed
abnormalities and the corresponding faults. Through training,
neural networks can acquire and store diagnostic knowledge
as network weights. The trained networks can be used to
diagnose faults in that they can associate the observed
abnormalities with the corresponding faults. In the second
approach, genetic algorithms are used to train diagnostic rules
from process data or simulation data. Genetic algorithm based
learning starts with a group of initial rules and produces new
rules through reproduction, crossover and mutation. More
fitted rules are preserved and less fitted ones are abandoned.
Through this evolution-like procedure, effective and concise
diagnostic rules can be discovered. The proposed approaches
can ease the knowledge acquisition task in developing
knowledge based diagnosis system. The proposed approaches
have successfully been applied to a pilot scale mixing process.
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1. Introduction

Industrial processes are subject to failures during
operations. Failures can damage equipments,
reduce production efficiency, lead to plant shut-
down, or even result in hazardous conditions. The
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task of prompt detection and diagnosis of faults
becomes more and more important as modern
industrial processes get more and more complex
and environmental constraints turn to be more
and more important. Knowledge based systems
have shown their great potential in on-line fault
detection and diagnosis [Moor and Kramer 86;
Tzafestas 89].

Knowledge based fault diagnosis can be divided
into "shallow knowledge" and " deep knowledge"
based approaches according to the nature of
diagnostic knowledge employed. In the shallow
knowledge based approach, the knowledge used is
usually the empirical association between
symptoms of a fault and the fault itself. The
knowledge is often represented by rules and, quite
often, uncertain reasoning is used since the
knowledge is frequently uncertain. In the deep
knowledge based approach, the knowledge used
includes models of the process being diagnosed
and models of common failures of process units.
These models can take various forms, e.g. a set of
numerical equations, qualitative models, or rules
compiled from a model.

One of the most difficult tasks in developing
knowledge based systems is knowledge
acquisition. As knowledge engineers may often
have little knowledge about the operation of a
specific process, all the same, process operators
may also know little about knowledge engineering.
This issue is referred to as the "knowledge
engineering bottleneck" [Moor and Kramer 86;
Price and Lee 88]. This is especially the case for
most experience (or shallow knowledge) based
expert systems.
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To ease the task of knowledge acquisition, it would
be very desirable that a diagnosis system can learn
diagnostic knowledge itself. This paper presents
two approaches to learning diagnostic knowledge
from past process operation data or simulation
data. In the first approach, neural networks are
used to extract the relations between abnormal
process data and the corresponding faults. After
training, the acquired knowledge is stored as the
trained network weights and the trained neural
network can be used to diagnose faults in that it
can associate the observed abnormalities with the
corresponding faults. In the second approach,
genetic algorithms are used to train diagnostic rules
from past process operation data or simulation data.
Through genetic algorithm based learning, a set of
rules best fitted for the training data is obtained. This
approach can be easily integrated with expert
systems since the diagnostic knowledge learnt is in
the form of rules. As genetic algorithms work on a
group of rules, a group of various fitted rules is
obtained and it may be used supplementarily in cases
where none of them is perfect.

The next section generally introduces neural
network techniques and presents a neural network
based fault diagnosis approach. A pilot scale
mixing process is used to demonstrate this
approach. Section 3 presents a method for
learning diagnostic rules through genetic
algorithms. A brief introduction to genetic
algorithm is made and genetic learning method is
described. An application to a pilot scale mixing
process is presented to illustrate the effectiveness
of the proposed approach. The last section
contains some discussions and conclusions.

2. Learning Diagnostic Knowledge
through Neural Networks

2.1. Feed Forward Neural Networks

A typical feed forward neural network is shown in
Figure 1, where neurons are arranged into layers.
The output of each neuron is connected to the
inputs of all the neurons in the successive layer
through corresponding weights. Input layer
neurons in Figure 1 simply fan out their inputs and
do not process the inputs. The hidden layer and
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output layer neurons will process their inputs and
are marked as squares in Figure 1. One of these
neurons is shown in Figure 2 to illustrate how
information is processed. The inputs to the neuron
are weighted and then summed to give the signal.
NET. The output of the neuron is obtained by
applying NET to an activation function F.

NET = X,W; + X,W, +..+ X, W, 6))
OUT = F(NET) (2)

A commonly used activation function is the
Sigmoid function
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Figure 1. An artificial neural network
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Figure 2. An artificial neuron

There are two main operations in the use of feed
forward neural networks: training (learning) and
generalisation. During training, the network is
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provided with input vectors and corresponding
target vectors which are called training pairs. An
input vector is applied and the output vector of the
network is calculated and compared with the
corresponding target vector.The difference
(error) is fed back through the network and the
weights are adjusted according to an algorithm
which tends to minimise the error. The input
vectors in the training set are applied sequentially
and the errors are calculated and weights adjusted
for each training pair, until the error for the entire
training set is at an acceptable level. On
completion of training, the network can operate in
a generalisation phase where it produces outputs
for similar or novel input patterns.

A widely used training algorithm is the
backpropagation training algorithm [Rumelhart et
al 86], which belongs to the category of supervised
training. The backpropagation training process
contains a "forward pass” phase, in which an input
vector is applied to the network to produce an
output vector, and a "reverse pass" phase, in which
the differences between targets and outputs are
calculated and the network weights are adjusted to
minimise the differences. The weights are adjusted
by the following algorithm which minimizes the
squared errors.

W @+)=n(@ OUT )+a[ AW, (w)](4)
W D=V ()+AW \ (a+1) (5)

where qu ((n) is the value of the weight from
neuron p 1 the jth layer to neuron g in the next
layer (kth layer) as step n (before adjustment),
W k(n+1) is the weight at step n+1 (after
adjustment), AW ’k(n +1) is the adjustment in
weight, OUT_ . is the value of OUT for neuronp in
the jth layer, 8 ok is a common factor in the gradient
ofthe squared error, 7] is the training rate coefficient,
and a is the momentum coefficient. For output-layer
neurons (if the kth layer is the output layer),

o ok =OUT (1-OUT, ) (Target, - OUT ) (6)
where Target, is the qth element of the target
vector corresponding to the gth element of the

output vector, OUT, . Finally, for hidden layer
neurons (if the kth laycr is a hidden layer),
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)

0 =OUT (1~ OUTq,k)(g S Wy

where W__,is the welght from neuron ¢ in the kth
qr,

layer to neuron 7 in the next layer (the /th layer).

Eq(7) recursively determines the O values for

each hidden layer.

2.2 On-line Process Fault Diagnosis Using
Neural Networks

The proposed fault diagnosis system is based on
the fact that a neural network can learn. The
training data used are a set of symptoms and the
corresponding faults. After training, the neural
network can find the relationship between a
specific symptom and the corresponding fault, and
store this information as the trained weights. Since
the information about the monitored process is
obtained through on-line measurements, the
symptoms are represented by on-line
measurements. The proposed neural network
based diagnosis system is shown in Figure 3.

On-Line Information | S|Neural | D
measurenents|pre-processor

network result

Figure 3. Neural network based diagnosis

The on-line measurements are processed, for
example scaled, by an information pre-processor
into a suitable form which can be applied directly
to the network. This processed information is
known as the "symptom vector", S, and the outputs
of the network indicate the diagnosis result and is
termed the "diagnosis vector', D. The training
data can be obtained from past experience or from
simulation analysis.

The neural network is trained off-line and the
trained network is used on-line. During the
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training phase, a set of symptom-fault pairs is
applied to the network, and the network weights
are adjusted by the backpropagation training
algorithm. The training time is affected by the
network structure, training parameters, and the
number of training pairs, and may be a long time
and, therefore, it is performed off-line. Once a
network is trained it is ready to be used for
diagnosis. When abnormalities occur in the on-line
measurements, the information pre-processor will
process the measurements and produce a
symptom vector which is then applied to the
trained network, and the diagnosis result is
presented by the diagnosis vector. The
generalisation phase can then be performed in a
sufficiently short time for on-line implementation.

2.3 Neural Network Based On-line Diagnosis of a
Mixing Process

2.3.1 The Mixing Process

The above described neural network based on-line
diagnosis technique has been applied to a pilot

scale mixing process which is shown in Figure 4,
where two tanks in cascade receive hot water and
cold water supplies. Both streams enter tank 1 where
mixing takes place. The contents of tank 1 passes to
tank 2 and subsequently out to a pool tank.
Measurements of levels and temperatures in both
tanks are available and the level and temperature in
tank 2 are controlled by a rule-based controller
[Zhang et al 88] resident on a BBC-B
microcomputer, which communicates with and is
supervised by a Micro-VAX computer. As a main
function of supervision, the on-line fault diagnosis
system resides on the Micro-VAX computer.

2.3.2 Neural Network Based Fault Diagnosis

The information pre-processor shown in Figure 3
for this application is a quantitative to qualitative
value converter, which converts the quantitative
increments into measurements and controller
outputs into their qualitative forms: increase,
steady, and decrease. By using such an information
pre-processor, training data can be condensed and
training effort could be eased. The elements of the
symptom vector are qualitative deviations in

WA \l\:“.'

Pibs: ﬁy\
/7 /,
‘J’//’/j{'///

s

v

BYCY

|

e

C Pump

Tank 1

-

Overflow
Pool Tank

Figure 4. The mixing process
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measurements and manipulated variables. Here
we use 0.1.2. and 3 to represent information
unavailable, decrease, steady, and increase,
respectively. The assumption that some
information may be unavailable has a practical
meaning. For example, during operation, some
sensors may be out of service and, therefore, the
information from these sensors is unavailable.

In the mixing process, the available on-line
information includes four measurements and two
controller outputs, which determine that there
should be six neurons in the input layer, each
corresponding to a particular information source.
The possible faults that may occur are considered
to be: sensor failures, hand valve 1is blocked, hand
valve 2 is blocked, cold water control valve fails and
gives a high output, cold water control valve fails and
gives a low output, hot water control valve fails and
gives a high output, and hot water control valve fails
and gives a low output. Since sensor failures may be
present in several forms and donot result in relatively
fixed symptoms, at this stage, we only consider the
other six failures, which determine that there should
be six output-layer neurons. Each output-layer
neuron corresponding to a particular fault and its
output lies in the range (0.1). When its output is close
to 1, it indicates that the corresponding fault has
occurred. This output can be taken as an
approximate measure of the possibility that a fault
has occurred, and only those faults with more than
60% possibility are accepted.

The number of hidden layers and the number of
hidden layer neurons are determined by the
complexity of the classification task. A practically
effective approach in selecting the number of
hidden layers and hidden layer neurons is to start
from a small structure (with one hidden layer and
a small number of hidden neurons) and gradually
increase network complexity until performance
gets satisfactory. Here, we find that a single hidden
layer with five neurons gives quite good results and
this structure is selected.

2.3.3 Network Training

The training data have been obtained from
simulation studies of a previously developed
diagnosis system [Zhang et al 90], by inserting a
fault into the process model and recording the

Studies in Informatics and Control,Vol.2,No.3, Sept 1993

resulted deviations in simulated measurements
and controller outputs. The complete training data
are listed in Table 1, where S and T are the
symptom vector and the target vector,
respectively. The elements of S: 51, s2,..., 56, are
qualitative deviations of temperatures in tank 1
and tank 2, levels in tank 1 and tank 2, and cold
and hot water control valve openings,
respectively. Each element of a target vector
corresponds to a specific fault and can take the
values of either 1 or 0, with 1 representing the
occurrence of the corresponding fault and 0
standing for no occurrence.

Table 1: Training data for the neural network
based diagnosis system for the mixing process

Training pairs Faults

Hot water control

valve fails low

Cold water control

valve fails low

Hand valve 1

is blocked

Hand valve 2

is blocked

Hot water control

valve fails high

Cold water control

valve fails high

T 0 0 0 0 0 0 Nofault
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The learning rate parameter. 7], was set at 0.8, the
momentum coefficient, ¢, was set at 0.5, and the
initial weights were assigned to small
uniformly-distributed random values between -0.1
and 0.1. The stopping criterion used for the
training process is that the largest error in the error
space is less than 5%.

2.3.4 Performance of the Neural Network Based
Diagnosis System

The trained network has been tested in both
simulations and real plant applications. In
simulation studies, the network is tested on a set of
incomplete and partially incorrect symptoms, in
which some elements in the symptom vector were
different from their corresponding items in the
training data. These partially incorrect symptoms
may be due to measurement noise or some
inappropriate parameters in the information
pre-processor [Zhang et al 91]. If the training data
are obtained from simulation analysis, then any
model-plant mismatch may also result in these
incorrect symptoms.

Table 2: Performance of the diagnosis system
under partial and partially incorrect information

g’it Symptom vectors, Diagnosis vectors, Faults

ss 0o 1 1 1 3 2
1 D: 00108 0.0002 0.0013 0.1356 0.0181 0.7257

Fault: Hot water control valve fails low

s 2 2 o 2 3 1
2 D: 00001 00773 0.0863 0.0043 0.8554 0.0075

Fault: Cold water control valve fails low

.

s 2 1 3 1 3 1

3 D: 0.0177 0.0315 0.0000 0.9412 0.0252 0.0109
Fault: Hand valve 1 is blocked
s 20 2 25 1

4 D: 0.0179 0.2686 0.6050 0.0005 0.0287 0.0013
Fault: Hand valve 2 is blocked
s 3 3 7 B o 1

5 D: 0.0051 0.8508 0.1028 0.0041 0.0791 0.0001
Fault: Hot water control valve fails high
ss o 2 38 2 4 3

6 D: 0.8003 0.0012 0.0007 0.5242 0.0001 0.2958
Fault: Cold water control valve fails high
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The symptoms and the diagnosis results are shown
in Table 2, where the incorrect elements in the
symptom vector are marked with "', and the
unavailable elements are marked with "?"". It can
be seen that the neural network based diagnosis
system under partially incorrect and partially
unavailable information performs well. An
explanation for the good performance could be
that that the neural network has the ability of
abstraction in that it can extract the essential
features in the training data. Therefore, when some
new data, resembling the training data to some extent,
are applied to the neural network, the network can
classify the data into appropriate categories.

The network trained on the simulation data has been
applied to the real process and the results are also very
satisfactory. In one instance, a hot water control valve
failure giving a low output was initiated by turning off
the hand valve in series with the valve (see Figure 4).
The measurements covering this event are shown in
Figure 5. The diagnosis system observed that the
temperature measurements were abnormal at 110
seconds, when it swiftly collected another four sets of
measurementsto eliminate the effects of measurement
noise. The abnormality was presentedin all the five sets
of measurements, and then the information
pre-processor calculated the symptom vector as

ST =(111233).

Comparing this with the first training pair in Table
2, it is noticed that the 4th element is different
from its counterpart in the training data. The
diagnosis result for this symptom is

DT = (0.0343 0.0000 0.0127 0.0264 0.0186 0.9641).

which indicates that the failure, hot water control
valve fails giving a low output, has occurred with a
high possibility. It can be scen that the diagnosis
result is very accurate.

Several faults have been tested in a similar way as
in the above example. The symptom vectors,
obtained from on-line measurements, and the
diagnosis results are shown in Table 3. The
elements in the symptom vectors, which are
different from their counterparts in the training
pairs, are marked with "*", Table 4 shows that the
network trained by simulation data performs
extremely well on the real process. In Tests 1 and
2, the same failure has been initiated, and the
resulting symptom vectors are different, which
may be due to measurement noise or to the
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operating conditions being different when the
failure was initiated. However, the correct
diagnosis result has been obtained for both tests,
thus demonstrating the robust nature of the neural
network based diagnosis system, in that it can
tolerate measurement noise and model-plant
mismatch to some extent. In Test 1, the 4th element
of the symptom vector is different from its
counterpart in the training data, and the diagnosis
result shows high accuracy (0.9641). In Test 2, in
addition to the 4th element, the 3rd element is also
different from its counterpart in the training data,
and in this case, the diagnosis accuracy drops down
a little bit (0.8769). This demonstrates the graceful
degradation in the performance of neural network
based diagnosis systems.

The proposed approach has also been applied to
the fault diagnosis of a CSTR (continuous stirred
tank reactor) system and details can be found in
[Zhang and Roberts 92a].

Table 3: Performance of the diagnosis system on
the real process

g:.)st Symptom vectors. Diagnosis vectors. Faults

S: 1 1 1 2* 3 3

1 D: 0.0343 0.0000 0.0127 0.0264 0.0186 0.9641
Fault: Hot water control valve fails low
S 1 1 2* 2* 3 3

2 D: 0.1577 0.0001 0.0027 0.1549 0.0036 0.8769

Fault: Hot water control valve fails low
S: 2 2 1 1 3 1
3 D: 0.0000 0.0303 0.0111 0.0333 0.9557 0.0235

Fault: Cold water control valve fails low
S 2 3 1 1 3 1

4 D: 0.0000 0.0433 0.0163 0.0234 0.9535 0.0159
Fault: Cold water control valve fails low
S: 2 2 3 1 2* 3*

5 D: 0.1251 0.0066 0.0000 0.8939 0.0032 0.0542
Fault: Hand valve 1 is blocked
S: 2* 2 2 3 1 2

6 D: 02032 0.0156 0.6780 0.0003 0.0018 0.0280
Fault: Hand valve 2 is blocked
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3 . Learning Diagnostic Rules through
Genetic Algorithms

3.1 A Brief Introduction of Genetic Algorithms

Genetic algorithms are search algorithms based on
the mechanics of natural selection and natural
genetics [Holland 57; Goldberg 89]. Genetic
algorithms start with a group of knowledge
structures which is usually coded into binary
strings. These structures are evaluated within
some environment and a measure of the fitness
(the strength) of a structure should be defined.
The fitnesses of all individual structures are
calculated and a new set of structures are then
formulated by randomly selecting structures from
the current group. This process is usually called
reproduction or selection. Each structure is
selected with a probability determined by its
fitness and, through such a means, the structures
fitted for the environment will survive and those
not fitted will be extinct. The selected group of
structures are then undergoing certain genetic
operations, such as crossover and mutation, which
provide a structured yet randomised information
exchange among the structures. For example,
through the crossover operation, the structures
will be paired and each pair of structures will
randomly exchange a certain amount of
information. This will be demonstrated later. The
resulting structures are then evaluated and the
process is repeated until satisfactory structures
have been produced.

Genetic algorithms differ from conventional
optimisation and search procedures in the
following ways: 1) genetic algorithms work with
a coding of the parameter set, not the
parameters themselves; 2) genetic algorithms
search from a population of points, not a single
point; 3) genetic algorithms use pay-off
(objective function) information, not derivatives
or other auxiliary knowledge; 4) genetic
algorithms use probabilistic transition rules, not
deterministic rules [Goldberg 89]. All these
enable genetic algorithms to perform robustly
and be applied to many problems. Genetic
algorithms are mainly applied in optimisation
and machine learning and a survey of them is
provided in [Goldberg 89].
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3.2 Learning Diagnostic Rules with Genetic
Algorithms

3.2.1 Rule Coding

Since genetic algorithms work with a group of
structures which is usually coded into binary
strings, the diagnostic rules which are to be
evaluated through genetic algorithms should then
be coded. Diagnostic rules used here are in the
following form:

IFS, &S, & .. &S,
THEN Fault

which states that if symptoms §; toS are present
then the ith fault occurs.The symptoms §; to S,
used here correspond to n different on-line
information sources, which could be on-line
measurements and controller outputs,and each
symptom is considered to take one of the following
values: increase,steady,decrease, and "*" which is a
wild card and means that the corresponding
symptom is not important. When applying a rule,"*"
can match with any values. By introducing this wild

card,the condition parts of all the diagnosticruleswill

be of the same length and the corresponding parts of
the rules will represent the same observations.

Each symptom in the condition part of a rule is
coded by a two- bit binary with "00" standing for
"decrease", "01" standing for "steady", "10" standing
for "increase” and "11" standing for "*",the wild
card. By such a means, a rule whose condition part
includes n symptoms will be coded into a 2n-bit
binary string consisting of "0"s and "1"s.

32.2 Training Data

Training data are divided into different groups
corresponding to the different possible faults.
Each group of training data represents the
qualitative states of the process under the
corresponding fault with different severities. A
group of training data representing normal
operating conditions is also required. Training
data could be obtained from simulation studies or
from previous operating experience of the process.
If a model of the diagnosed process is available,
then the training data can be obtained by inserting
a fault to the model at various severities and then
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recording the qualitative increments of measured
variables and controller outputs.

3.2.3 Fitness Functions

To use genetic algorithms, the fitness of each
individual structure,which is calculated from a
pre-defined fitness function,is required. The
fitness of an individual structure is a measure
indicating how fitted the structure is. In the
self-learning of diagnostic rules, a better rule
should have more applications when tested by the
training data corresponding to this rule and less
incorrect applications when tested by the other
training data. A better rule should also be simpler
in that its condition part contains more "*'s. Let
NSA be the number of successful applications of a
rule when tested by the training data
corresponding to this rule,NIA be the number of
incorrect applications of the rule when tested by
the rest of the training data,and NOS be the
number of "*'s in the condition part of the
rule,then the fitness of the rule ,F, can be
calculated as follows:

F=aNSA - fNIA + YNOS + M 8)

where @, B and y are positive weighting
coefficients. M is a positive offset to ensure that F
will not be negative. The requirement that F should
not be negative is determined by the genetic
algorithm used here. In the reproduction phase,an
individual rule is selected with a probability which
is equal to the ratio of the fitness of the rule and
the sum of the fitnesses of all the rules in the
generation. Therefore,the fitness of a rule should
not be less than zero.

The fitness function can also be chosen as follows:
__aNSA

BNIA+1
where @, B and ¥y are positive weighting
coefficients.

F + yNOS : &)

A problem asso-iated with the first fitness function
is that sometimes M could be quite large and this
makes the fitness function insensitive to changes in
NSA,NIA, and NOS. By inspecting the first order
partial derivatives (suppose that NSA,NIA,and
NOS could change continuously), it is found that
the second fitness function is more preferable than
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the first one. Differentiating F in Eq(9), with
respect to NSA,NIA, and NOS respectively,gives

SF a (10)
SNSA™ ANIA+1

OF  —pBNSA _—fNSA 6F (11)
SNIA ™ (ANIA+1)2 BNIA+1SNSA

) (12)
SNOS

From Eq(10) and Eq(11), it can be seen that the
second fitness function is more sensitive to
changes in NSA and NIA when a rule is close to
the desired rule (with large NSA and small NIA).

The values of the parameters @, § andy in
Eq(9) can affect the result of learning. The choices
of @,f and y are determined by the quantity of
training data and the user’s objectives. Eq(11)
shows that large B will impose more penalty on
incorrect applications. Suppose that one rule has
NSA =15, NIA=2,and NOS=0, and a second
rule has NSA =12,NIA =1, and NOS=0. If it is
chosen that @ =35, }5’ =0.5, and ¥ =2, then the
fitnesses for the two rules are 37.5 and
40,respectively and the second rule is more
preferable If it is chosen that @ =5, B =0.1, and
=2, then the fitnesses for the two rules are 62.5 and
55.6, respectively and the first rule is better. The
experiments follows show that large 3 will produce
rules which are more " cautious " in that they rarely
have any incorrect applications but they could miss
some faults,while small B will produce rules
which generally will not miss the corresponding
faults but could produce incorrect diagnoses.

3.2.4 The Genetic Algorithm

The genetic algorithm used here is the three
operator algorithm [Goldberg 89] with slight
modifications. Modifications are required in cases
where the best structure in the new generation
(after reproduction, crossover,and mutation) is
not as good as the best one of the previous
generation to preserve the best structure. In such
situations, the worst rule in the current generation
is replaced by the best rule in the previous
generation. By such means, there will be no such
dangers that the best rule ever discovered will be
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lost. This is similar to De Jong’s elitist model
[Goldberg 89]. The genetic algorithm therefore
contains the following phases: reproduction,

crossover, mutation, and preservation of the best
rule.

(a) Initial population

There are several reported approaches to
initialising the knowledge structure of a genetic
algorithm. The most commonly used is random
initialisation.This approach requires the least
knowledge acquisition effort and provides a lot of
diversity for the genetic algorithm to work with.
Another approach is to seed the initial
population with existing knowledge
[Grefenstette 87]. By such means,there will be
more fitted structures in the initial population.
In this paper,we use the second approach. To
build initial rules for a specified fault,the training
data corresponding to this fault are inspected and the
different patterns in the training data are found.The
initial rules are then developed by copying these
different patterns and then deviating the symptoms
in possible directions (i.e. not deviating from
increase to decrease or vice versa). From the
knowledge about a particular failure, it may be found
that under this fault certain measurements will
definitelydeviate in certain directions. In creating the
initial population,these symptoms are mainly kept
unaltered and the only acceptable alteration is "*"
whereas other symptoms are deviated in various
possible directions to give a large diversity.

(b) Reproduction

Fitnesses of the rules are calculated in the
reproduction or selection phase.A new generation
of rules, with the same size as the current
generation, is produced by randomly selecting
rules from the current generation.The probability
that a rule being selected is defined as follows:

Py =—F) : (13)
F()

Ttz

]

where P (i) is the probability that the ith rule will
be selected, F (i) is the fitness of the ith rule, N is
the total number of rules in the current generation,
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and j is a running index taking the values from 1 to
N. By such means, more fitted rules will be selected
with more chances and produce more copies in the
new generation.

(c) Crossover

After the reproduction phase,the rules are
randomly mated to undergo the crossover
operation. Each pair of rules will undergo
crossover operation with the probability PCROSS,
which is generally quite large (e.g. 0.95). Through
the crossover operation,the two rules in a pair will
exchange a certain amount of inform- ation. The
amount of information exchanged is determined
by the crossover site which is randomly selected
among all possible sites with a uniformly
distributed probability. For example, given the
following two rules:

IFS;; &S,, &S5 & S,;, THENF
IFS, &S,, &S,; &S,, THENF
there are three possible crossover sites in the
condition parts of the rules, and if the crossover
site is chosen at the first possible site, i.e. between
the first and the second symptoms,then the

crossover operation will produce the following two
new rules:

IFS;; & S,, & S,3 & S,, THENF
IF Sy, & Sy, & S;3 & Sy THENF

The crossover operation is an important means for
combining different knowledge structures in order
to produce new knowledge structures.

(d) Mutation

Following the crossover operation is the mutation
operation which performs bit by bit changes in the
coded rules (i.e. from 0 to 1 or from 1 to 0) with a
probability, PMUT, which is typically very small
(e.g. 0.001). The mutation operator can
occasionally produce new knowledge structures.

(e) Preserving the best discovered rule

There may exist such situations that the best rule
in the current generation is not as fitted as the best
one in the previous generation. This could be the

Studies in Informatics and Control,Vol.2,No.3, Sept 1993

result of crossover disruptions [Liepins and Vose 90].
If such situations are encountered,the worst rule in
the current generation is replaced by the best rule of
the previous generation, which is the best rule ever
discovered. Through such a means, the best ever
discovered rule will never be lost.

3.3 Learning Diagnostic Rules for the Mixing Process

3.3.1 Learning Diagnostic Rules

The available on-line information on the mixing
process consists of four measurements and two
controller outputs,which determine that the
condition part of a diagnostic rule should contain
six symptoms each one of them corresponding to
an on-line information source.The rules are coded
into several 12-bit binary strings. The training data
are generated through simulations of the following
six faults: cold water control valve fails and gives a
high output,cold water control valve fails and gives
alow output,hot water control valve fails and gives
ahigh output,hot water control valve fails and gives
a low output,hand valve 1 is blocked,and hand
valve 2 is blocked. During simulation,these faults
were initiated at a variety of severities and the
corresponding responses of the process are
recorded and transmitted into a symbolic
form.Corresponding to the six faults,there are six
groups each containing 16 sets of training data.
Apart from these, there is another group of
training data representing the normal operating
conditions. Corresponding to the six faults,there
are six groups of rules to be evaluated. Each group
contains 30 rules and through genetic algorithm
based learning,it is required to discover the best
rule for each fault.

The crossover probability, PCROSS, is set to 0.95,
the mutation probability, PMUT, is set to 0.001,
the parameters used in the fitness function @,
and ¥ are set as 6, 0.15, and 2.2,respectively. The
values of @,f3 and ¥ are chosen through trial and
error but are roughly guided by the quantity of
training data. Equations (10) to (12), and the
discussions following these equations. For
example, Eq (11) shows that at a given stage (with
given NSA ana NIA) 8 will determine the relation
between the effect of changing NSA on F and that
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of changing NIA on F and at a certain stage the two
effects can be balanced by choosing certain 3 .

The performance of the learning system is
presented in Figures 6 to 11, which illustrate the
fitness of the best rule and the average fitness of
each group during learning. Clearly, these Figures
demonstrate that better rules are discovered
during learning. The best rules learnt for each
group are listed below:

Rule No. I

IF

Cold water flow Increase

Hot water flow Decrease

THEN

Cold water control valve fails low
Rule No.2:

IF

Levelin tank 1 Increase

Levelin tank 2 Increase

Cold water flow Decrease

THEN

Cold water control valve fails high
Rule No.3:

IF

Temp.intank 1 Decrease

Temp. intank 2 Decrease

THEN

Hot water control valve fails low
Rule No.4:

IF

Temp. intank 1 Increase

Temp. intank 2 Increase

THEN

Hot water control valve fails high
Rule No.5:

IF

Level intank 1 Increase

Cold water flow Increase

THEN

Hand valve 1 is blocked
Rule No.6:

IF

Levelintank 1 Steady

Level intank 2 Increase

Cold water flow Decrease

THEN

Hand valve 2 is blocked

The fitnesses and the values of NSA NIA ,and
NOS of the best rule and the second best rule
learnt for each fault are provided in Table 4.1t can
be seen from Table 4 that the rules learnt for fault
1 and faults 3 to 5 are perfect in that there is no
missed fault when tested by their corresponding
training data (NSA = 16) and no wrong diagnosis
when tested by the other training data (NLA = 0).It
should be realized that due to the effects of
measurement noise, the dynamics of the
process,various severities of faults represented in
the training data,and the representation of training
data which is determined by the form of the rules
to be learnt, there may exist overlappings between
different groups of training data and this
determines that perfect rules may not exist for
some faults. The rules learnt for fault 2 and fault
6 are not as satisfactory as other rules. By
inspecting the two groups of training data
corresponding to the two faults it is found that
there exist three sets of overlapping data
between the two groups and this determines that
the learnt rules for the two faults could not be as
satisfactory as other rules. The best rule learnt
for fault 2 will not miss any faults when tested
by its corresponding training data (NSA = 16)
but can result in five incorrect diagnoses when
tested by the other training data (NIA=5).
The second best rule learnt for this fault will
miss three faults when tested by its
corresponding training data (NSA = 13) and
can result in three incorrect diagnoses when
tested by the other training data (NIA=3).
Since the learning system produces a group of
fitted rules after learning, these rules may be
used supplementarily in cases where none of
these rules is perfect.
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Figure 6. Largest and average fitness in learning rule No. 1 for the mixing process
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Figure 7. Largest and average fitness in learning rule No. 2 for the mixing process
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Figure 10. Largest and average fitness in learning rule No. 5 for the mixing process
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Table 4: Fitnesses of the best rule and the second
best rule for each fault

FSE" Fitness  NSA NIA NOS
. 1048 16 0 1
1026 16 0 3
615 16 5 3
: 582 13 3 2
1048 16 0 4
’ 66.6 10 0 3
1048 16 0 1
! 1026 16 0 3
1048 16 0 4
’ 1026 16 0 3
726 1 0 3
‘ 64.4 10 0 2

In another experiment, the weighting coefficient
B was increased to 0.5 while the other coefficients
were unchanged.This imposes heavy penalty on
incorrect diagnoses. In this case,the best rule
learnt for fault 2 is:

IF
Level in tank 1

Cold water flow Decrease

Increase

Hot water flow  Increase

THEN
Cold water control valve fails high

which will miss 7 faults when tested by its
corresponding training data (NSA =9) but it will
not produce any incorrect diagnoses when tested
by the other training data (NIA =0).

The result of learning is also affected by the
training data.To produce better rules,the training
data should cover a large variety of potential
faults.This requirement also occurs in neural
network based fault diagnosis.

3.3.2 Testing the Rules on the Real Process

The learnt rules have been tested on the real
process. In an experiment, the following three

Studies in Informatics and Control,Vol.2,No.3, Sept 1993

faults: hot water control valve fails and gives low
output, cold water control valve fails and gives low
output, and partial blockage of hand valve 1, were
separately initiated twice. They were all
successfully diagnosed by the corresponding rules
and no incorrect diagnosis occurred. Another
fault, partial blockage of hand valve 2, was initiated
four times and on two occasions the correct
diagnosis was obtained whereas on the other two
occasions a wrong diagnosis, cold water control
valve fails high, was produced. This is due to the
fact that the corresponding rule is not perfect and,
as described previously, it was caused by the
overlappings of training data for fault 2 and fault
6.The rules could be improved by filtering out the
bad training data prior to learning, The rules could
also be improved by including additional features,
such as the magnitudes of deviations in
measurements, in their condition parts to increase
their resolution.

The proposed approach has also been successfully
applied in the learning of diagnostic rules for a
CSTR system and details about this can be found
in [Zhang and Roberts 92b].

4, Discussions and Conclusions

Two approaches for learning diagnostic
knowledge are proposed in this paper. Each
approach has its advantages and disadvantages.It
is shown that the neural network based approach
has better generalization properties in that it can
tolerate model-plant mismatch to some extent and
works well under partially incorrect and partially
unavailable information. The knowledge acquired
in this approach is stored as the network weights
and it is very difficult to comprehend such
knowledge. On the other hand, the knowledge
acquired in the genetic algorithm based approach
is in the form of diagnostic rules and is easy to
understand. The genetic algorithm based
approach is less robust than the neural network
based approach in that the learnt rules are rather
crisp and have difficulties in dealing with uncertain
information.

The proposed genetic algorithm based learning
approach can be extended in future studies to
include more complicated form of rules in that the
condition parts of the rules shall not only include

251



the qualitative deviations in on-line measurements
but also other features,such as magnitude of the
deviation and the shapes in measurement
curvatures. A further improvement would be to
learn fuzzy diagnostic rules so that uncertain
information can be properly handled.
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